Note

An Extension of the Erdös, Ko, Rado Theorem to t-Designs

B. M. I. Rands

Department of Mathematics, California Institute of Technology, Pasadena, California 91125

Communicated by the Managing Editors
Received June 23, 1981

The following theorem is proved:
Theorem. Let represent the set of blocks of a $t-(v, k, \lambda)$ design. Given $0<s<t \leqslant k$, then there exists a function $f(k, t, s)$ with the following property: suppose there is a set $(7 \subseteq B$ of blocks such that for all $A, B \in(\%$, $|A \cap B| \geqslant s$; then if $v \geqslant f(k, t, s)$,

$$
|\gamma| \leqslant b_{s}=\text { the number of blocks through s points. }
$$

Furthermore, the only families of blocks reaching this bound are those consisting of all blocks through some s points.

$$
\begin{aligned}
& \text { If } s<t-1 \text {, then } f(k, t, s) \leqslant s+\binom{k}{s}(k-s+1)(k-s) . \\
& \text { If } s=t-1 \text {, then } f(k, t, s) \leqslant s+(k-s)\binom{k}{s}^{2} .
\end{aligned}
$$

Terminology and Notes

A $t-(v, k, \lambda)$ design is an ordered pair (X, X), where X is a set of size v, and B_{b} is a family of k-subsets (blocks) of X with the property that any t subset of X is contained in exactly λ of the blocks of \mathscr{B}. To avoid degenerate cases, it is assumed that $0<t \leqslant k \leqslant v$.

It is well known that for any $s \leqslant t$, the number of blocks, b_{s}, through any collection of s points of X, is independent of the points, and

$$
b_{s}=\lambda\binom{v-s}{t-s} /\binom{k-s}{t-s}
$$

Extensive use is made of the fact that

$$
\binom{n}{r} /\binom{n-1}{r-1}=n / r
$$

Let.$V_{k}(v)$ denote the set of all k-subsets of a v-set. Then it may be regarded as a $k-(v, k, 1)$ design. So the theorem has the following theorem due to Erdös et al. [1] as an immediate corollary:

Theorem. Given $0<s \leqslant k \leqslant v$, then there exists a function $g(k, s)$ with the following property: suppose there is a set $\subset 7$ of k-subsets of a v-set such that for all $A, B \in \subset,|A \cap B| \geqslant s$; then if $v \geqslant g(k, s)$,

$$
|\gamma| \leqslant\binom{ v-s}{k-s} .
$$

Frankl [2] has shown that if $s \geqslant 15$, then,

$$
g(k, s)=(k-s+1)(s+1)
$$

Proof of the theorem. Let γ be a family of blocks, satisfying the conditions of the theorem. Let \mathscr{C} be the set of s-subsets, which are at the intersection of at least two blocks of $c \%$. Let n_{p} be the number of blocks containing the s-subset p of the family \mathscr{C}. Let $|\vec{q}|=w$.

Count (p, B) such that $p \in \mathscr{H}, p \subseteq B \in \mathscr{C}$, to obtain,

$$
\vdots_{p \in \mathscr{R}} n_{p} \leqslant w\binom{k}{s} .
$$

Count (p, B, A) such that $p \in \mathscr{C}, p \subseteq B \cap A$, with $A, B \in(7$;

$$
\varliminf_{p \in \mathscr{R}} n_{p}\left(n_{p}-1\right)=\varliminf_{\substack{A \neq B \\ A . B \in \mathscr{C}}}\binom{|A \cap B|}{s} \geqslant w(w-1) .
$$

Now if a is not the set of all blocks through an s-subset, then, for each $p \in \mathscr{C}$, there is some block $B \in C$ with $p \notin B$. Any other block $A \in(H$, which contains p, contains at least s points of B. So if d is the maximum number of blocks of \mathscr{B} which contain p and at least s points of B, then $n_{p} \leqslant d$. Hence,

$$
\begin{aligned}
& w(w-1) \leqslant(d-1) \sum_{p \in \mathscr{C}} n_{p} \leqslant(d-1) w\binom{k}{s}, \\
& w-1 \leqslant(d-1)\binom{k}{s} \quad \text { and so } \quad w<d\binom{k}{s} .
\end{aligned}
$$

If $d\binom{k}{s} \leqslant b_{s}$ we are done.

The following lemma gives an upper bound for d.

Lemma. Let p be an s-subset, and B a block not containing p. Let d be the number of blocks containing p and at least s points of B. Then
(i) if $s \leqslant t / 2$ and $v \geqslant k^{2}+2 t$, or
(ii) if $t / 2<s<t-1$ and $v \geqslant s+\binom{k}{s}(k-s)$, then $d \leqslant(k-s-1)\left[\binom{v-s-1}{t-s-1} /\binom{k-s-1}{t-s-1}\right] \lambda$;
(iii) if $s=t-1$ then $d \leqslant\binom{ k}{s} \lambda$.

Proof of (i). Take an s-subset, p, and a block B containing r points of p, for some $r<s$.

Let d_{r} be the number of blocks containing p and at least s points of B. Then $d_{r} \leqslant\binom{ k-r}{s-r} b_{2 s-r}=\lambda\binom{k-r}{s-r}\binom{i-2 s+r}{1-2 s+r} /\binom{k-2 s+r}{1-2 s+r}=e_{r}$, say, since there are $\binom{k-r}{s-r} s-$ subsets of B which contain all points of $B \cap p$, and these, together with the remaining $s-r$ points of p, each determine a family of $b_{2 s-r}$ blocks with the required property. These families have in their union all such blocks. Clearly,

$$
\begin{aligned}
e_{r+1} / e_{r} & =(s-r)(v-2 s+r+1) /(k-r)(k-2 s+r+1) \\
& >(v-2 t) / k^{2}
\end{aligned}
$$

so if $v \geqslant k^{2}+2 t$, then $e_{r+1}>e_{r}$ for all $r<s-1$, and so

$$
d_{r} \leqslant e_{s-1}=\lambda(k-s+1)\binom{v-s-1}{t-s-1} /\binom{k-s-1}{t-s-1} .
$$

Hence d is bounded as required.
Proof of (ii) and (iii). Let $c_{j}=$ maximum number of blocks containing j points of X. So if $j \leqslant t$, then $c_{j} \leqslant b_{j}$, but, if $j>t$, then $c_{j} \leqslant \lambda$.

Then, with d_{r} as in the proof of case (i),

$$
d_{r} \leqslant\binom{ k-r}{s-r} c_{2 s-r} .
$$

So,

$$
\begin{aligned}
& \text { if } r \leqslant 2 s-t \text {, then } d_{r} \leqslant \lambda\binom{k-r}{s-r} \leqslant\binom{ k}{s} \lambda \text {; } \\
& \text { if } r=2 s-t \text {, then } d_{r} \leqslant \lambda\binom{k-2 s+2 s}{2 t-2 s} ; \\
& \text { if } r>2 s-t \text {, then } d_{r} \leqslant \lambda\binom{k-r}{s-r}\binom{t-2 s+r}{t-2 s+r} /\binom{k-2 s+r}{t-2 s+r} \text {. }
\end{aligned}
$$

It is clear, using the same argument as in (i), that,

$$
\begin{aligned}
d=\max d_{r} & \leqslant \max \left(d_{0}, d_{s-1}\right) \\
& \leqslant \max \left(\binom{k}{s} \lambda, \lambda(k-s-1)\binom{v-s-1}{t-s-1} /\binom{k-s-1}{t-s-1}\right),
\end{aligned}
$$

as long as $v \geqslant k^{2}+2 t$.
But if $s<t-1$, then $\left.d \max \binom{k}{s} \lambda, \lambda(v-t) / k\right)$. So if $v \geqslant t+\binom{k}{s} k$, then $d \leqslant \lambda(k-s-1) b_{s+1}$. If $s=t-1$, then $d \leqslant \max \left(\binom{k}{s} \lambda, \lambda(k-t)\right)=\binom{k}{s} \lambda$. So ends the proof of the lemma.

We want $d\binom{k}{s} \leqslant b_{s}$.
In cases (i) and (ii)

$$
\lambda\binom{k}{s}(k-s+1)\binom{v-s-1}{t-s-1} /\binom{k-s-1}{t-s-1} \leqslant \lambda\binom{v-s}{t-s} /\binom{k-s}{t-s}
$$

i.e.,

$$
\binom{k}{s}(k-s+1)(k-s) /(t-s) \leqslant(v-s) /(t-s)
$$

or

$$
v \geqslant s+\binom{k}{s}(k-s+1)(k-s)
$$

In case (iii)

$$
\lambda\binom{k}{s}^{2} \leqslant \lambda(v-t+1) /(k-t+1)
$$

or

$$
v \geqslant s+(k-s)\binom{k}{s}^{2} .
$$

Since we have strict inequality, in $|c|<b_{s}$, when v satisfies these conditions, and $(7$ does not consist of all blocks containing an s-subset, then the conclusion of the theorem holds.

Conclusion

The bound $f(k, t, s)$ is not the best possible, but is sometimes surprisingly good, especially as it is independent of λ. For example, consider the case $t=2, s=1$; then the theorem gives

$$
f(k, 2,1) \leqslant 1+\dot{k}^{2}(k-1)=k^{3}-k^{2}+1 .
$$

It is not difficult to show that if $\lambda=1$, then for $v>\left((k-1)^{4}-1\right) /(k-2)=$ $k^{3}-2 k^{2}+2 k$ the conclusions of the theorem hold. However, to prove this it seems necessary to make use of the fact that a $2-(v, k, 1)$ design is a partial geometry. For $\lambda>1$, no such alternative method is available. In the case $\lambda=1$, and $v=k^{3}-2 k^{2}+2 k$, take the 2 -design $P G(3, k-1)$, consisting of the points and lines of projective 3 -space (so $k-1$ must be a prime power). The family of $k^{2}-k+1=b_{1}$ lines lying in a plane have the property that any two intersect, but do not form the set of blocks through a point.

Acknowledgments

I would like to thank my advisor. Richard Wilson, who introduced me to the Erdös, Ko. Rado Theorem, and conjectured the above.

References

1. P. Erdös, C. Ko, and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2) 12 (1961), 313-320.
2. P. Frankl, The Erdös, Ko, Rado Theorem is true for $n=c k t$, in "Colloquia Mathematica Societatis Janos Bolyai," Vol. 18, "Combinatorics" (A. Hajoal and V. Sós. Eds.). Keszthely, Hungary, 1976.
