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a r t i c l e i n f o
 a b s t r a c t

We provide an explicit example of a higher-dimensional model describing a non-supersymmetric
spectrum of 4D particles of mass M, whose 4D geometry – including loop effects – has a curvature that
is of order R � m4

KK=M2
p , where mKK is the extra-dimensional Kaluza–Klein scale and Mp is the 4D Planck

constant. mKK is stabilized and can in particular satisfy mKK � M. The system consists of a (5+1)-dimen-
sional model with a flux-stabilized supersymmetric bulk coupled to non-supersymmetric matter local-
ized on a (3+1)-dimensional positive-tension brane. We use recent techniques for calculating how
extra dimensions respond to changes in brane properties to show (at the classical level) that the extra-
dimensional volume adjusts to ensure that the low-energy 4D geometry is exactly flat, independent of
the value of the brane tensions. Its mechanism for doing so is the transfer of stabilizing flux between
the bulk and the branes. The UV completion of the model can arise at scales much larger than M, allowing
the calculation of quantum effects like the zero-point energy of very massive particles in the vacuum. We
find that brane-localized loops do not affect the 4D curvature at all, but bulk loops can. These can be esti-
mated on general grounds and we show that supersymmetry dictates that they generate curvatures that
are generically of order m4

KK=M2
p . For realistic applications this points to a world with two supersymmetric

extra dimensions, with supersymmetry in the bulk broken at the sub-eV KK scale – as proposed in hep-
th/0304256 – requiring a 6D gravity scale somewhat higher than 10 TeV. Ordinary Standard Model par-
ticles are brane-localized and not at all supersymmetric (implying in particular no superpartners or the
MSSM). We discuss how the model evades various no-go theorems that would naively exclude it, and
briefly outline several striking observational implications for tests of gravity and at the LHC.

� 2013 Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

by/3.0/).
1. Introduction

The cosmological constant problem [1] remains an important
conceptual obstacle to our understanding of the hierarchies of the
physical world. The puzzle of why the electroweak scale is much
smaller than the Planck (and possibly GUT) scale has motivated
many proposals for what kinds of physics might lie at TeV energies
– supersymmetry, compositeness, extra dimensions and so on –
that have been famously used to motivate many choices made
when designing the now-operational Large Hadron Collider (LHC).
But the same reasoning applied at the much lower, sub-eV energies
relevant to the scale of Dark Energy seems to fail to explain how the
vacuum energy can gravitate as weakly as it appears to do.

Many have remarked that extra dimensions (and large ones) can
help with the cosmological constant problem, because they break the
connection between the energy density of a four-dimensional vac-
uum (which we believe should be large), and the curvature of the
visible universe (which we observe to be small) [2–6]. The problem
in four dimensions is that the Einstein equations force these to be
the same, since hTlmi ¼ 1

4 Tglm for any Lorentz-invariant state, imply-
ing Rlm = �2pGTglm. But once there are more than four dimensions
then we need not demand the vacuum be Lorentz-invariant in the
higher dimensions. And a large energy density that is Lorentz invari-
ant in the 4D sense (such as a brane tension), can curve the extra
dimensions rather than the four dimensions that are Lorentz-invari-
ant. In particular, explicit solutions to the higher-dimensional field
equations with brane sources are known that have this property, at
least when there are not too many extra dimensions [2,4,5].

But the existence of some choices for brane sources for which
bulk solutions can be flat is not in itself a solution to the
cosmological constant problem. What must be shown is that these
choices are sufficiently stable against integrating out heavy fields,
including the electron.

In this paper we provide an explicit example of an extra-
dimensional model which we believe predicts a 4D curvature
whose size is controlled by the Casimir energy of the extra
dimensions, R ’ m4

KK=M2
p , where mKK is the Kaluza–Klein (KK)

scale and Mp is the Planck scale. In particular, it can be much
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1 As originally formulated [14], a small ratio is said to be technically natural if a
new symmetry emerges when the ratio goes to zero. This is a particularly important
way of ensuring technical naturalness in the way we define it here.
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smaller than what would be expected from the scales M � mKK of
particle physics. We regard it as a realization of an earlier general
proposal –supersymmetric large extra dimensions (SLED) [5] –
wherein ordinary particles are localized on a space-filling (3+1)-
dimensional codimension-two brane that sits within a (5+1)-
dimensional bulk spacetime with two compact dimensions trans-
verse to the brane. We take the bulk to be described by a partic-
ular 6D supergravity (chiral, gauged supergravity [7]), but we
believe the underlying mechanism applies equally well to other
6D supergravities, and more generally to other low-
codimension brane systems interacting through bulk supergravi-
ties, once their back-reaction onto the bulk is accurately included.

A proper description of the vacuum energy must include in par-
ticular the energetics that stabilize the extra dimensions, and an
advantage of the particular model we study is that many features
of the extra-dimensions are stabilized within the bulk (without
reference to the branes) at the classical level by a simple flux
compactification [8], leaving only the single flat direction that is
guaranteed by the classical scale invariance of the bulk supergravity.

It has been known for some time that brane back-reaction can lift
this last flat direction [9–12], and what is new about our contribution
here is to show that there is a simple choice for the brane–bulk cou-
plings that can fix this last flat direction without generating an on-
brane curvature, assuming we work only to within the classical
approximation in the bulk (more about quantum corrections below).
Two brane properties are required: (i) the absence of a direct brane
coupling to the bulk dilaton (a scalar superpartner of the graviton in
six dimensions); and (ii) a Maxwell–brane coupling that allows one
of the branes to carry a localized amount of the bulk-stabilizing flux.

What is remarkable is that these properties are unchanged un-
der arbitrary loops of the on-brane fields, including in particular
loops of all ordinary particles of everyday experience (which we
assume to be localized on one of the branes). This is possible be-
cause property (i) – the absence of a coupling to a bulk field – is
automatically preserved by brane loops if it is true at the classical
level. Loops of ordinary particles also cannot alter the brane-local-
ized flux coupling required by property (ii) if the brane-bound par-
ticles do not couple to the bulk flux field. In the model explored
below we assume the brane-flux coupling occurs on a different
brane from that on which all brane particles are localized.

The requirement for brane-localized flux – property (ii) above –
turns out to be the new crucial ingredient, since it is the possibility
of being able to localize some bulk fluxes onto the brane that al-
lows the system to respond with little energy to changes of brane
tension [12]. It is also this brane-localized flux that is responsible
for stabilizing the remaining flat direction in the bulk, which it
can do because the bulk flux field couples to the 6D scalar dilaton
that parameterizes this flat direction.

We lay out our arguments in the following way. First, the
remainder of this section carefully defines the notion of ‘technical
naturalness,’ whose absence is the essence of the cosmological
constant problem. We do so because we believe that a resolution
of this problem ultimately points towards a world with two super-
symmetric extra dimensions at sub-eV scales. Although this seems
an extreme possibility, there seem to be no alternatives short of
abandoning technical naturalness altogether. In the words of Sher-
lock Holmes [13] ‘‘. . . when you have eliminated the impossible,
whatever remains, however improbable, must be the truth.’’

Section 2 then describes in detail the simple bulk and brane
systems on whose properties our proposal rests. In particular this
section describes the exact classical solutions that capture
the back-reaction of the branes to the bulk and which govern the
geometry of both the on-brane and off-brane dimensions. The size
of quantum corrections is the topic of Section 3, which studies both
the implications of loops of on-brane and bulk modes. This section
argues why loops of brane-localized fields do not change the conclu-
sions of Section 2 at all, and why the leading contributions come from
bulk loops only. The contributions of massless and massive fields in
the bulk are contrasted, and both are argued only to generate contri-
butions to the low-energy 4D scalar potential that are of order m4

KK .
Our conclusions are summarized in Section 4, including a qualitative
discussion of why both extra dimensions and supersymmetry are re-
quired. This section closes with a brief summary of what is known
about the potentially rich observational signatures that are implied
by the present framework, together with a summary of issues need-
ing further study. Three appendices deal with technical issues about
localizing flux on branes; calculate the low-energy 4D potential for
arbitrary small perturbations to the brane actions; and examine
two common objections to the possibility of using extra dimensions
to help with the cosmological constant problem.
1.1. Technical naturalness (without cutoffs)

Notions of ‘technical naturalness’ are central to our motivation, so
we pause here to state these carefully. We believe our discussion lar-
gely keeps to the party line, though we make an effort not to cast the
issues in terms of cutoffs in divergent integrals. Those familiar with
the issues should feel free to skip this section entirely.

An understanding of hierarchies of scale, like the electroweak
hierarchy or the cosmological constant problems, comes in two
parts. The first part asks why the hierarchy of scales exists in the first
place in the fundamental theory at very small distances. Because this
question is sensitive to physics at the fundamental scale – possibly
the string scale or some other quantum gravity scale – it might not
be answered until we ultimately understand this fundamental the-
ory in detail. The second part of the understanding asks why the hier-
archy is stable when various massive states are integrated out to
produce one of the effective theories that describes the implications
of the fundamental theory at the low energies we can observe.

Technical naturalness is addressed at this second part of the
problem, since the low-energy effective theory is not unique
(depending as it does on the energy range that is of interest for a
particular low-energy observer). Yet it is implicit in our under-
standing of physics that a large hierarchy can be understood
equally well in any of the effective theories for which we choose
to ask the question.

For example, a large hierarchy that is well-understood is the
small size of the nucleus, ‘n, relative to the size of an atom, a0.
Within the Standard Model the small ratio ‘n/a0 ’ 10�5 is under-
stood as being a consequence of two other experimental facts:
the electromagnetic coupling constant is weak: a = e2/4p ’ 10�2;
and the electron is light compared with the QCD scale,
me=KQCD ’ 10�3. The small size of the nucleus is then a conse-
quence of the relations a�1

0 ’ ame and ‘�1
n ’ KQCD.

But the same question might again be asked within a lower-en-
ergy effective theory below the QCD scale, say within the quantum
electrodynamics of electrons, protons and neutrons. In this theory
the small ratio of observables, ‘n/a0, is instead understood as a con-
sequence of the small size of a in this theory, together with the elec-
tron being much lighter than the proton: me � mp. The process of
integrating out the quarks and gluons to give the proton and neutron
(or integrating out the muon or other particles) does not fundamen-
tally change the way we think about nuclei being small, and this is
what it means1 for this hierarchy to be ‘technically natural.’

Contrast this with our understanding of the small ratio between
the observed Dark Energy density, qvac, and the electron mass
(say): qvac/m4

e ’ 10�36. Consider the low-energy theory well below
the electron mass, for which the fundamental particles might be ta-



2 We use a ‘mostly plus’ metric and Weinberg’s curvature conventions [18] (that
differ from those of MTW [19] only by an overall sign in the definition of the Riemann
tensor).
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ken to be photons, neutrinos and gravitons. For this theory q is given
by the cosmological constant that appears in the low-energy effective
action, plus the loop contributions of these very low-mass particles:

qvac ’ kle þ low-energy loops;
where Leff ¼ �

ffiffiffiffiffiffiffi
�g
p

ðkle þ � � �Þ: ð1Þ

Compare this with the same calculation, performed in the effec-
tive theory defined above the electron mass, containing electrons
in addition to the previously considered low-energy particles.
There is an effective cosmological constant, khe, also in this effec-
tive theory, whose value is related to kle by a matching condition
that states that the physical quantity, q, should be the same in this
theory as in the lower-energy effective theory. This implies that
the renormalized value of khe in the effective theory above the elec-
tron mass is related to that below, kle, by

kle ’ khe þ
k m4

e

16p2 ; ð2Þ

where k is an order-unity number whose value is computed by eval-
uating an electron loop graph. This kind of shift, kle ? khe occurs as
we match across the electron threshold because the low-energy
theory is obtained by integrating out the electron, meaning elec-
trons are not present there to contribute to q through loops. Eq.
(2) expresses how k must change between the two theories to en-
sure that the low-energy theory ‘knows’ about the contributions
of virtual electrons to the vacuum energy.

Now comes the main point. Since all of the masses of particles
in the very low-energy theory below the electron threshold are
small, kle is of the same order of magnitude as is qvac. Consequently
Eq. (2) implies khe must be much larger than q in the effective the-
ory above the electron threshold. This nevertheless produces a
small value for q in this higher-energy theory because of a cancel-
ation of roughly 36 decimal places between khe and an equally
large electron loop, with the much smaller value, kle, of the low-
er-energy theory emerging as the residue.

Instead of there being an understanding in all effective theories
why k is smaller than m4

e, the small size of kle in the very low-en-
ergy theory is understood as arising as an incredibly detailed can-
celation between much larger quantities like khe and loops of the
many much heavier particles the higher-energy theories contain.
Of course, it is logically possible that this is the way nature works.
But although we know about very many other hierarchies in nature
(besides that between atoms and nuclei), so far as we know none of
these are understood in this way.

It is a radical proposal that advocates that new hierarchies
should be understood so very differently than those we have
understood well in the past. A more scientifically conservative ap-
proach is instead to seek a technically natural understanding of
poorly understood hierarchies like the electroweak hierarchy and
the Dark Energy density. Of course this is a very tall order for the
Dark Energy, since its very small size means that any successful ap-
proach must modify the properties of comparatively low-energy
particles (like the electron).

Purging cutoffs
Notice that the previous paragraphs are all formulated in terms

of physical, or of renormalized, masses. Technical naturalness is of-
ten stated in a cutoff-dependent way, in terms of the absence of
quadratic or quartic divergences when loop contributions are com-
puted within a low-energy effective theory. We deliberately do not
phrase things here in terms of cutoffs because we believe this can
be a confusing way to express the physical issues at stake.

At face value quadratic dependence on a cutoff sounds like the
same thing as sensitivity to heavy particle masses, because within
a cutoff regularization the value of the cutoff very concretely speci-
fies where the high-energy theory starts and a low-energy effective
theory breaks down. Furthermore, quadratic or higher dependence
on a cutoff indicates a strong sensitivity of a loop integral to the
details of the unknown high-energy physics. However, from the
point of view of a Wilsonian effective field theory, cutoffs are one
of the few things we can be sure never enter into physical quantities,
because they are an artefact of how a theorist decides to organize a
calculation into a low- and high-energy contribution [15,16]. In par-
ticular, damage done by using a silly or inconvenient regularization,
can be undone by appropriately renormalizing the resulting theory.

From this point of view the scale of the cutoff in the low-energy
theory is really only a proxy for a bona fide mass of a state in the
UV completion, and the presence of quadratic divergences really
only provide a qualitative indication of when heavy masses can ap-
pear as an enhancement when integrating out a heavy particle. But
in the end, the relation between cutoffs and heavy masses is not
quantitative, and to properly decide whether heavy masses con-
tribute significantly to an observable really requires knowledge
of the UV completion that describes its properties, and cannot be
decided purely within the low-energy theory. In general, the coef-
ficients of quadratic divergences do not track those of heavy
masses, and one can get burned by taking the correspondence be-
tween heavy masses and cutoffs too seriously [17].

2. Classical brane-bulk dynamics

We start by summarizing the bulk-brane system of interest,
which we choose closely following Ref. [12]. Since our results
depend only on the dynamics of codimension-2 branes within
higher-dimensional supergravity (together with the classical scale
invariance these supergravities naturally enjoy), we believe our
results not to be limited to the specific six-dimensional
supergravity we examine here in detail.

2.1. The bulk system

We take chiral gauged supergravity in six dimensions [7] to
govern the bulk physics, to which we couple two space-filling, po-
sitive-tension branes that strongly break supersymmetry. The bulk
fields whose dynamics we follow in detail are the metric, gMN; a
flux-stabilizing bulk Maxwell gauge potential, AM; and the 6D sca-
lar dilaton, /.

Field equations
The bulk bosonic action restricted to these fields is2

Sbulk ¼

�
Z

d6x
ffiffiffiffiffiffiffi
�g
p

(
1

2k2 gMNðRMN þ @M/@N/Þ þ 1
4

e�/FMNF
MN þ 2g2

R

k4 e/

)
; ð3Þ

whereF ¼ dAdenotes the gauge potential’s field strength, and j and
gR are, respectively, the dimensionful coupling constants for gravity
and for a specific URð1Þ symmetry of the supersymmetry algebra.
The full gauged supergravity has more bosonic fields than this, but
the rest can be set to zero consistent with their equations of motion.
The background gauge field, AM , need not be the one that gauges the
URð1Þ symmetry so its gauge coupling, g, need not equal gR.

The equations of motion from this action are the (trace re-
versed) Einstein equations
RMN þ @M/@N/

þ k2e�/FMPF
P
N �

 
k2

8
e�/F PQF

PQ � g2
R

k2 e/

!
gMN ¼ 0; ð4Þ

the Maxwell equation

rMðe�/FMNÞ ¼ 0 ; ð5Þ



4 C.P. Burgess, L.van Nierop / Dark Universe 2 (2013) 1–16
and the dilaton equation

�/� 2 g2
R

j2 e/ þ j2

4
e�/FMNF

MN ¼ 0 : ð6Þ

These field equations enjoy the exact classical symmetry

gMN ! f gMN and e�/ ! f e�/ ; ð7Þ

with AM ! AM . This ensures the theory has three important
properties:

� It ensures any nonsingular solution is always part of a one-
parameter family of solutions that are exactly degenerate
(within the classical approximation);
� It ensures that there exists a Weyl rescaling, �gMN ¼ e/ gMN , for

which / appears undifferentiated in the bulk action only as an
overall factor. That is,
Sbulk ¼ �
Z

d6x
ffiffiffiffiffiffiffi
��g

p
e�2/Lð�gMN; @M/; FMNÞ; ð8Þ

where L only depends on derivatives of /. Eq. (8) is significant
because it shows that the quantity e2/ plays the role of 1/�h, and
so is the loop-counting parameter for the bulk part of the theory.
� It ensures that once evaluated at any solution of the field equa-

tions – i.e. Eqs. (4) through (6) – the action, Eq. (3), evaluates to
a total derivative [20],
Sbulkjsoln ¼
1

2j2

Z
d6x

ffiffiffiffiffiffiffi
�g
p

�/: ð9Þ

2.2. Brane properties

We focus on configurations involving two space-filling (3+1)-
dimensional branes, whose coupling to the bulk fields we take to
be given by the leading terms in a derivative expansion:

Sbranes ¼ �
X

b

Z
d4x

ffiffiffiffiffiffiffiffiffi�g4
p

"
Tbð/Þ �

1
2

�bð/Þ�mnFmn þ � � �
#
; ð10Þ

where the ellipses indicate terms involving two derivatives or
more.3 In general the coupling functions Tb and Ub can depend on
/, as well as any fields localized on the branes (which we denote col-
lectively by w). If Tb is independent of / and Ub / e�/, then the brane
action transforms under the classical scaling symmetry, Eq. (7), in
the same way as does the bulk action, ensuring that the brane cou-
plings do not break the classical bulk scale invariance.

The parameter Tb represents the tension of the brane, and our
conventions are such that Tb > 0 corresponds to positive tension.
The parameter Ub corresponds physically [12] to the amount of
magnetic flux that is localized on the source branes (see Eq. (23)
below). When Tb drops out of the low-energy energetics – as is
the case below – keeping nominally subdominant terms in the
derivative expansion like the magnetic coupling to the brane be-
comes important [5].

Let us now specify the properties of the two source branes in
more detail. First is the observer’s brane, So, on which all ordinary
particles are imagined to reside,

To ¼ so þ glm@lw�@mwþM2w�wþ � � � ; ð11Þ

and on which there is no flux,4 Uo = 0. w here could represent the
Higgs boson, but more broadly is meant as a proxy for all of the fields
of the Standard Model. The goal of later sections is to show that the
3 Notice that we normalize the quantity Ub slightly differently than in Ref. [12].
4 Since our conclusions depend only on the total brane flux, Uo + Uf, the vanishing

of Uo is not necessary.
on-brane curvature can be made systematically small compared
with M4/M2

p in a technically natural way.
Second is what we call the ‘flux’ brane, on which no fields are

localized and for which

Tf ¼ sf and �f ¼ l : ð12Þ

Here so, sf, l and M are dimensionful parameters that define the en-
ergy scales of the system. Although the validity of semiclassical rea-
soning requires quantities like j2sb and j2M4 to be smaller than
order unity, we do not assume sf, so or M4 to be particularly small
relative to one another, and we wish to identify when the low-en-
ergy 4D curvature is set by scales that are much smaller than these.

What is important for what follows is that the choices (11) and
(12) ensure that the classical brane actions are both independent of
the bulk field /. Our choices also ensure there is no direct coupling
between the brane-localized fields w and the bulk Maxwell field,
FMN .

2.3. Bulk–brane interactions

We next turn to the bulk configurations to which these two
branes give rise. In what follows it suffices to focus on solutions
that are maximally symmetric in the four on-brane directions,
and are symmetric under rotations in the extra dimensions about
the two brane positions. This leads to the following ansätze for
the metric and Maxwell field:

ds2 ¼ dq2 þ e2Bdh2 þ e2W ĝlmdxldxm and A ¼ Ah dh ; ð13Þ
where ĝlmðxÞ is a maximally symmetric metric, and the functions W,
B, / and Ah depend only on q.

In this case the bulk field equations reduce to

ðe�Bþ4W e�/A0hÞ
0 ¼ 0; ðAhÞ

ðeBþ4W/0Þ0 � 2g2
R

k2 e/�1
2

k2Q2e/e�8W

� �
eBþ4W ¼ 0; ð/Þ

4 W 00 þ ðW 0Þ2
h i

þB00 þ ðB0Þ2þð/0Þ2þ3
4

k2Q2e/e
�8W þg2

R

k2 e/¼ 0; ðqqÞ ð14Þ

B00 þ ðB0Þ2þ4W 0B0 þ3
4

k2Q2e/e�8W þg2
R

k2
e/ ¼ 0; ðhhÞ

1
4

e�2W R̂þW 00 þ4ðW 0Þ2þW 0B0 �1
4

k2Q2e/e�8W þg2
R

k2 e/¼ 0; ðlmÞ

where primes denote differentiation with respect to the coordinate
q. The first of these can be integrated once exactly, introducing an
integration constant, Q:

Fqh ¼ A
0

h ¼ Q e/eB�4W : ð15Þ

Evaluated with this ansatz, the brane action, Eq. (10), becomes

Sbranes ¼ �
X

b¼o; f

Z
d4x

ffiffiffiffiffiffiffiffiffi
�ĝ4

q
e4W Lb ; ð16Þ

where Lb is given for each brane in terms of Tb and Ub by

Lb :¼ Tb � �b e�BFqh þ � � � ¼ Tb �Q�b e/ e�4W þ � � � : ð17Þ
Brane matching conditions
The brane–bulk couplings impose a set of boundary conditions

on the derivatives of the bulk fields in the near-brane limits, that
are the generalization to codimension-2 of the more familiar Israel
junction conditions [21] of codimension-1. The precise conditions
were recently worked out for codimension-2 branes [9–11] (see
also [22,23]), and state:

½eB/0	qb
¼ @Lb

@/
;

½eBW 0	qb
¼ Ub and ½eBB0 � 1	qb

¼ �½Lb þ 3Ub	; ð18Þ
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where both sides are evaluated in the near-brane limit,5 q ? qb,
and as before primes denote differentiation with respect to q. The
quantities Lb and Ub appearing here are

Lb :¼ j2Lb

2p
and Ub :¼ j2

4p
@Lb

@ghh

� �
: ð19Þ

Notice that it is not necessary to know how Lb depends on ghh in or-
der to evaluate Ub, because the bulk field equations require Ub must
satisfy the constraint [9–11]

4Ub½2� 2Lb � 3Ub	 � ðL0bÞ2 ’ 0; ð20Þ

where L
0

b ¼ @Lb=/, and so

Ub ¼
1
3

"
ð1�LbÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�LbÞ2 �

3
4
ðL0bÞ

2

r #
’ ðL0bÞ

2

8ð1�LbÞ2
þ � � � ; ð21Þ

where the root is chosen so Ub ! 0 when ðL0bÞ
2 ! 0.

The corresponding boundary condition for the Maxwell field
implies that in a coordinate patch containing each source brane,
Eq. (15) integrates to (see also Appendix A) [12]

AhðqÞ ¼
�o

2p

� �
e/o þQ

Z q

qo

d~q e/þB�4W observer brane

¼ � �f

2p

� �
e/f þQ

Z q

qo

d~q e/þB�4W flux brane; ð22Þ

where �o :¼ limq!qo
�o½/ðqÞ	 – appropriately renormalized [24] –

and so on.
Requiring these two solutions to differ by a gauge transforma-

tion, g�1oh X, on regions of overlap between the two patches im-
plies the flux-quantization condition

n
g
¼ 1

2p
�o e/o þ �f e/f
� �

þQ

Z qf

qo

dq e/þB�4W : ð23Þ

This identifies �tot ¼
P

b�b e/b as the part of the total magnetic flux
carried by the branes [5].

2.4. Explicit solutions

A great many explicit solutions to the above field equations and
boundary conditions have been found, starting almost 30 years ago
[8]. Some of these are known at the linearized level [25,12], while
others are exact solutions [5,26,20,27–31]. Many of these solutions
provide explicit compactifications from six to four dimensions,
and provide among the earliest examples of flux-stabilized
compactifications.

For the present purposes, what is most interesting about the ex-
act solutions is that the most general solutions are known
[5,26,20,27] for the special case where the dilaton’s radial deriva-
tive, /0, tends to zero at both brane positions. As is clear from the
boundary conditions, eqs. (18), these solutions are the ones appro-
priate for the case where the brane actions do not depend on /:
oLb/o/ = 0. What is remarkable about these solutions is that for
all of them the on-brane geometries are flat: ĝlm ¼ glm. We now
briefly summarize these solutions in more detail.

Rugby balls
A particularly simple situation is the special case where the dil-

aton is constant, / = u0, since then the solution is very easy to visu-
alize: a rugby ball, sourced by two branes [5]:
5 An important complication for codimension-2 branes over codimension-1 is that
both sides of Eqs. (18) generically diverge in the near-brane limit; requiring a
renormalization of the brane action [24]. (This renormalization turns out to be
unnecessary in the special case of D7-branes in Type IIB supergravity [11].)
ds2 ¼ e�u0

"
dq̂2 þ a2‘2sin2

 
q̂
‘

!
dh2

#
þ ĝlmdxldxm;

Fqh ¼ F q̂he�u0=2 ¼ Qe�u0=2a‘ sin
q̂
‘

� �
: ð24

With this metric the volume of the extra dimensions is

V2 ¼ 4pa‘2e�u0 ; ð25Þ

showing that the flux-stabilization fixes the extra-dimensional vol-
ume in terms of the scalar-field value, u0.

In these coordinates6 the two source branes for this geometry are
situated at q̂o ¼ 0 and q̂f ¼ p‘. This geometry has a conical singular-
ity at these points, characterized by the defect angle d = 2p(1 � a). In
the special case a = 1 the extra-dimensional geometry is a sphere [8].
For these rugby-ball solutions the matching conditions, Eqs. (18),
degenerate to a relationship between the deficit angle and the
Lagrangian density, Lo = Lf = L, of the two source branes,

1� a ¼ j2L
2p

; ð26Þ

as expected from other approaches [32].
The equations of motion determine the values of Q and ‘ as well

as the curvature of the on-brane directions:

Q ¼ 
2gR

j2 ; ‘ ¼ j
2gR

and ĝlm ¼ glm; ð27Þ

while the flux quantization condition implies

n
g
¼ a

gR
þ �o þ �f

2p

� �
eu0 ; ð28Þ

where the last equality uses Eqs. (27).
The interpretation of this last equation differs according to

whether or not
P

b�b e/b depends on u0. If not – such as in the
scale-invariant case where �b / e�/b – then Eq. (28) must be re-
garded as a constraint on the parameters of the brane action which,
if not satisfied, is an obstruction to the existence of solutions satis-
fying our assumed symmetry ansatz. But if

P
b�b e/b depends on u0

then this equation can be read as determining the value of u0,
which is not fixed by any of the other field equations.

These properties have a simple interpretation from the point of
view of the low-energy 4D effective theory [12,33]. The reason u0

is not fixed by the other equations is because it is the parameter
that labels the one-parameter family of solutions whose existence
is guaranteed by the scale invariance, Eq. (7), of the classical bulk
field equations. If both Tb and �be/ do not depend on / the brane
couplings do not break this scale invariance, implying the classical
low-energy potential for u0 must have an exponential form,
Veff ¼ Ae2u0 . In this case there are two situations: (i) u0 labels a flat
direction (and so is undetermined by the field equations) if A = 0, or
(ii) u0 necessarily runs away to ±1 if A – 0 (and so for finite u0

there are no solutions to the equations that are maximally sym-
metric in the on-brane directions). As is shown in [12] (see also
Appendix B), Eq. (28) corresponds in the low-energy theory to
the condition A = 0.

However, in the case of interest – c.f. Eqs. (11) and (12) –P
bUbe/ does depend on /, and so the brane–bulk couplings break

the bulk scaling symmetry. In this case u0 appears only in Eq. (28),
which should be read as fixing its value. From the point of view of
the low-energy 4D theory (details in Appendix B), u0 gets fixed
because the breaking of scale invariance lifts the flat direction,
through a Goldberger–Wise-like [34] stabilization mechanism for
6 Notice the coordinate rescaling q :¼ e�u0=2q̂ between this solution and the ansatz
of Eq. (13).



7 Notice that in the equal-tension limit the warp factor at the brane position is
W4

o ¼W4
f ¼ k=a, which was set to one in the rugby-ball solution by rescaling the

l
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codimension-2 branes. In this case all of the field equations are not
satisfied unless u0 is chosen to minimize this potential.

Unequal tensions
Because the above rugby ball solutions have equal defect angles

at both brane positions, they only describe situations where the
two branes have precisely equal tensions. But the general solutions
that apply when /0 ? 0 at both branes are known [20,26,27],
including those having two unequal brane tensions, which we
now describe.

In this case the metric can be written

ds2 ¼W2ĝlmdxldxm þ a2e�u0 ðW8dg2 þ dh2Þ; ð29Þ

where a = a(g), W ¼WðgÞ and (as before) ĝlm is a maximally sym-
metric on-brane geometry. The dilaton is similarly taken to depend
only on g, / = /(g), and the Maxwell field is given by Ah ¼ AhðgÞ, so
that

Fgh ¼ Q a2 e/e�u0 ; ð30Þ

with Q an integration constant. With these choices proper distance
along the direction between the branes is dq ¼ aW4dg e�u0=2, the
proper circumference of a circle along which h varies from zero to
2p at fixed g is C ¼ 2paðgÞ e�u0=2, and the extra-dimensional volume
is V2 ¼ 2pe�u0

R
dga2W4. In particular, when u0 is moderately large

and negative – so the bulk coupling satisfies eu0 � 1 – then the ‘ra-
dius’ defined by V2 ¼ r2 can become exponentially large: r2 / e�u0 .

The general solution to the bulk field equations having only
conical defects is known explicitly for these variables, given by
ĝlm ¼ glm together with

e/ ¼ W�2eu0 ;

W4 ¼ j2Q
2gR

� � cosh½kðg� g1Þ	
cosh½kðg� g2Þ	

;

and a�4 ¼ 2gRj2Q3

k4

� �
cosh3½kðg� g1Þ	 cosh½kðg� g2Þ	 ;

ð31Þ

showing that g2 � g1, k, u0 and Q are the independent integration
constants.

The position of the two source branes in these coordinates is g
? ±1. Since the near-brane limit of the proper distance is

dq ¼ �e�u0=2aW4 dg! �C e�kg dg ; ð32Þ

the defect angle in the geometry as g ? ±1 turns out to be

a
 :¼ 2kgR

j2Q

� �
e�kðg2�g1Þ : ð33Þ

The product of these last two expressions show how the integration
constant Q is fixed in terms of the tensions of the two branes:

aþa� ¼
2kgR

j2Q

� �2

: ð34Þ

It is fixed in this way because it must be adjusted to ensure that the
solution to the dilaton field equation is consistent with the bound-
ary condition that /0 ? 0 at both branes. Once this is done the solu-
tions have three independent parameters that may be dialed: the
two tensions (or defect angles) and the parameter u0 that labels
the orbit of the classical scale symmetry.

The flux-quantization condition is found by computing AhðgÞ
near the brane at g ? ±1, giving

A
h ¼
 

�o

2p

!
e/o þ k

j2Q

(
tanh½kðg� g1Þ	 þ 1

)
observer brane

¼ �
 

�f

2p

!
e/f þ k

j2Q

(
tanh½kðg� g1Þ	 � 1

)
flux brane; ð35Þ
and so flux quantization becomes

n
g
¼ 2k

j2Q
þ 1

2p
ð�oe/o þ �f e/f Þ

¼ ðaþa�Þ
1=2

gR
þ 1

2p
�o

W2
o

þ �f

W2
f

 !
eu0 ; ð36Þ

where W4
0 ¼ k=aþ and W4

f ¼ k=a�. Notice this reduces to the rugby-
ball quantization condition in the limit that7 a+ = a� = a.

Response to brane perturbations
Crucial to what follows is what happens to these solutions

when properties of the source branes are varied. Most importantly,
the above solutions require their source branes to satisfy two sep-
arate conditions:

ðiÞ oLb

o/
¼ 0;

ðiiÞ flux quantization ði:e: Eq:ð36ÞÞ: ð37Þ

Notice in particular that it is not necessary to require Lo = Lf, which
just corresponds to the special case of rugby-ball solutions.

These conditions provide the motivation for the choices made
for the brane Lagrangians given above – Eqs. (11) and (12). The
/-independence of both Tb and �b is designed so that both branes
do not couple to /, ensuring oLo/o/ = oLf/o/ = 0 as required by con-
dition (i). But because these choices imply that the flux-quantiza-
tion condition depends on u0, condition (ii) is automatically
satisfied for an appropriate choice u0 = uH. Using �o = 0 and Uf

= l:

eu� ¼
2pW2

f

l

"
n
g
� ðaþa�Þ

1=2

gR

#
: ð38Þ

This adjustment of u0 also has an energetic interpretation. This
can be shown explicitly for small perturbations about rugby-ball
geometries (see Appendix B for details), for which condition (ii)
can be seen to be the condition for minimizing the brane-gener-
ated scalar potential that lifts the flat direction for u0 in the low-
energy 4D effective theory.

The same thing can also be shown beyond the linearized
approximation. On general grounds, for the system studied here
the effective 4D scalar potential responsible for the on-brane cur-
vature is given by [9,11]

Veffðu0Þ ¼ Vbraneðu0Þ þ Vbulkðu0Þ ; ð39Þ

where the ‘bulk’ contribution is given by evaluating the bulk action
at the bulk solution generated by the source branes,

ffiffiffiffiffiffiffiffiffi�g4
p

Vbulk ¼ �
Z

d2xLbulk ¼ �
1

2j2

Z
d2x

ffiffiffiffiffiffiffi
�g
p

�/

¼ 2p
2k2

X
b

ffiffiffiffi�p g nMoM/ ¼ 1
2

ffiffiffiffi�p g4 L0b ð40Þ

where we use the general result, Eq. (9), nM is the normal vector
directed into the bulk, evaluated at the position of each brane,
and we use the dilaton matching condition, Eq. (18), to trade
nM@

M/ for L0p = dLb/d/ evaluated at the brane.
The ‘brane’ contribution to Eq. (39) is similarly given by the sum

of the brane action, Lb, and a ‘Gibbons–Hawking’ contribution, for
each brane. This leads to

Vbrane ¼
X

b

Ub ; ð41Þ
coordinates x .
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with Ub given by Eqs. (19) and (21). Notice in particular that near a
zero of L0b the function Ub vanishes quadratically:

Ub ¼
j2Ub

2p
’ ðL0bÞ

2

8ð1� LbÞ2
þ � � � ; ð42Þ

where Lb ¼ j2Lb=2p.
Combining terms, the total brane-generated effective potential

becomes

Veff ¼
X

b

�
Ub þ

1
2
@Lb

@/

�
: ð43Þ

Notice in particular how Veff vanishes whenever L0b does. This is re-
quired by consistency since all exact solutions are known with /0 ?
0 at the branes (as is the case whenever L0b ¼ 0), and the on-brane
geometry of all of these solutions is flat. Furthermore, since Ub is
quadratic in j2L0b when L0b is small, it is only the second term in
the sum in Eq. (43) that contributes in a linearized deviation away
from these flat solutions, consistent with the explicit linearized
analysis of Appendix B and Refs. [12,33]. The Ub term provides the
generalization of the brane-generated potential beyond linear or-
der, that is exact (up to classical level in the bulk physics) [9–11].

3. Loop effects

In order to have a technically natural cosmological constant, it
is not enough just to have a vanishing classical contribution. Since
the cosmological constant problem is in essence a quantum prob-
lem, the problem has not become hard until loop effects are in-
cluded. Generically, because the vacuum energy has low (mass)
dimension, it is the largest mass scale that can appear in the loop
that is the most dangerous. In the present instance there are two
separate kinds of loop effects to distinguish: those involving only
particles localized on the brane (which we imagine also includes
all the known standard-model loops); and those that also involve
virtual contributions from the bulk supergravity. We briefly dis-
cuss each in turn.

3.1. Brane loops

Consider first those loops involving only brane-bound states.
For realistic brane-world models these include loops of all ordinary
Standard Model particles. Neglecting (for the moment) bulk loops
amounts to asking how the bulk and on-brane geometry classically
respond to brane-loop-generated changes to the brane action.

Now comes the main point. What is important for these pur-
poses is the observation that brane loops cannot in themselves
invalidate the two conditions, (37), given that these are satisfied
by the classical brane action (i.e. such as by Eq. (10) with Eqs.
(11) and (12)). That is, a sufficient condition for obtaining zero
on-brane curvature (at the bulk classical level) is the absence of a
coupling between the bulk dilaton, /, and the branes, since this en-
sures the validity of both conditions (i) and (ii) [9,10].

From this point of view the effects of brane loops can be re-
garded as generic OðM4Þ perturbations to the initial brane function
To. For the model considered brane loops alone also cannot modify
Uo because brane fields do not initially couple to the bulk gauge
potential, AM . The assumed absence of heavy brane-localized fields
on the flux brane, together with the physical separation between
the observer and flux branes, similarly ensures that brane loops
cannot modify8 flux-brane properties like Tf or Uf.

The upshot is that brane loops can only renormalize the brane
actions (and in the model considered here, only for the observer
brane) in a /-independent way. But this does not change the bulk
response since we in any case did not assume anything special
8 That is, the only influence at this order between the two branes is due to the
classical response of the bulk fields, which are computed exactly in the above
solutions, and do not correspond to changes to the flux-brane action.
about the typical energy scale for Lo when inferring the flatness
of the on-brane geometry.

3.2. Bulk loops

Since brane loops cannot lift the flatness of the on-brane direc-
tions, the dominant corrections come from bulk loops. And these
can come in a number of varieties, depending on whether or not
the bulk states in the loop are short- or long-wavelength. The pur-
pose of this section is to recap earlier arguments [9,10] that the con-
tribution of bulk loops to the low-energy scalar potential can be
naturally of order m4

KK in supersymmetric theories.
We first estimate the generic size of bulk loops in non-super-

symmetric theories, and then how bulk supersymmetry changes
these estimates.

Loops involving massless 6D fields
On dimensional grounds the contributions of massless 6D fields

to the low-energy 4D scalar potential is of order dVeff ’m4
KK / 1=r4,

and various contributions of this type have been explicitly calcu-
lated for specific extra-dimensional geometries as Casimir energy
calculations [35–38]. Because the bulk states that dominate in
the loop have wavelengths comparable to the size of the extra
dimensions, this contribution to Veff need not have a local interpre-
tation from the point of view of the extra dimensions.

We now argue that order m4
KK contributions are the generic size

when the bulk is supersymmetric, since (unusually) the contribu-
tion of heavier fields is not larger than this.

Massive 6D states
The Casimir energy contributed by 6D states of mass m has also

been computed [36,37] for simple extra-dimensional geometries. In
general this depends in a complicated way on the dimensionless ra-
tio m=mKK , but the simplifies considerably when m� mKK . The sim-
plification arises because in this limit the wavelength that
dominates the loop is much shorter than the size of the extra
dimensions, leading to a result that can be described by a local con-
tribution to the higher-dimensional effective action. This simplifi-
cation allows a very general calculation [39] of the contributions
of heavy fields to the low-energy theory to be performed, using gen-
eral tools [40] for studying the small-distance singularities in corre-
lation functions on curved space.

There are two kinds of such local contributions that massive
loops can generate. Quantum fluctuations that take place further
than Oðm�1Þ from the branes are described by local contributions
to the bulk action, integrated over the full 6D spacetime. Those that
occur nearer to the branes themselves can also contribute local 4D
corrections to the brane action. We consider each of these in turn.

Far from the brane
The contributions in the bulk can be organized in a derivative

expansion, leading to the schematic terms

d
Leffffiffiffiffiffiffiffiffiffi�g6
p ¼amm66þm4 b1Rþ b2ð@M/@M/Þ þ � � �

	 

þm2 c1R2	

þ

c2ð@M/@M/Þ2 þ � � �	 þ log
m2

l2

� �
d1R3 þ d2Rð@M/@M/Þ2 þ � � �
h i

þ � � � ;
ð44Þ

where all possible terms containing a fixed number of derivatives
are included, for each of which the coefficients ai(/), bi(/), ci(/)
and di(/) are calculable (and generically nonzero) for any given
choice for the heavy fields circulating in the loops [39].9 As indi-
cated, in general these coefficients can be functions of the back-
ground scalar field, /.
9 For simple toroidal examples it can happen that the vanishing of RM
NPQ and @M/ in

the background can imply that only the first of these survives, making the Oðm6Þ
contribution the only one that grows in the large-m limit [37].
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The contribution of this kind of loop to the low-energy 4D po-
tential for the zero-mode u0 may be estimated by replacing all
derivatives by 1/r, where r is a measure of the extra-dimensional
size, with the result integrated over the extra dimensions:

dVeffðu0Þ ’ ~a1m6r2 þm4½~b1 þ ~b2 þ � � �	 þ
m2

r2 ½~c1 þ ~c2 þ � � �	

þ 1
r4 log

 
m2

l2

!
½~d1 þ ~d2 þ � � �	 þ � � � ; ð45Þ

where the coefficients ~ai through ~di are proportional to ai through di,
with numerical factors (and possibly logs of m and r) arising from the
details of the evaluation of the derivatives and the extra-dimensional
integration. This shows that when m� mKK ’ 1=r, it is the contribu-
tions involving ai, bi and ci that are much greater than Oðm4

KKÞ.
Here is where supersymmetry in the bulk plays its part. If we

specialize to the classical level in the bulk, then there is no Casimir
energy, dLeff ¼ 0, but the classical bulk Lagrangian, Lbulk given by
Eq. (3), itself has the form of Eq. (44). And working to classical level
in the bulk we know that in this case the work of the previous sec-
tions shows that the contributions to the low-energy potential can-
cel10 to give Vc

eff ¼ 0.
Bulk loops change this, but their /-dependence is easy to estab-

lish because for supersymmetric theories the classical scale invari-
ance implies e2/ is the loop-counting parameter. In the frame
where the classical Lagrange density has the form Lbulk /ffiffiffiffiffiffiffi
��g

p
e�2/, the ‘-loop corrections obtained after integrating out

heavy 6D states of mass m are therefore proportional to
dL‘ /

ffiffiffiffiffiffiffi
��g

p
e2ð‘�1Þ/, which implies in Einstein frame Lbulk þ dLeff is

given by

�Lbulk þ dLeffffiffiffiffiffiffiffiffiffi�g6
p ¼ ½2g2

R

j4 e/ þ a1m6e3/ þOðe5/Þ	 þ ½ 1
2j2 þ b1m4e2/ þOðe4/Þ	Rþ � � �

þ½c1e/ þOðe3/Þ	m2R2 þ � � � þ ½d1 þOðe2/Þ	R3 logðm
2

l2 Þ þ � � � : ð46Þ

Notice in particular that all of the corrections beyond the clas-
sical terms are at least Oð1=r6Þ once evaluated with derivatives
of order 1/r and using the classical flux-stabilization condition,
e/ / 1/r2. This ensures all such contributions to the 4D potential
are at most of order dVeff / 1=r4 ’ m4

KK for large r, as claimed.
Evidence from explicit calculations for this supersymmetric
suppression is also available for some kinds of compactifications
[39].

Furthermore, validity of the semiclassical tools used here en-
sure the coefficient of proportionality of 1/r4 also cannot be large.
For example, for the rugby ball if we define r using the extra-
dimensional volume, so V2 :¼ r2, then Eqs. (25) and (27) imply

r2eu0 ¼ 4pa
j

2gR

� �2

; ð47Þ

and so, for example, V2 m6e3u0 ¼ ðpaj2m2=g2
RÞ

3 ð1=rÞ4 / ðm=MgÞ6

ð1=rÞ4, where we take g2
R ’ j ’ 1=M2

g with Mg the 6D gravity scale.
The validity of the semiclassical approximation in the low-
energy theory requires m � Mg, which keeps the coefficient of 1/
r4 small.

More precisely, loops involving states with mass j2 m2 > 1 would
have to be computed in the UV completion of the low-energy super-
gravity. Although string theory provides a natural choice for this, we
cannot yet compute these loops for the 6D supergravity studied here
since its string-theoretic provenance is not yet known (see however
[41,42]). We do know, however, that at such high energies there are
a variety of mechanisms [43], including supersymmetry and the
general softening of UV dependence that string theory brings, that
can suppress these contributions from the extreme ultraviolet.
10 Explicitly, for the rugby-ball solutions it is the coefficients of the R, e�/F2 and e/

terms that cancel amongst themselves, which is possible because e/ / 1/r2 for the
classical solution.
Near the brane
A similar discussion applies to quantum fluctuations of heavy

bulk fields located near the branes. These also have a local inter-
pretation if the bulk fields involved have masses m� mKK . Proxim-
ity to the brane allows such loops to modify the brane Lagrangian
as well as the bulk one. Since each bulk loop comes with a factor of
e2/, near-brane loop effects are counted by also writing the brane
Lagrangians as a series in this variable,

Tb ¼ T ð0Þb þ T ð1Þb e2/ þ � � � ; and �b ¼ �
ð0Þ
b þ �

ð1Þ
b e2/ þ � � � ; ð48Þ

and so on. Such corrections are potentially dangerous because they
clearly introduce a /-dependence to the brane action, and so violate
condition (i), above, that ensured the flatness of the on-brane
directions.

The effect of integrating out very massive bulk states therefore
corresponds to modifying both the brane and bulk actions as a ser-
ies in e2/. And the implications of the corrections to the brane ac-
tion can then be estimated by following how these changes modify
the bulk solutions, through the changes they induce in the bulk
boundary conditions. This is evaluated in detail in Appendix B,
showing that the result is a contribution to the effective potential
that is of order e2u

H , where uH is the lowest-order value of the
localized dilaton. The rest of the story is by now familiar: because
e2u

H / 1=r4, the resulting contribution to the 4D potential is again
dVeff ’ 1=r4 ’ m4

KK , as claimed.
The upshot is this: brane loops in themselves cannot cause on-

brane curvature because they cannot introduce a /-dependence of
the brane action if this was absent at lowest order. Bulk loops can
cause on-brane curvature, but the result corresponds to an effec-
tive 4D potential that is of order dVeff ’m4e2/ ’ 1/r4, and so is very
small for large r because the bulk coupling is so very weak in this
limit. Although the calculation of contributions from loops arising
from above the gravity scale remain beyond our present calcula-
tion reach, similar kinds of volume suppression are known to arise
in other explicit large-volume string compactifications [42,43].

4. Conclusions

We provide here an explicit model of brane-localized matter for
which both brane-backreaction and fluxes play a role in stabilizing
the size of the extra dimensions. Remarkably, the stabilization
mechanism produces an on-brane curvature that is parametrically
suppressed relative to the generic scales of masses that define the
brane-localized tensions (including loops).

The model of interest involves a generic field theory (a proxy for
the Standard Model, say) localized on a nonsupersymmetric codi-
mension-two brane within a six-dimensional spacetime whose
bulk dynamics is supersymmetric. The on-brane curvature is found
to be of order R � V=M2

p , where V � m4
KK . This is true even if the

Kaluza–Klein scale, mKK , is much smaller than the generic particle
mass, M, on the brane.

The small size of the low-energy effective potential is a conse-
quence of a cancelation between the direct contributions of the
brane and the contributions of the bulk to which the branes give rise.
What is new in this paper is an explicit calculation of how the system
responds to arbitrary small perturbations in brane properties, which
confirms in detail the more general arguments [20,9–11,27,39,43]
that have emerged over the years from the SLED proposal [5,6].

We believe our example provides a useful explicit particular
realization of the general SLED proposal, but expect the result to
apply more generally than just for the specific 6D supergravity
considered here. The ingredients we believe to be necessary to sup-
press the brane curvature are:

� Codimension-two branes, for which the back-reaction on the sur-
rounding bulk only varies logarithmically with distance, and so

cannot be neglected even when comparatively far from the brane;
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� A higher-dimensional bulk, described by a supergravity
that enjoys a classical scale invariance under which the metric
scales by a constant factor while a bulk dilaton shifts. Such a scale
invariance appears to be generic for many supergravities in six
and higher dimensions. The bulk itself need not be required to
be invariant under any of the supersymmetries.
� A bulk-stabilizing flux that can be localized on at least one of

the branes present.

In particular, we expect the mechanism to generalize to
3-branes localized within a bulk described by more generic 6D
supergravities than the particular Nishino–Sezgin gauged
supergravity studied here. But supersymmetry is crucial, since this
is what allows the suppression of bulk loop effects.

We believe the models described here provide a context for
understanding why the observed Dark Energy density is so much
smaller than all of the other scales we know about in particle phys-
ics. Because the stabilization mechanism for the extra dimensions
both explains the Dark Energy density and the electroweak hierar-
chy, these problems are related in this framework.

4.1. Some observational implications

Realistic applications to an effectively 6D world with large
supersymmetric dimensions require mKK ’ 10�2 eV, which
corresponds to V2=j ’ ðMgrÞ2 ’ e�u

H ’ 1030. Notice flux-quantiza-
tion gives the value of the stabilized dilaton by e�u

H ’ gRl=j2T ’
1030, where T is a generic brane tension and U = l is the flux
parameter on the flux-brane. The extra dimensions would be ex-
pected to be of order mKK ’ 10�2 eV, or r ’ 10 lm, and the 6D grav-
ity scale could be as low as11Mg J 10 TeV.

If this is how nature works we will soon know, since the SLED pic-
ture necessarily has many striking observational consequences,
some of which are shared by the non-supersymmetric proposal for
sub-eV dimensions [44]. Since some of these are described in more
detail elsewhere, we only briefly list some of the main ones here.

� Deviations from Newton’s Law: Since the size of the Dark Energy
density is set by the KK scale, the extra dimensions must gener-
ically be of order micron scales. Deviations from Newton’s
inverse-square law must arise once distances of order this size
are probed. This is the smoking gun for the SLED scenario, since
it cannot be avoided. Since only two dimensions can possibly be
this large, the predicted change is a crossover to an inverse fourth
power, although the precise shape depends somewhat on the
details of the extra-dimensional shape [48]. Present bounds
probe down to about 45 lm [49,50] and so are getting close.
� String and gravity physics at the LHC: Given the size of the extra

dimensions, the measured strength of gravity dictates the grav-
ity scale in the extra dimensions. The 6D gravity scale to which
this points is of order tens of TeV (though astrophysics requires
it to be no smaller than 10 TeV). The string scale and the KK scale
for any other extra dimensions is then generically found to be
lower than this [45,42]. This means that quantum gravity is
becoming strong at LHC energies. This implies a variety of signals
for the LHC, including excited string states for all Standard Model
particles [51], new neutral gauge bosons [52], energy loss into
gravitons [53] and other particles [45,54,55] in the extra dimen-
sions, and possibly black holes [56] or other aspects of high-
energy gravity [57]. Even though supersymmetry is broken only
11 A gravity scale lower than this produces too much energy loss from supernovae
[44,45]. Much stronger, but more model-dependent, bounds are also possible if extra-
dimensional states can decay visibly (such as into photons) [46,47], but these bounds
can be avoided if visible channels are swamped by invisible higher-dimensional ones
[44,45] (some potential examples of which are discussed in [42]).
at very low scales in the bulk, supersymmetry must be nonlin-
early realized on any brane and so superpartners for ordinary
particles (and so also the MSSM) are not predicted [45]. Results
for new experimental searches at the LHC are even now starting
to come out [58,59].
� Dark Energy quintessence cosmology: The same physics that

makes the value of the potential, q = VH, small at its minimum
(and thereby gives a small Dark Energy density) also makes the
mass of the would-be zero mode very light: m2 ’

ffiffiffiffiffiffiffi
VH

p
=Mp (and

in an equally technically natural way). Since this is of order the
present-day Hubble scale, Dark Energy phenomenology is that
of a quintessence model rather than of a cosmological constant
[60]. The same requirement that makes the on-brane curvature
small – the absence of a direct brane–dilaton coupling – also
ensures that the light scalar field naturally has quasi-Brans–
Dicke couplings to brane matter. This means they can naturally
evade tests of the equivalence principle [49], but the couplings
need not be small and so are potentially constrained by a vari-
ety of long-distance tests of General Relativity that bound sca-
lar-tensor models [61,62], as well as laboratory bounds on
light scalars with an effective 2-photon coupling [63]. Present-
day bounds on deviation from GR in the solar system provide
nontrivial constraints, but need not be fatal [60]. One reason
for this is because the Brans–Dicke couplings of the light scalar
turn out to be field dependent, and so can evolve
cosmologically. For parts of parameter space [60] these cou-
plings can be acceptably small in the solar system during the
present cosmological epoch.
� Exotic sterile neutrino physics: Although not absolutely required,

the SLED scenario predicts there to be a variety of massless fer-
mions in the extra dimensions, whose mass is protected to be
small because they are related by supersymmetry to the gravi-
ton or bulk gauge fields. These fermions can mix with Standard
Model neutrinos, leading to a potentially rich spectrum of ster-
ile neutrino mixing [64] whose masses are naturally in the sub-
eV range due to the large size of the extra dimensions [65,66].

There are likely even more consequences, since only the surface
of what might be seen has yet been scratched. Should all of these be
seen together, there could be little doubt about what is going on.

4.2. Outstanding issues

We now summarize potential challenges that these models
remain to face.

First, it is an unpleasant – though technically natural – feature
of the model that a large number must be inserted for l as a
parameter in the Lagrangian in order to obtain a sufficiently low
KK scale. This does not cause a problem with the approximations
made, however, since it is only the combination gRleu

H ’ j2T K
0:1 that appears in the brane Lagrangian. uH also appears on its
own in the bulk Lagrangian, but the loop approximation in the bulk
is under good control because the loop counting parameter there is
e2u

H ’ 10�60. We expect this feature is likely something that can be
improved in more complicated examples, preferably with more ex-
plicit contact with a UV string construction, since most of the
known 10-dimensional string compactifications having very large
volumes [67] generically obtain equally large volumes as are re-
quired here without having to dial in such small parameters. They
do so because they predict the volume to arise as the exponential
of another, much smaller, modulus, for which parameters of order
10 need be used.

Second, much could be gained if this picture could be properly
embedded into a controlled UV completion, such as if it were ob-
tained from an explicit string vacuum. Until this is done the contri-
butions to q from states in the far UV cannot be properly computed.
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Third, SLED models face a variety of phenomenological chal-
lenges as well as opportunities. In particular, as mentioned above,
strong bounds on light gravitationally coupled fields must be
evaded in order to not conflict with known physics in the solar sys-
tem. The cosmology of the universe before nucleosynthesis is also
challenging, due to constraints from energy loss into the extra
dimensions (together with stronger, but more model-dependent
bounds that arise if extra dimensional fields can decay too fre-
quently to visible states). The nature of inflationary cosmology is
also unknown (see however [68] for first steps towards an inflation-
ary theory where extra dimensions evolve during inflation, allowing
the gravity scale to be much higher during inflation than it is at pres-
ent). We regard these to be model building challenges, but much
easier to solve than is the cosmological constant problem itself.
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Appendix A. Localized brane fluxes

An important role is played by brane-localized flux in the discus-
sion of the main text, and in particular the choice of large values for
Ub. In this appendix we use a simple but explicit model of micro-
scopic brane dynamics to explore how reasonable these choices
might be. In particular, one might worry that microscopic details
(like flux quantization) of brane-localized flux could obstruct its
role in the relaxation mechanism for the low-energy curvature.

Ideally this question should be addressed within string theory,
which provides the most likely UV completion. However we are
handicapped by the lack of a controlled derivation of 6D gauged
chiral supergravity from an explicit string vacuum (see however
[41,42]). Instead, as a first step we model the codimension-2
brane with localized flux as a very small cylindrical codimen-
sion-1 brane situated at q = � which surrounds the position of
the codimension-2 brane at q = 0, along the lines of Refs.
[9,23]. We regard this brane, together with a suitably smooth
interior configuration for q < �, as a specific UV completion of
the codimension-2 brane. Although this is unlikely to be a realis-
tic microscopic realization of brane flux localization, it has the
advantage of allowing an explicit examination of many of the
consistency issues involved.

Consider therefore the following codimension-1 brane action,

S5 ¼ �
Z

q¼e
d5x

ffiffiffiffiffiffiffiffiffi�g5
p ½Z1ð/ÞDmrDmrþ T1ð/Þ	; ðA:1Þ

describing a small cylinder at radius q = �, where r is a brane-local-
ized Stückelberg field whose covariant derivative is

Dmr ¼ @mrþ gbAm : ðA:2Þ
This is invariant under the gauge transformations

Am ! Am �
1
g
@m� and r! rþ gb

g
� : ðA:3Þ

Here g denotes the bulk gauge coupling while gb denotes a corre-
sponding brane gauge coupling.
The presence of a field like r is important for stabilizing the size
of the codimension-1 brane at a small but nonzero radius [9,10,23].
For � sufficiently small the codimension-1 brane becomes effec-
tively a codimension-2 brane, whose action can be found by
dimensional reduction. Having a finite codimension-2 brace action
in this limit generally requires the quantities

t1ð/Þ :¼ � T1ð/Þ and z1ð/Þ :¼ � Z1ð/Þ ; ðA:4Þ

remain finite in the limit of small �.
In the region exterior to the brane, q � �, and in the presence of

any bulk matter fields having charge g, the single-valuedness of the
gauge group element, ei X, requires X(h + 2p) �X(h) = 2ps for some
integer s. The Stückelberg field can also wind nontrivially as a func-
tion of h if its target space should be a circle,

rðhþ 2pÞ � rðhÞ ¼ 2pnf ; ðA:5Þ

for some nonzero integer n, where 2pf denotes the circumference of
the target-space circle. This boundary condition is consistent with
gauge transformations provided

r�ðhþ 2pÞ � r�ðhÞ ¼ rðhþ 2pÞ þ gb
g �ðhþ 2pÞ � rðhÞ � gb

g �ðhÞ
¼ 2pnf þ 2ps gb

g ; ðA:6Þ

is also an integer multiple of 2pf. This is automatically true if the
brane gauge coupling is quantized in units of the bulk gauge
coupling: gb = kfg for some integer k. In this case because
r�ðhþ 2pÞ � r�ðhÞ ¼ 2pðnþ skÞf differs from r(h + 2p) � r(h) =
2pnf, large gauge transformations (those with s – 0) map different
choices for r boundary conditions into one another.

Brane equation of motion

The equation of motion on the brane is

@m½
ffiffiffiffiffiffiffiffiffi�g5
p

Z1ð/ÞDmr	 ¼ 0; ðA:7Þ

and we are interested in solutions that depend on h only. Since none
of the bulk fields that appear in this equation of motion depend on h
this simplifies to

@hDhr ¼ 0 ; ðA:8Þ

which has as solution

Dhr ¼ @hrþ kfgAh ¼ C; ðA:9Þ

where C is independent of h. However, since all of the bulk fields de-
pend only on the radial coordinate q, they do not depend on any of
the five on-brane directions (including h), and so C can depend on
any of them. In particular, C can be a function of the dilaton, /.

The requirement that r be single-valued up to integer multiples
of 2pf then means that

2pfn¼rðhþ2pÞ�rðhÞ¼
I

dh @hr¼2pC�kfg
I

q¼�
Ah dh ; ðA:10Þ

which implies that C is given in terms of the flux,

� :¼
I

q¼�
Ah dh ; ðA:11Þ

by

C ¼
�

nþ kg
2p

�

�
f : ðA:12Þ

Notice that the transformation of U under large gauge transforma-
tions (i.e. those with s – 0) ensures that C is invariant even though n
? n + ks.

We now specify in more detail the system interior to the codi-
mension-1 brane, with the goal of deriving a second relationship
between C and U, from which we may eliminate C. At first sight
one might worry that any expression for U would not be gauge
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invariant, since U transforms under large gauge transformations.
However once we match through to a smooth inner configuration
the noncontractible loop whose topology underlies the existence of
large gauge transformations disappears. The nontrivial large gauge
transformations necessarily become singular somewhere once
they are extended into the interior region.

The cylinder’s interior

We next specify the interior of the cylindrical brane, which we
require to be everywhere smooth. We keep the action in the inte-
rior the same as in the bulk, apart from only one change: we take
the dilaton potential to be

V ¼ V0 e/ ; ðA:13Þ

for a general constant V0. If we write V0 ¼ 2g2
R=j4, we effectively

choose the value of gR ¼ gin
R interior to the cylinder to differ from

its value on the outside.
We take the interior solution to be the Salam–Sezgin solution,

ds2 ¼ e2W ĝlmdxldxm þ e�uin ½dq̂2 þ e2Bdh2	; ðA:14Þ

with

/ ¼ uin ; W ¼W in and Fqh ¼ Qineuin=2eB�4W ; ðA:15Þ

where uin and Win are constants, and

eB ¼ ‘in sin
q̂� q̂c

‘in

� �
: ðA:16Þ

The center of the interior geometry is located at q̂ ¼ q̂c , which need
not be q̂ ¼ 0 due to our choice that the codimension-1 brane is lo-
cated at q = � for both the exterior and interior geometries.

Like in the exterior geometry the equations of motion still imply

‘in ¼
j

2gin
R

; Qin ¼ 

ffiffiffiffiffiffiffiffiffi
2V0

p
¼ 
2gin

R

j2 and ĝlm ¼ glm ; ðA:17Þ

which shows that we can dial the value of V0 to achieve any desired
flux for the interior gauge field. Choosing a gauge with AhðqcÞ ¼ 0,
with all other components of AM vanishing, the gauge fields become

Fqh ¼ Qine�4W inþuin=2

"
‘in sin

�
q̂� q̂c

‘in

�#
ðA:18Þ

and so AhðqÞ ¼ Qine�4W in ‘2
in

"
1� cos

�
q̂� q̂c
‘in

�#
: ðA:19Þ
Matching conditions

Continuity of the metric and dilaton at the brane location,
q ¼ e�uin=2q̂ ¼ �, implies

uin ¼ /ð�Þ ¼ /b

W in ¼Wð�Þ ¼ Wb

and e�uin=2‘in sin �̂�q̂c
‘in

� �
¼ eBb ¼ ab� ;

ðA:20Þ

where �̂ ¼ � euin=2 and /b, Bb and Wb are the (regulated) values of the
dilaton and warping at the brane in the exterior bulk solution. From
this we find the value of the gauge field at the brane is,

Ahð�Þ ’ Qine�4W in‘2
in

"
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

 
ab�e/b=2

‘in

!2
vuut #

: ðA:21Þ
Next we impose the jump discontinuity of the gauge field across
the brane position. For the above interior and exterior solutions
and brane action, this reads

Qin �Qout ¼ �
eBþ4Wffiffiffiffiffiffiffiffiffi�g5
p dS5

dAh
’ 2gbCZ1e4Wb

ab�
: ðA:22Þ

Using this to trade Qin for Qout in the gauge potential, Eq. (A.21), we
see that when ab� e/b=2 � ‘in the result for Ahð�Þ is proportional to

ðab�Þ2Qin ¼ ðab�Þ2Qout þ ab�ð2gbCZ1e4Wb Þ: ðA:23Þ
Although the first term on the right-hand side vanishes in the
codimension-2 limit where � ? 0, the second term need not
because the finiteness of the dimensionally reduced codimension-
2 action obtained from S5 requires z1 = lim� ? 0 �Z1 be finite in this
limit. In terms of this the brane-localized flux becomes

� ¼
I

q¼�
Ah dh ¼ 2pAhð�Þ ¼ 2pabgbCz1 e/b : ðA:24Þ

Combining this last result with Eq. (A.12) allows us to solve for
C, giving the quantization condition

C
f
ð1� abg2

bz1e/b Þ ¼ n: ðA:25Þ

Equivalently, using this to eliminate C from the flux gives

�

2p
¼ nfabgbz1 e/b

1� abg2
bz1 e/b

: ðA:26Þ

Notice that although this expression is quantized in the sense that it
is proportional to an integer, it is also /b-dependent through the
quantity z1ð/bÞ e/b . Furthermore, the regime of weak coupling and
small derivatives has g2

bz1 e/b � 1 and so we may approximate the
denominator by unity, leading to a contribution to U that is propor-
tional to z1 eub . (Intriguingly, if g2

bz1 e/b were instead large we would
find the /b-independent result U ? �2pnf /gb, and so gU/2p ? �n /
k would be quantized at rational values.)

In the special case that the brane does not break the bulk classi-
cal scale invariance then T1 / e/b=2 and Z1 / e�/b=2, so writing � ¼ �̂
e�/b=2 we see that t1 = �T1 is /b-independent and z1 ¼ � Z1 / e�/b , as
expected. This means U is independent of /b, as is also argued to be
true for the scale invariant case in the main text.

On the other hand, the case of most interest in the main
text is where � ¼ l e/b , which corresponds to choosing z1 to be /b-
independent. The above calculation then gives the coefficient, l, as

l ¼ 2pnabgbz1f ¼ 2pnk abgz1f 2 : ðA:27Þ

In particular, we seek situations where gRl is very large, while
keeping gRl e/b small. This we can arrange in several ways: (i) by
making f very large (so r takes values on a very large circle); (ii)
by making the integers k and/or n very large; or (iii) by making
gRgz1 large. All of these choices come down to including a lot of cur-
rent on the codimension-1 brane, as one might expect. Large n
means a very high gradient in r, which can be interpreted as a lot
of particles in the current. Large k means a comparatively large cou-
pling, gb, which gives r a large charge. Finally, large f gives both a
large brane charge and a large gradient.

The main worry with these choices would be if they would indi-
cate a failure of the low-energy derivative expansion, on whose
validity the entire calculation rests. However since l appears sys-
tematically in the brane action only through the combination l e/b

this expansion appears to be under control provided only that this
product be small. e/b also appears without factors of l in the bulk
action, but extremely small values of e/b are there under control
because this is the small quantity that controls the bulk loop
expansion. In particular, there seems to be no consistency restric-
tion on how large the parameter f can be.
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Appendix B. The view from four dimensions

In this section, we ask what the scalar potential is that lifts the
flat direction parameterized by u0, as would be seen from the per-
spective of a brane-localized 4D observer. To do so we draw heav-
ily on the results of [12], which computes this potential for
geometries that are perturbatively close to the rugby-ball
geometries.12

Writing the brane action as

Sb ¼ �
Z

d4x
ffiffiffiffiffiffiffiffiffi�g4
p

Lb ¼ �
Z

d4x
ffiffiffiffiffiffiffiffiffi�g4
p ðTb þ

1
2

�b�mnFmnÞ; ðB:1Þ

we calculate the low-energy 4D effective potential in the special
case that the tensions satisfy Tb ¼ T

�
þdTb, where dTb is much smal-

ler than the (positive) average tension, T
�

. We further assume the
background rugby-ball geometry satisfies

ngR

g
¼ 1� j2 T

�

2p
; ðB:2Þ

so that no background brane-localized flux is present.
We compute the response of the bulk to deviations dTb ¼ Tb � T

�

by linearizing the bulk equations in dTb and dUb, obtaining the gen-
eral solutions as a function of the parameter u0 that labels the or-
bits of the bulk scaling symmetry. The brane–bulk matching
conditions define the boundary conditions that are then used to
eliminate the integration constants in terms of brane properties.
This allows the calculation of the stabilized value u0 = uH and
the energy cost for deviations of u0 from uH. In this way the fea-
tures of the low-energy 4D potential can be mapped out [12].
(We emphasize that this linearization is not required for the argu-
ments of the main text, for which the general exact classical solu-
tions are known. This limit is simply one for which we can
explicitly calculate the view in the 4D effective theory, to check
our general results.)

Writing

dLb ¼ ðTb � �TÞ �Q�beu0 ¼ dTb �Q�beu0 ; ðB:3Þ

(which uses the result that W = 0 for the unperturbed rugby-ball
geometry), the stationary point, uH, for the scalar zero mode turns
out to be given by [12]

0 ¼
X

b

ðdLb þ
1
2

dL0b �Q�beu
H Þ; ðB:4Þ

where prime denotes differentiation with respect to /. When dTb

and Ub are both independent of u0 for all of the branes, then this
simplifies to13

0 ¼
X

b

ðdTb � 2Q�beu
H Þ; ðB:5Þ

with solution

euH ¼ �bdTb

�b2Q�b
: ðB:6Þ

The Jordan frame potential of the low-energy effective 4D the-
ory is shown in Ref. [12] to satisfy

ðeuVJFÞ0 ¼
1
2

eu
X

b

ðdLb þ
3
2

dL0b �Q�beuÞ; ðB:7Þ

which for /-independent dTb and Ub can be integrated to give

VJFðuÞ ¼ Ce�u þ 1
2

X
b

ðdTb �Q�beuÞ; ðB:8Þ
12 Beware the notational change, as Ref. [12] denotes Lb by Tb; denotes Tb by sb; and
denotes Ub by Ube�/.

13 Recall dL0b denotes differentiation with respect to / with AM and gMN fixed, and
because AM and gMN depend on u0 this is not the same as differentiating dLb with
respect to u0.
with C an integration constant. The corresponding Einstein-frame
potential is

VEFðuÞ ¼ e2ðu�u
H
ÞVJF ¼ Ceu�2u

H þ 1
2

X
b

ðdTbe2ðu�u
H
Þ �Q�be3u�2u

H Þ: ðB:9Þ

The integration constant C is set by demanding that V
0

EF vanishes at
u = uH:

Ce�u
H ¼

X
b

 
� dTb þ

3
2
Q�beu

H

!
; ðB:10Þ

leading to the full Einstein-frame potential

VEF ¼
 

1
2

X
b

dTb

! 
e2w � 2ew

!
þ
 

1
2

X
b

Q�beu
H

!
ð3ew � e3wÞ;

ðB:11Þ

where w :¼ u � uH.
The 4D on-brane curvature obtained from the full 6D field equa-

tions agrees (by construction) with the curvature obtained from
the 4D Einstein equations with VEF evaluated at uH. Using (B.11),
we find

VH :¼ VEFðuH
Þ ¼ 1

2

X
b

�
� dTb þ 2Q�beu

H

�
; ðB:12Þ

which vanishes by virtue of the stabilization condition defining
uH, Eq. (B.5). Notice that this condition is also equivalent to the
linearized version of the warped flux-quantization condition, Eq.
(36)

0 ¼ d

"
ðaþa�Þ1=2

gR
þ 1

2p
�o

W2
o

þ �f

W2
f

 !
euH

#

¼ 1
2gR

X
b

dab þ
1

2p
X

b

d�beuH

¼ j2

4pgR

X
b

�
dTb � 2Q�beuH

�
; ðB:13Þ

which uses dab ¼ j2dLb=2p ¼ j2ðdTb �Q�bÞ=2p, as well as the
unperturbed rugby-ball relation Q ¼ 2gR=j2.

Bulk loop corrections to the brane action

In general, bulk loops induce a /-dependence to the brane ac-
tion, and so generate a nonzero curvature for the on-brane direc-
tions. The most UV-sensitive contributions come when very
heavy bulk particles circulate in the loop, and because these involve
only very short wavelengths they generate local corrections to the
brane action. We now argue that these UV-sensitive bulk loops
contribute only to VH at order m4

KK , where mKK ’ 1=r ’ V
�1=2
2 is the

Kaluza–Klein scale.
Loops involving comparatively long-wavelength states at the

KK scale need not generate only local effects on the branes, but also
only give rise to contributions to the low-energy vacuum energy
that are of order dVH � m4

KK (and so are not larger than the UV
loops we examine below). Because e2/ is the loop-counting param-
eter in the bulk, an estimate for the size of the UV loop-generated
curvature can be found by repeating the above arguments, but now
writing Tb and Ub as a series in powers of e2/, rather than taking
them to be /-independent.

To this end we write

dTb ¼ dTð0Þb þ dTð1Þb e2/ þ � � � ;

�b ¼ �
ð0Þ
b þ �

ð1Þ
b e2/ þ � � � ;

ðB:14Þ

where Tð1Þb and T ð0Þb are /-independent and similar in size, as are Uð1Þb

and Uð0Þb . With these choices we have

dLb ¼ dTð0Þb �QUð0Þb eu0 þ dTð1Þb e2u0 �QUð1Þb e3u0

and so dL0b ¼ 2dT ð1Þb e2u0 � 2QUð1Þb e3u0 :
ðB:15Þ
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The condition defining the stationary point, uH, is given by

0 ¼
X

b

�
dLb þ

1
2

dL0b �Q�b

�

¼
X

b

�
dTð0Þb � 2QUð0Þb eu

H þ 2dTð1Þb e2u
H � 3QUð1Þb e3u

H

�
: ðB:16Þ

At lowest order this is solved by uð0Þ
H

satisfying Eq. (B.6), and to
next-to-leading order the correction, deu

H , satisfies

deuH

X
b

2QUð0Þb ¼
X

b

�
2dT ð1Þb e2uð0Þ

H � 3QUð1Þb e3uð0Þ
H

�
: ðB:17Þ

If dTð1Þb and QUð1Þb are similar in size then only the first term on the
right-hand-side of this last expression dominates. We keep both
here because our interest in the main text is in the case where
dTð1Þb and QUð1Þb euð1Þ

H are similar in size.
The corrected Jordan-frame potential due to the brane pertur-

bations then solves Eq. (B.7), or

ðeuVJFÞ0 ¼eu
X

b

"
1
2

dTð0Þb �QUð0Þb euþ2dT ð1Þb e2u�5
2
QUð1Þb e3u

#
; ðB:18Þ

which integrates to

VJF ¼ Ce�u þ
X

b

½1
2

dT ð0Þb �
1
2
QUð0Þb eu þ 2

3
dTð1Þb e2u � 5

8
QUð1Þb e3u	; ðB:19Þ

with C an integration constant, as before.
The Einstein frame potential, VEF ¼ e2ðu�u

H
ÞVJF , similarly is

VEF ¼ Ceu�2u
H þ

X
b

"
1
2

dT
ð0Þe2ðu�uH Þ�1

2Q�
ð0Þ
b

b e3u�2u
H

þ2
3

dTð1Þb e4u�2u
H � 5

8
Q�

ð1Þ
b e5u�2u

H

#
:

ðB:20Þ

As before, enforcing V 0EFðuH
Þ ¼ 0 fixes C, giving

Ce�u
H ¼

X
b

"
� dT ð0Þb þ

3
2
Q�

ð0Þ
b eu

H � 8
3

dTð1Þb e2u
H þ 25

8
Q�

ð1Þ
b e3u

H

#
: ðB:21Þ

The full next-to-leading Einstein-frame potential then is

VEF ¼
 

1
2

X
b

dTð0Þb

!
ðe2w � 2ewÞ þ

 
1
2

eu
H

X
b

Q�
ð0Þ
b

!
ð3ew � e3wÞ

þ
 

2
3

e2u
H

X
b

dTð1Þb

!
ðe4w � 4ewÞ þ

 
5
8

e3u
H

X
b

Q�
ð1Þ
b

!
ð5ew � e5wÞ;

ðB:22Þ

with w = u � uH. Evaluating this at uH, and using (B.16), we find

VH ¼ VEFðuH
Þ ¼ �e2uH

X
b

dTð1Þb þ e3uH

X
b

Q�
ð1Þ
b : ðB:23Þ

This is clearly of order e2u
H if dT ð0Þb , dTð1Þb , �

ð0Þ
b eu

H and �
ð1Þ
b eu

H are all of
the same order. Recalling that the flux-quantization condition
relates uH to the stabilized extra-dimensional radius by rH by
eu

H ’ Oð1=r2
H
Þ, we see that the loop-corrected brane action gives a

result of order 1=r4
H

, which is also similar to the size of a generic
bulk Casimir energy.

Appendix C. No-go results

There are a number of famous no-go results, that superficially
appear to contradict our results. In this appendix we describe two
of these, describing why they do not represent real obstructions.

Appendix C.1. Weinberg’s no-go theorem

The best-known obstruction to finding a relaxation mechanism
that sets the cosmological constant to zero is due to Weinberg [1].
His is a general objection to using scale invariance to solve the cos-
mological constant problem. Although his argument is phrased
quite generally, it is easier to describe the issues within a simple
toy model.
Why at first sight scale invariance seems to help
At first sight, scale invariance provides a very attractive way to

approach why the vacuum energy might be zero. To see why, con-
sider the following simple scale-invariant toy theory:

S ¼ �
Z

d4x
ffiffiffiffiffiffiffi
�g
p

 
1
2
@lv@lvþ �wcl@lwþ kv4 þ g�wwv

!
: ðC:1Þ

This action is invariant under the rigid rescalings w ? f�3/2w, v ?
f�1v together with glm ? f2glm, although this symmetry is
anomalous and so does not survive quantization. However at the
classical level it restricts the potential to only have a quartic term,
and ensures the scale-invariant point, v = 0, is a solution to
V

0
(v = 0) = 0. Because scale invariance precludes the existence

of any dimensionful parameters, it also guarantees that the poten-
tial vanishes at this scale-invariant minimum: V(v = 0) = 0.

Suppose we put aside (for now) the anomaly in scale invariance,
and ask whether the fact that V

0
= V = 0 is automatically satisfied

means that scale invariance can help solve the cosmological con-
stant problem. At first sight the answer is ‘no’, because having V
= 0 when v = 0 is not in itself sufficient. It is insufficient because
not only does scale invariance ensure V = 0; it makes all masses
zero. After all, the cosmological constant problem is the puzzle of
why the effective scalar potential is minimized at a value that is
much smaller than the other nonzero masses in the problem.

A more promising attempt might be to consider the case where
k = 0. In this case all values of v are equally good as vacua, and for
all of these except v = 0 the mass of the fermion w is nonzero, m =
gv, because the scale invariance is spontaneously broken. Since it is
broken masses can be nonzero, but notice that the potential energy
is nevertheless still minimized (trivially, since V = 0) at zero. Scale
invariance guarantees that V = 0 remains true even once scale
invariance is broken, because all values of v are related to one an-
other by a symmetry (scale transformations), and so V must have
the same value for all of them (and so must in particular vanish,
because V = 0 for the scale-invariant point where v = 0).

Phrased this way, spontaneously broken scale invariance
sounds like a promising approach to having vanishing vacuum en-
ergy while still having nonzero masses.

Weinberg’s objection
Weinberg’s objection to the above argument is that, although

promising, scale-invariance in itself cannot solve the cosmological
constant problem, even assuming that it could be made not anom-
alous. That is because scale invariance can never preclude quantum
corrections from generating a nonzero scalar potential, like kv4

which we have seen is completely scale invariant. And if such a po-
tential is generated, the only minimum is again the scale invariant
point, v = 0, for which all masses vanish.

The problem with scale invariance is not that quantum correc-
tions raise the minimum of the potential from V = 0; it is that quan-
tum corrections generically lift the flat direction and make the
scale-invariant point the only minimum.

Relevance to the 6D model
Weinberg’s analysis is not specific to four dimensions, and ap-

plies equally well to extra-dimensional theories that are scale
invariant. It is particularly pertinent for the supergravity models
discussed in the main text, for which the bulk enjoys a classical
scaling symmetry. Although the analog of the scale-invariant point
may seem less clear in the extra-dimensional model, it is v ¼ eu0

that plays the role described above, since this transforming multi-
plicatively under a scale transformation rather than shifting. This
shows that having a potential minimized only at the scale invariant
point corresponds in the extra-dimensional model to having a run-
away potential that is only minimized for infinitely large values of
the dilaton, /.
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And in the main text we have also seen that in the special case
where the branes couple to / in the scale-invariant way, the gen-
eric form for the classical low-energy potential is Veff ¼ A e2u0 ,
revealing the generic runaway Weinberg’s argument requires.

But nothing in this argument precludes finding the minima ob-
tained in the main text. For more general kinds of brane-dilaton
couplings the shape of the potential is more complicated since its
form is no longer dictated by scale invariance. Nothing forces it
to be minimized only at the scale invariant point in this case.

Furthermore, nothing in the argument says how large the cor-
rections to the potential have to be. In the 6D model described
above, supersymmetry in the bulk generically acts to suppress
the size of quantum corrections, regardless of whether or not these
are scale invariant.

So this argument, while true, does not preclude the behavior
found in the main text.

Appendix C.2. What is the 4D mechanism?

Another general objection to the kind of calculation presented
here asks what the ultimate mechanism looks like in four dimen-
sions. That is, even though the full theory is extra-dimensional,
why I ask what the perspective is of a 4D brane-localized observer?
After all, if there is a mechanism at work in 4D, this could be more
widely useful than a particular higher-dimensional example.

The basic response to this question is that the underlying mech-
anism at work in the brane back-reaction is higher-dimensional,
and cannot be simply seen in a purely 4D framework involving
only a small number of 4D fields. Ultimately, this is why the KK
scale must be as low as sub-eV energies in order to be relevant
to the observed Dark Energy density: if it were higher the extra
dimensions could have been integrated out and we would be back
to the unsolved problem of understanding why the Dark Energy is
small in four dimensions.

Of course the world does appear four-dimensional below the KK
scale, and in this energy range a 4D observer must be able to
understand what is going on. But when the KK scale is as low as
the Dark Energy scale, q ’ m4

KK , there really is also no cosmological
constant problem in 4D since q is as big as the largest UV scale – i.e.
mKK – would suggest it should be. The essence of the SLED mecha-
nism is that above the KK scale the gravitational response of the
vacuum must be understood in 6D, even though all non-gravita-
tional physics remains 4D (because it is localized on the brane).

Arguments why a 4D mechanism is necessary
But a more subtle objection14 asks why a thought experiment

cannot be performed that allows the vacuum energy to be under-
stood within a 4D effective theory, even if the cosmological constant
were larger than mKK . After all, one can imagine adiabatically chang-
ing the underlying parameters of the model in such a way as to gen-
erate an effective 4D cosmological constant, Leff ¼ �

ffiffiffiffiffiffiffi�g
p

A, with
A > m4

KK . If so, because energy cannot be directly extracted from q,
no consistency issue would preclude us from analyzing the theory
in an effective 4D approximation, provided the Hubble scale remains
small enough: H2 ’ A=M2

p � m2
KK . (If H were to become larger than

mKK then sufficient energy could be extracted from the time-depen-
dent geometry to excite KK modes and force us outside of the do-
main of the effective 4D description.)

In this picture, it seems we are again forced to be able to under-
stand what keeps q from being large purely within a 4D context.

But again it is the scale invariance that saves the day. As you
adiabatically manipulate the underlying parameters in the 6D the-
ory, what is generated is a potential, V(u0), for the entire flat direc-
tion rather than just a cosmological constant. Since the flat
14 We thank Nima Arkani-Hamed for making this argument to us.
direction partially involves the extra-dimensional metric, general
covariance precludes generating just a u0-independent constant.

So instead of getting a constant like Leff ¼ �
ffiffiffiffiffiffiffi�g
p

A one instead
gets a potential like Leff ¼ �

ffiffiffiffiffiffiffi�g
p

A eau0 , where a is order unity.
But if A rises above m4

KK , then not only does V rise above m4
KK , but also

so does its derivative, V
0
. Once this is true a 4D description is no

longer possible, because the equation of motion for u0 implies that
having V

0
this large generates a time derivative _u0 that is equally

large, which provides an energy source that can generate KK modes.
The upshot is that there is no effective 4D understanding of the

cosmological constant problem; but this does not mean that no
solution exists, it simply means that the KK scale cannot be much
larger than the observed Dark Energy density. It also means that
the existence of a light field, u0, in the low-energy theory is a cru-
cial part of the story, making it unavoidable that there be a scalar–
tensor gravity in the long-wavelength limit.
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