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Abstract

We consider a recently proposed two-dimensional Abelian model for a Hodge theory, which is neither a Witten-type nor a
Schwarz-type topological gauge theory. It is argumented that this model is not a good candidate for a Hodge theory because,
on-shell, the BRST Laplacian vanishes. We show, that this model allows a natural extension such that the resulting topological
theory is of Witten type and can be identified with the twistéd= 16, D = 2 super-Maxwell theory. Furthermore, the
underlying basic cohomology preserves the Hodge-type structure and, on-shell, the BRST Laplacian does not vanish.

0 2003 Elsevier B.VOpen access under CC BY license,

1. Introduction

It has been known for some time that two-dimensional Yang—Mills theory without matter is exactly soluble [1].
Moreover, it has been shown that Yang—Mills theory with matter on an arbitrary orientable two-dimensional
manifold M of genusG and area is equivalent to a closed, orientable, string theory with target spafd. Two-
dimensional Yang—Mills theory was revisited using a non-Abelian version of the Duistermaat—-Heckman formula
in [3] and a simple mapping to topological Yang—Mills theory with an underlyihg= 1 equivariantly nilpotent
shift symmetry was given. For a previous work on quantum gauge theories in two dimensions see, e.g., [4]. In this
Letter we consider a Hodge type cohomological gauge theory with an undenying 8 strictly nilpotent shift
and co-shift symmetry (i.e., even prior to the introduction of the gauge ghost and antighost fields), which leads to
other topological observables.

The study of such theory was motivated by a recently series of papers [5] where a class of topological gauge
theories in two dimensions was presented which is neither of Witten nor of Schwarz type. Rather, they show some
of the characteristic features of both types of topological quantum field theories (TQFT), namely, the form of the
action turns out to be of Witten type whereas the underlying supersymmetries are reminiscent of Schwarz type (for
a review of TQFT, see, e.g., [6]).
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The aim of this Letter is to reveal these rather unusual properties of a TQFT. Thereby, we focus on the simplest
of the models considered in [5], namely the Euclidean Maxwell theory in two dimensions in the Feynman gauge.
Their action is given by

1 1 B}
S:/dzx{ZF”b(A)Fab(A)—i—EB”AaabAb—i-a”CaaC}, (1)
E

with F,,(A) = 8,A, — dpAa, WhereA, is the Abelian gauge field and, C are the gauge (anti)ghost fields,
respectively.

In [4] it has been shown that the action (1) is not only invariant under the BRST symmetry, generaked by
but also under a co-BRST symmetry, generated 2y which, together with the BRST Laplacia#, obey the
following BRST-complex:

2%2=0, *0?%=0, W={£,*2} #0, [£2, W] =0, *2, W] =0. 2)

Representations of this superalgebra for the first time have been considered in [7§22indés2 are nilpotent
hermitian operators they are realized in a Krein sp&cgB] whose non-degenerate indefinite scalar product
(x|¥) := (x, Jy) is defined by the help of a self-adjoint metric operafat 1, J2 = 1. With respect to the inner
product(, ) the operators2 and*2 = +J 2 J are adjoint to each othefy, *2vy) = (2 x, ¥), but with respect
to the scalar product|) they are self-adjoint. From these definitions one obtains a remarkable correspondence
between the BRST cohomology and the de Rham cohomology [9]:

BRST operator 2, differential d,
Cc0-BRST operator *Q2 =+JJ, co-differential § = & xdx,
duality operation  J, Hodge star *,
BRST Laplacian W ={£,*}, Laplacian A =1{d,s}.

Hence, the action (1) provides a Hodge-type field theoretical model in two dimensions. However, owing to the
absence of a shift and co-shift symmetry, the action is not of Witten type and, because the Maxwell action in
a gravitational background is not metric independent, it is also not of Schwarz type. Differently, the topological
nature of that model is a consequence of the fact that in two dimensions there are no propagating degrees of freedon
associated with the gauge field. On the other hand, as there is no topological supersymmetry, on-shell, the BRST
Laplacian vanishes. This is, in fact, an unsatisfactory property of a Hodge-type theory because their physical states
should lie entirely in the set of harmonic states, i.e., the set of the zero modes of the BRST Laplacian. Therefore, in
order to incorporate a topological supersymmetry into that model, it will be shown that it can be regarded as part of
a more complex topological model of Witten type, namely the twigted 16, D = 2 super-Maxwell theory with
global symmetry groufU (4), whosebasic cohomology [10] possesses actually a Hodge-type structure.

The Letter is organized as follows: in Section 2, as a first step, we substitute in (1) the Maxwell action by
the cohomological action of twisteN = 16, D = 2 super-Maxwell theory with global symmetry gro&d (4).

And we show that the BRST complex of the 8 twisted scalar supercharges, i.e., the generators of the shift and
co-shift symmetries, is really of Hodge type. In Section 3, as a second step, we complete the cohomological action
by introducing the ordinary gauge fixing terms and verify that the basic cohomology, i.e., the BRST complex
including also the ordinary gauge symmetry, preserves the underlying Hodge-type structure. In Section 4 we
construct topological observables for that theory.



B. Geyer, D. Millsch / Physics Letters B 575 (2003) 349-357 351

2. The BRST complex of thetwisted N = 16, D = 2 super-M axwell theory with global symmetry group
SU4)

As mentioned above, in order to avoid the vanishing of the BRST Laplacian of the topological model proposed
in [5] we view the Maxwell action in (1) as the classical part of the twisted actiaw ef 16, D = 2 super-Maxwell
theory with global symmetry groupJ (4) (see, e.g., [11] where the non-Abelian extension of that action has been
constructed),

_ 1 1 1
SINT=8 /dzx{ZF“b(A +iV)Fap(A—iV)+ éa“vaabv;, + ézaazu,,gaazuo"S
E

- Eab;aaawg - naaalﬂ;‘f}- (3

Here,V, is a co-vector field which is combined with, to forms the complexified gauge fields, +iV,, i.e.,
the action (3) localizes onto the moduli space of complexified flat connections. Furthermore, we have introduced
a SU(4)-quartet of Grassmann-odd vector field$, two SU(4)-quartets of Grassmann-odd scalar fielgs and
Z«, Which transform as the fundamental and its complex conjugate representa@i4)f respectively, and a
SU(4)-sextet of Grassmann-even complex scalar fiditlg = (1/2)eo,,g,,5MV‘3, which transform as the second-
rank complex selfdual representation® (4), where a= 1, 2, 3, 4 denotes the internal group index 8 (4).
€aqp IS the antisymmetric Levi-Civita tensor ib = 2.

Let us notice that the action (3) can be obtained from the Euclidearil6, D = 2 super-Maxwell theory with
R-symmetry grouBU(4) ® U (1) by twisting the Euclidean rotation groupOg(2) ~ Ug(1) in D = 2 by the
U (1) of the R-symmetry group (by simply putting together bottl) charges), thereby leaving the gro8g (4)
intact [12].

The action (3) is invariant under the following discrete Hodge tysgmmetry, defined by the replacements

8, A, V, €apd? €A’ —elp, VP
= = xp=| 4 : , 4
¢ [Vfﬁ‘ Na  Cu Maﬂ] ¢ |:—ll/fg —ily iNy — Mo (4)

with the property(x¢) = £¢.
Let us now describe the full set of twisted supersymmetry transformations which leave the action (3) invariant.
The transformation rules for than-shell shift symmetrieD* are

0%Aa =Yy, 0%V =—iyy, QaMﬂy = 2i5a[ﬂ§y]’ Qal/faﬂ = —ieabBbM"‘ﬁ,
1
0%np = —is%3°V,, Qo‘{ﬂ:éS“ﬂe“bFab(A—iV). (5)

From combiningQ® with the above displayed Hodge-typesymmetry one gets the corresponding transformation
rules for theon-shell co-shift symmetries 0%, i.e.,*0%p = + x Q% * ¢, where the signs are the same as in the
relationx(xp) = £¢.

Furthermore, by making use of the identity,d. + €pc9, + €.,9» = 0, one simply verifies that (3) is also
invariant under the followingn-shell vector supersymmetrieg,,,

QuaAp = Sabnot — €abla, QuaVp = _iaabna - ieabCav antMﬁy = 2i€ab3awl//by]y
Quatrf = i86P84pd Ve — 86204 (Ap +i Vi) + 8P 0y (Ay — i VL),
Quatp = i€apd"Mog,  Qualp=1idaMuyp. (6)

In principle, owing to the Hodge type-symmetry, one can also introduoe-shell co-vector supersymmetries
*Qaa, Namely, similar as before, according1@,,¢ = + * Q.4 * ¢. However, they become times theon-
shell vector supersymmetria8,,, i.€.,* Que =i Quq. HENCe, it holdg 0%, * 0%, Qm)S(TNT:B) =0, and the total
number of (real) supercharges is actuaily= 16.
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By an explicit calculation one establishes that the 8 scalar superch@fgasd* 0%, being interrelated by the
x-operation, together with the 8 vector supercham@gs, obey the following topological superalgelmashell,

{o*. 0%} =0, {0*.*0f}=-256(M*F),  {*Q“.*QP}=0,
{Qa, Qaﬂ} = _Zaaﬂ(aa —86(Aa — iVa))v {*Qa, Qaﬂ} = _25‘1;‘3 (aa —86(Aq + iVa)),

where the field-dependent gauge transformatin®), with ¢ = (M*8, A, £iV,), are defined by (¢)A, =
9., and zero otherwise. (The symbbdlmeans that the corresponding relation is satisfied omghell.)

Finally, let us show that the twisted action (3) is actually of Witten type. For that purpose we break down the
global symmetry grou@U (4) in such way that the resulting action splits into a topological tep¥cocycle) and a
Q-exact term, wher@ is a certain linear combination @#“ and* Q*, and that it possesses a discrete Hodge type
*-symmetry. This is precisely what we need in order to put the theory on a two-dimensional compact Riemannian
manifold.

To begin with, let us consider the following; = 1 topological action in five dimensions,

_ 1 1 1
SINT=D /dsx{ZFAB(A +iV)Fag(A—iV)+ E<9AVA<93vB - éieABCDEXABE)CXDE
E

—ixABaAwB—inaAwA}, @)

which is build up from the Abelian gauge fiell4, the co-vector field/, and the Grassmann-odd scalar, vector
and antisymmetric tensor fielgsy4 andyx4 g, respectively. Here, the space indéxuns from 1 to 5 andspcpEe
is the complete antisymmetric Levi-Civita tensorfin= 5. This action can be obtained from the Euclid@as: 2,
D =5 super-Maxwell theory with R-symmetry gro®D(5) by twisting the Euclidean rotation gro§®g (5) in
D =5 by the R-symmetry group (for details, we refer to [11], where the non-Abelian extension of that action was
given).

The full set of twistedon-shell supersymmetry transformations, generated by the scalar, vector and
antisymmetric tensor supercharg@sQ 4 and Q 4, respectively, are given by

QAsx=Va,  QVa=—iva, On=-38%V4,  Qv¥a=0,

Oxap=—iFap(A—iV), (8
QAAp =384B1 — XAB, QAVp=—i0aBN —iXAB, 0an=0,
1
Qg =843 Ve +ida(Ap +iVp) —idp(Aa—iVa),  Qaxsc= —EeABCDEFDE(A +iV) (9
and

_ _ } DE _ } DE

QaBAc =—0caV¥B] S€ABCDEX - QapVe =—idcia¥p) + SI€ABCDEX "
1

Qapn=—iFap(A+iV),  QapV¥c= —EieABCDEFDE(A —iV),
Oapxcp =8c1adp1pd= Ve — i8icra(3p1(Ap) — i V) — dp1(Ap) +i V). (10)

By the help of the identity1/2)eapcoueE " = 5555 5F, itis straightforward, but tedious to prove that the
action (7) is really left invariant under the above transformations.
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Let us now group the components of the 5-dimensional fields V4, x4%, ¥4, n into those of the 2-
dimensional fieldsA,, Vi, Mag, a, Lo, ¥ according to

Mi2=A3+1iV3, M31=Aq+ iV, Mi4= As+1iVs,

M3zs= A3 —iV3, Mag=Aa—iVs, Mz3= A5 —iVs,

nm=in, n2=ix"®, n3=—ix>, na=ix>,
1= %ieabx“b, L2 =—ivs, L3 =iy, fa=—iys,
Vo ="Va, V2 =eax”, v =—earx™ vy = eanx”,

where(A 4, V4) agrees withA,, Vp,) for A =1, 2. Then, it is easily seen that by dimensional reducing the action
(7) and the supersymmetry transformations (8)—(10) onto two dimensions, one arrives preciselyat=th
topological action (3) and the supersymmetry transformations (5) and (6).

On the other hand, on-shell, upon using the equation of motion, fitre action (7) can be written as a sum of a
topological term O-cocycle) and a2-exact term,

- 1
S;Nr—l) = _deX{éiEABCDEXABachE} + v, Q2 =0, (11)

with the gauge fermion
5 |1 B . 1.4
Y= |dx Zl)( FAB(A+LV)—§778 Vag.

Hence, by reducing also (11) in the same way as above into two dimensions we get exactly the decomposition of
the action (3) we are looking for, consisting of a topological te@adocycle) and of 82-exact term. -
More precisely, if we group the componewts;, Vi, ¥, xam, xmun (M, N =3,4,5)intoSU(2) triplets M"/,
NU | pli |y AU (i, j = 1, 2) and identify(1/2)e? x,;, with the SU(2) singlet:, we obtain the followingVy = 8
topological action with a residual global symmetry gré&i(2) ® U (1),
_ 1 1 1 . .
SINT=8) _ /dzx{ZF“b(A +iV) Fap(A—iV) + 0 Vadb Vi + 50 (Myj +iNyj)do(MY —iNV)
E
— i€ hij0axp” —ipij0° xa" — €LY — ina“wa}. (12)
The transformation rules for tran-shell shift symmetryQ are given by
QAa=va.  QVa=—iva. OQM7=pY.  ONV=-ip?. 0r'=0 0pV=0
1 .. . .
On=—-0"V,, Q= —EifabFab(A —iV),  Qv¥.=0,  QOxi =—ida(M7 —iNV).

Moreover, the action (12) is also invariant under the following dualipperation, which mapg@ to*Q,

9 Aa Va €apd” € AP —euy VP
MY NV —MY —Ni
= = *Q = . . .
A T v e in
X;J pl] AL _iX;J AT l'pl]

Hence, as anticipated, after breaking down$k4)-symmetry toSU(2) ® U (1) the Hodge-type structure of the
theory is still preserved. Obviously, because the maximal number of scalar supercharges ofNwisié] D = 2
super-Maxwell theory i&v; = 8, the generato@ must be a certain linear combination@f and* Q.
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Up to now we have shown that the BRST complex of the twistee: 16, D = 2 super-Maxwell theory
possesses actually a Hodge-type structure. Moreover, we have verified that the cohomological action is of Witten
type and that it corresponds to the case with the maximal nuiibet 8 of scalar supercharges and the largest
possible global symmetry groufdJ(4). On the other hand, we could also perform a topological twisvVef 8,

D = 2 super-Maxwell theory, whose underlying BRST complex possesses a Hodge-type structure, too. In that case
we would get the minimal number &f; = 4 scalar supercharges and the lowest possible global symmetry group
U(2) [13].

3. TheHodge-type structure of the basic cohomology

The twisted action (3) has still an ordinary gauge symmetry, which we have not considered yet. Now, we want to
show that by adding to (3) the usual gauge fixing and (anti)ghost dependent terms the Hodge-type structure of the
underlyingbasic cohomology, i.e., the BRST complex including also the ordinary gauge symmetry, is preserved.
To this end we introduce tw8U (4)-quartets of Grassmann-odd scalar ghost and antighost fietdsnd Cy,
which transform as the fundamental and its complex conjugate representafididdf respectively.

Then, the complete gauge-fixed action reads

_ 1 1 1
SWNr=8) _ /dzx{ZF“b(A +iV)Fup(A—iV)+ Ea“(Aa +iV)ob(Ap —iVy) + ga“zuaﬁaazw/S

E
- Eab;aaawg - naaawg + 8aéaaaca}- (13)

This action, in spite of the fact that the gauge symmetry is fixed, exhibits still an invariance under the following
bosonic symmetry,

WA, = —20,M*P, WP M, 5 = —48%, 8P 5,0 Aq, WPyl =2iePV? (38,85 + €apdns),  (14)

where we have written down only the non-vanishing transformation rules. However, below it will be shown that
the generatoW*? of that symmetry is just the BRST Laplacian.

Furthermore, in order to ensure the nilpotency of the BRST and co-BRST operators, we introduce a set of
auxiliary fields, namely, th&U (4)-singlets of Grassmann-even scalar fieRisB andG, G. By the help of these
additional fields the action (13) can be rewritten as

1 1, 1. 1
SWNT=8) _ /dzx{zie”bBFab(A +iV)— 21ie‘”’BFab(A —iV)— EBB + EiGa"(Aa +iVy)

E
1. - 1 1
— EiGaa(Aa —iVy) — EGG + ga“MaﬂaaM“ﬁ
- Eab;aaawg - naaalﬂ;‘f + 8aéaaaca}» (15)
and the Hodge-type-symmetry (4) must be supplemented by the following replacements,
_[B c* G _[-B c* -G
¢=[é Ca G] = *¢’—[_B Ca —G]’ (16)

where, again, two successiveoperations o yield x(x¢) = +¢.
Let us now give the transformations rules for the generators of the basic cohomology, which, just as in (2),
will be denoted by2¢ (BRST operator)* 2% = + » 2% (co-BRST operator) ant®? = {£2%,*22#} (BRST
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Laplacian). Thereby2® and*£2% include besides the shift and co-shift symmetri@§, and* Q“, the ghost-
dependent ordinary gauge symmetdgsC*) as well.
The transformation rules for traéf-shell BRST symmetries2® are

QYA = Y2 +8,C%,  QUP = —ie 3" M, QV,=—iy®,  2°Mg, =2i8%ps,),

- 1 -
Q%p=i8%B,  °CP=0, Q%p=i8"%G,  °Cp= S5i8%(G=G),  Q“B=0,
NR*B =0, Q%G =0, R°G=0. (17)

From combining2® with the Hodge-type-symmetry (4) and (15) one gets the corresponding transformation
rules for theoff-shell co-BRST symmetriess2¢.
Then, for the non-vanishing transformations generated by the BRST Lapl&&aone obtains

WA, = —20,M°P, WM, 5 = —2i8%,65(G — G), WPy =2i€PV% (3,85 + €apd”ns),

which, after elimination ofG and G through their equations of motion, agree, as promised, with (14). Let us
emphasize, that the BRST Laplaciéft?, in contrast to [1], doesot vanish on-shell, due to the presence of scalar
fields M*#. This is a consequence of the fact that the topological nature of our model is actually encoded in the
shift and co-shift symmetrie@“ and* Q%, and not in the vanishing of the BRST Laplacian as in [5].

Furthermore, by a straightforward calculation it can be verified &ifatind*£2* actually leave the action (15)
invariant, i.e., it holdg£2¢, *2%)S(N7=8 — 0. Both operators, together witl*?, satisfy the following BRST
complex,

{Qa’gﬂ}za W“ﬂ={9“,*9ﬁ}7éo, {*Qa’*Q;;}:Q
[we, 2v]=0,  [we *@v]=o0.

Obviously, this basic cohomology is analogous to the de Rham cohomology: the both nilpotent BRST and co-
BRST operators® and* 2% = 4+« 2%, being interrelated by the duali#roperation, correspond to the exterior

and the co-exterior derivativeg,ands = + x dx, respectively, and the BRST Laplacis#t? = {2%,*2*} is the
analogue ofA = {d, §}, so that we have indeed a perfect example of a Hodge-type cohomological theory in two
dimensions.

4. Topological observables

As already pointed out earlier, when the gauge-fixed action (15) is formulated on a compact two-dimensional
Riemannian manifold we break down the global symmetry g&ui@!) in such a way that the resulting action splits
into a topological term@-cocycle) and &2-exact term, and that the discrete Hodge-tysymmetry is preserved,
mappings2 to *§2. Alternatively, the same action can be also obtained from the cohomological action (12) by
adding the usual gauge-fixing and (anti)ghost dependent terms, see Eq. (3), and by introducing an appropriate set
of auxiliary fields.

With regard to this, let us note two unusual features of the action (12) which are relevant for the construction of
two-dimensional observables of that topological model. Its most striking property is that the both, shift and co-shift
symmetryQ and*Q, are not equivariantly nilpotent (due to the absence of the usual ghost for ghogt)ftaid,
on-shell, rather they are strictly nilpotent even prior to the introduction of the ghost and antighost fadsC.

Another remarkable property is that, — iV, andA, + iV, are invariant under one of the supercharges, namely
Q in the former and Q in the latter case. Thus, for the both BRST and co-BRST oper&2@sd* 2 one should
expect the existence of two different sets of observables, depending eitligr-eiV, in the former case or on
A, + iV, in the latter case. In fact, these observables can be constructed in a similar way as in the case of the
topological sigma models [14]. Therefore, we shall omit any details and simply quote the results.
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To begin with, we first associate the zero-foriiis and* Wy to the BRST and co-BRST transforn&C and
*§2C (which, on-shell, correspond to the gauge-fixing functddm ), respectively, via the BRST and co-BRST
invariant ghost field”. These zero-forms can be used as building blocks for constructing the following both sets
of k-forms, W, and* Wy, being interrelated by the Hodge-typ@peration,
Wo=(2C)C,  Wi=dx"((2C)(A, —iV,) —Cd,C),
Wo =dx" Adx"(Cop(Ay —iVy) — (A —iV,)0,C),
and

Wo=(RC)C,  *Wi=8x"(("RC)(A,+iV,) —Cd,C),

*Wa = 8x" A8x"(Cou(Ay +iVy) — (A +iV,)d,C),
dx* =et,dx? andsx* = e*Ve,, dx?, with e*, being the two-bein on a smooth connected, oriented Riemannian
manifold M endowed with metrig””. Here,d = dx" 9, ands = dx"¢,,0" are the exterior and co-exterior
derivative, respectively.

Thesek-forms obey the following recursion relations, which are typical for any topological gauge theory,
0= 02 Wy, dWo=2Wq, AW, =2 W, dW> =0,
0="2*Wp, S*Wo="2*"W1, W1 ="2*W>, Wy =0. (18)

Now, if y is ak-dimensional homology cyclé,y =0, on M then the integratek-forms

I () =/Wk,
Y

by virtue of (18), are2-invariant,

QIk(V)=/~QWk=/de71=O, k> 0.
Y Y

Moreover, if 8 = da is the boundary of & + 1)-dimensional surface, < 2, so thatg is trivial in homology, then
I (y) depends only upon the homology class/aiip to as2-exact term,

I (y + 0a) = / Wk=Ik(V)+/de=Ik(V)+/~QWk+l=Ik(V)-
y+oa o o

Finally, following [14], one can introduce gauge invariant correlation functions of arbitrary products hif(ihe

Z(Vl,.-.,Vr)=/Dwexp(—5(¢))]_[/Wk,~(<p),
i=ly,

which, by construction, both as@-invariant and invariant under metric deformations which preserve the holonomy
structure. The same constructions hold forkhRerms* .

Summarizing, we have shown that, on-shell, the vanishing of the BRST Laplacian of the Hodge theory proposed
in [5] can be avoided, if we view the Maxwell action as the classical part of a more involved cohomological action,
which is obtained by & = 8 topological twist ofN = 16, D = 2 super-Maxwell theory with global symmetry
group SU(4). Then, the complete gauge-fixed cohomological action is of Witten type and the underlying basic
cohomology is really of Hodge type. The non-Abelian case will be presented elsewhere.
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