
b

e nor a
because,
pological
e

.

le [1].
sional

ormula
t
]. In this

leads to

l gauge
w some
of the

type (for

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Physics Letters B 575 (2003) 349–357

www.elsevier.com/locate/physlet

The basic cohomology of the twistedN = 16,
D = 2 super-Maxwell theory

B. Geyera, D. Mülschb

a Naturwissenschaftlich-Theoretisches Zentrum, and Institut für Theoretische Physik, Universität Leipzig, D-04109 Leipzig, Germany
b Wissenschaftszentrum Leipzig e.V., D-04103 Leipzig, Germany

Received 3 June 2003; received in revised form 18 July 2003; accepted 7 August 2003

Editor: P.V. Landshoff

Abstract

We consider a recently proposed two-dimensional Abelian model for a Hodge theory, which is neither a Witten-typ
Schwarz-type topological gauge theory. It is argumented that this model is not a good candidate for a Hodge theory
on-shell, the BRST Laplacian vanishes. We show, that this model allows a natural extension such that the resulting to
theory is of Witten type and can be identified with the twistedN = 16, D = 2 super-Maxwell theory. Furthermore, th
underlying basic cohomology preserves the Hodge-type structure and, on-shell, the BRST Laplacian does not vanish
 2003 Elsevier B.V.

1. Introduction

It has been known for some time that two-dimensional Yang–Mills theory without matter is exactly solub
Moreover, it has been shown that Yang–Mills theory with matter on an arbitrary orientable two-dimen
manifoldM of genusG and areaA is equivalent to a closed, orientable, string theory with target spaceM [2]. Two-
dimensional Yang–Mills theory was revisited using a non-Abelian version of the Duistermaat–Heckman f
in [3] and a simple mapping to topological Yang–Mills theory with an underlyingNT = 1 equivariantly nilpoten
shift symmetry was given. For a previous work on quantum gauge theories in two dimensions see, e.g., [4
Letter we consider a Hodge type cohomological gauge theory with an underlyingNT = 8 strictly nilpotent shift
and co-shift symmetry (i.e., even prior to the introduction of the gauge ghost and antighost fields), which
other topological observables.

The study of such theory was motivated by a recently series of papers [5] where a class of topologica
theories in two dimensions was presented which is neither of Witten nor of Schwarz type. Rather, they sho
of the characteristic features of both types of topological quantum field theories (TQFT), namely, the form
action turns out to be of Witten type whereas the underlying supersymmetries are reminiscent of Schwarz
a review of TQFT, see, e.g., [6]).
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The aim of this Letter is to reveal these rather unusual properties of a TQFT. Thereby, we focus on the
of the models considered in [5], namely the Euclidean Maxwell theory in two dimensions in the Feynman
Their action is given by

(1)S =
∫
E

d2x

{
1

4
Fab(A)Fab(A) + 1

2
∂aAa∂

bAb + ∂aC̄∂aC

}
,

with Fab(A) = ∂aAb − ∂bAa , whereAa is the Abelian gauge field andC, C̄ are the gauge (anti)ghost field
respectively.

In [4] it has been shown that the action (1) is not only invariant under the BRST symmetry, generatedΩ ,
but also under a co-BRST symmetry, generated by�Ω , which, together with the BRST LaplacianW , obey the
following BRST-complex:

(2)Ω2 = 0, �Ω2 = 0, W = {Ω,�Ω} �= 0, [Ω,W ] = 0, [�Ω,W ] = 0.

Representations of this superalgebra for the first time have been considered in [7]. SinceΩ and�Ω are nilpotent
hermitian operators they are realized in a Krein spaceK [8] whose non-degenerate indefinite scalar prod
〈χ |ψ〉 := (χ,Jψ) is defined by the help of a self-adjoint metric operatorJ �= 1, J 2 = 1. With respect to the inne
product( , ) the operatorsΩ and�Ω = ±JΩJ are adjoint to each other,(χ, �Ωψ) = (Ωχ,ψ), but with respect
to the scalar product〈 | 〉 they are self-adjoint. From these definitions one obtains a remarkable correspo
between the BRST cohomology and the de Rham cohomology [9]:

BRST operator Ω, differential d,

co-BRST operator �Ω = ±JΩJ, co-differential δ = ± � d�,

duality operation J, Hodge star �,

BRST Laplacian W = {Ω,�Ω}, Laplacian � = {d, δ}.

Hence, the action (1) provides a Hodge-type field theoretical model in two dimensions. However, owing
absence of a shift and co-shift symmetry, the action is not of Witten type and, because the Maxwell a
a gravitational background is not metric independent, it is also not of Schwarz type. Differently, the topo
nature of that model is a consequence of the fact that in two dimensions there are no propagating degrees o
associated with the gauge field. On the other hand, as there is no topological supersymmetry, on-shell, t
Laplacian vanishes. This is, in fact, an unsatisfactory property of a Hodge-type theory because their physic
should lie entirely in the set of harmonic states, i.e., the set of the zero modes of the BRST Laplacian. Ther
order to incorporate a topological supersymmetry into that model, it will be shown that it can be regarded a
a more complex topological model of Witten type, namely the twistedN = 16,D = 2 super-Maxwell theory with
global symmetry groupSU(4), whosebasic cohomology [10] possesses actually a Hodge-type structure.

The Letter is organized as follows: in Section 2, as a first step, we substitute in (1) the Maxwell ac
the cohomological action of twistedN = 16,D = 2 super-Maxwell theory with global symmetry groupSU(4).
And we show that the BRST complex of the 8 twisted scalar supercharges, i.e., the generators of the
co-shift symmetries, is really of Hodge type. In Section 3, as a second step, we complete the cohomologic
by introducing the ordinary gauge fixing terms and verify that the basic cohomology, i.e., the BRST co
including also the ordinary gauge symmetry, preserves the underlying Hodge-type structure. In Sectio
construct topological observables for that theory.
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2. The BRST complex of the twisted N = 16, D = 2 super-Maxwell theory with global symmetry group
SU(4)

As mentioned above, in order to avoid the vanishing of the BRST Laplacian of the topological model pr
in [5] we view the Maxwell action in (1) as the classical part of the twisted action ofN = 16,D = 2 super-Maxwell
theory with global symmetry groupSU(4) (see, e.g., [11] where the non-Abelian extension of that action has
constructed),

(3)

S
(NT =8)
T =

∫
E

d2x

{
1

4
Fab(A + iV )Fab(A− iV ) + 1

2
∂aVa∂

bVb + 1

8
∂aMαβ∂aM

αβ

− εabζα∂aψ
α
b − ηα∂

aψα
b

}
.

Here,Va is a co-vector field which is combined withAa to forms the complexified gauge fieldsAa ± iVa , i.e.,
the action (3) localizes onto the moduli space of complexified flat connections. Furthermore, we have int
a SU(4)-quartet of Grassmann-odd vector fieldsψα

a , two SU(4)-quartets of Grassmann-odd scalar fields,ηα and
ζα , which transform as the fundamental and its complex conjugate representation ofSU(4), respectively, and a
SU(4)-sextet of Grassmann-even complex scalar fieldsMαβ = (1/2)εαβγ δM

γδ, which transform as the secon
rank complex selfdual representation ofSU(4), where α= 1,2,3,4 denotes the internal group index ofSU(4).
εab is the antisymmetric Levi-Civita tensor inD = 2.

Let us notice that the action (3) can be obtained from the EuclideanN = 16,D = 2 super-Maxwell theory with
R-symmetry groupSU(4) ⊗ U(1) by twisting the Euclidean rotation groupSOE(2) ∼ UE(1) in D = 2 by the
U(1) of the R-symmetry group (by simply putting together bothU(1) charges), thereby leaving the groupSU(4)
intact [12].

The action (3) is invariant under the following discrete Hodge type�-symmetry, defined by the replacements

(4)ϕ ≡
[

∂a Aa Va

ψα
a ηα ζα Mαβ

]
⇒ �ϕ =

[
εab∂

b εabA
b −εabV

b

−iψα
a −iζα iηα −Mαβ

]
,

with the property�(�ϕ) = ±ϕ.
Let us now describe the full set of twisted supersymmetry transformations which leave the action (3) in

The transformation rules for theon-shell shift symmetriesQα are

QαAa = ψα
a , QαVa = −iψα

a , QαMβγ = 2iδα[βζγ ], Qαψβ
a = −iεab∂

bMαβ,

(5)Qαηβ = −iδαβ∂
aVa, Qαζβ = 1

2
δαβε

abFab(A − iV ).

From combiningQα with the above displayed Hodge-type�-symmetry one gets the corresponding transforma
rules for theon-shell co-shift symmetries�Qα , i.e., �Qαϕ = ± � Qα � ϕ, where the signs are the same as in
relation�(�ϕ) = ±ϕ.

Furthermore, by making use of the identityεab∂c + εbc∂a + εca∂b = 0, one simply verifies that (3) is als
invariant under the followingon-shell vector supersymmetriesQaα ,

QaαAb = δabηα − εabζα, QaαVb = −iδabηα − iεabζα, QaαM
βγ = 2iεabδα[βψbγ ],

Qaαψ
β
b = iδα

βδab∂
cVc − δα

β∂a(Ab + iVb) + δα
β∂b(Aa − iVa),

(6)Qaαηβ = iεab∂
bMαβ, Qaαζβ = i∂aMαβ.

In principle, owing to the Hodge type�-symmetry, one can also introduceon-shell co-vector supersymmetrie
�Qaα , namely, similar as before, according to�Qaαϕ = ± � Qaα � ϕ. However, they becomei times theon-
shell vector supersymmetriesQaα , i.e., �Qaα = iQaα . Hence, it holds(Qα, �Qα,Qaα)S

(NT =8)
T = 0, and the tota

number of (real) supercharges is actuallyN = 16.
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By an explicit calculation one establishes that the 8 scalar superchargesQα and�Qα , being interrelated by th
�-operation, together with the 8 vector superchargesQµα , obey the following topological superalgebraon-shell,

{
Qα,Qβ

} .= 0,
{
Qα, �Qβ

} .= −2δG
(
Mαβ

)
,

{
�Qα, �Qβ

} .= 0,{
Qα,Qaβ

} .= −2δαβ

(
∂a − δG(Aa − iVa)

)
,

{
�Qα,Qaβ

} .= −2δαβ

(
∂a − δG(Aa + iVa)

)
,

where the field-dependent gauge transformationsδG(ϕ), with ϕ = (Mαβ,Aa ± iVa), are defined byδG(ϕ)Aa =
∂aϕ, and zero otherwise. (The symbol

.= means that the corresponding relation is satisfied onlyon-shell.)
Finally, let us show that the twisted action (3) is actually of Witten type. For that purpose we break do

global symmetry groupSU(4) in such way that the resulting action splits into a topological term (Q-cocycle) and a
Q-exact term, whereQ is a certain linear combination ofQα and�Qα , and that it possesses a discrete Hodge t
�-symmetry. This is precisely what we need in order to put the theory on a two-dimensional compact Riem
manifold.

To begin with, let us consider the followingNT = 1 topological action in five dimensions,

(7)

S
(NT =1)
T =

∫
E

d5x

{
1

4
FAB(A + iV )FAB(A − iV )+ 1

2
∂AVA∂

BVB − 1

8
iεABCDEχ

AB∂CχDE

− iχAB∂AψB − iη∂AψA

}
,

which is build up from the Abelian gauge fieldAA, the co-vector fieldVA and the Grassmann-odd scalar, vec
and antisymmetric tensor fieldsη, ψA andχAB , respectively. Here, the space indexA runs from 1 to 5 andεABCDE

is the complete antisymmetric Levi-Civita tensor inD = 5. This action can be obtained from the EuclideanN = 2,
D = 5 super-Maxwell theory with R-symmetry groupSO(5) by twisting the Euclidean rotation groupSOE(5) in
D = 5 by the R-symmetry group (for details, we refer to [11], where the non-Abelian extension of that actio
given).

The full set of twistedon-shell supersymmetry transformations, generated by the scalar, vecto
antisymmetric tensor superchargesQ, QA andQAB , respectively, are given by

QAA = ψA, QVA = −iψA, Qη = −∂AVA, QψA = 0,

(8)QχAB = −iFAB(A − iV ),

QAAB = δABη − χAB, QAVB = −iδABη − iχAB, QAη = 0,

(9)QAψB = δAB∂
CVC + i∂A(AB + iVB) − i∂B(AA − iVA), QAχBC = −1

2
εABCDEFDE(A+ iV )

and

QABAC = −δC[AψB] − 1

2
εABCDEχDE, QABVC = −iδC[AψB] + 1

2
iεABCDEχ

DE,

QABη = −iFAB(A + iV ), QABψC = −1

2
iεABCDEFDE(A − iV ),

(10)QABχCD = δC[AδB]D∂EVE − iδ[C[A
(
∂B](AD] − iVD]) − ∂D](AB] + iVB])

)
.

By the help of the identity(1/2)εABCGHεDEFGH = δD[AδEB δFC] it is straightforward, but tedious to prove that t
action (7) is really left invariant under the above transformations.
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Let us now group the components of the 5-dimensional fieldsAA, VA, χAB , ψA, η into those of the 2-
dimensional fieldsAa , Va , Mαβ , ηα , ζα , ψα

a according to

M12 = A3 + iV3, M31 = A4 + iV4, M14 = A5 + iV5,

M34 = A3 − iV3, M42 = A4 − iV4, M23 = A5 − iV5,

η1 = iη, η2 = iχ45, η3 = −iχ53, η4 = iχ34,

ζ1 = 1

2
iεabχ

ab, ζ2 = −iψ3, ζ3 = iψ4, ζ4 = −iψ5,

ψ1
a = ψa, ψ2

a = εabχ
b3, ψ3

a = −εabχ
b4, ψ4

a = εabχ
b5,

where(AA,VA) agrees with(Aa,Vb) for A = 1,2. Then, it is easily seen that by dimensional reducing the ac
(7) and the supersymmetry transformations (8)–(10) onto two dimensions, one arrives precisely at theNT = 8
topological action (3) and the supersymmetry transformations (5) and (6).

On the other hand, on-shell, upon using the equation of motion forη, the action (7) can be written as a sum o
topological term (Q-cocycle) and aQ-exact term,

(11)S
(NT =1)
T

.= −
∫
E

d5x

{
1

8
iεABCDEχ

AB∂CχDE

}
+ QΨ, Q2 .= 0,

with the gauge fermion

Ψ =
∫
E

d5x

{
1

4
iχABFAB(A + iV ) − 1

2
η∂AVA

}
.

Hence, by reducing also (11) in the same way as above into two dimensions we get exactly the decompo
the action (3) we are looking for, consisting of a topological term (Q-cocycle) and of aQ-exact term.

More precisely, if we group the componentsAM , VM , ψM , χaM , χMN (M,N = 3,4,5) intoSU(2) tripletsMij ,
Nij , ρij , χij

a , λij (i, j = 1,2) and identify(1/2)εabχab with theSU(2) singletζ , we obtain the followingNT = 8
topological action with a residual global symmetry groupSU(2) ⊗ U(1),

(12)

S
(NT =8)
T =

∫
E

d2x

{
1

4
Fab(A + iV )Fab(A− iV ) + 1

2
∂aVa∂

bVb + 1

2
∂a(Mij + iNij )∂a

(
Mij − iNij

)

− iεabλij ∂aχb
ij − iρij ∂

aχa
ij − iεabζ ∂aψb − iη∂aψa

}
.

The transformation rules for theon-shell shift symmetryQ are given by

QAa = ψa, QVa = −iψa, QMij = ρij , QNij = −iρij , Qλij = 0, Qρij = 0,

Qη = −∂aVa, Qζ = −1

2
iεabFab(A− iV ), Qψa = 0, Qχ

ij
a = −i∂a

(
Mij − iNij

)
.

Moreover, the action (12) is also invariant under the following duality�-operation, which mapsQ to �Q,

ϕ ≡



∂a Aa Va

Mij Nij

ψa η ζ

χ
ij
a ρij λij


 ⇒ �ϕ =




εab∂
b εabA

b −εabV
b

−Mij −Nij

−iψa −iζ iη

−iχ
ij
a −iλij iρij


 .

Hence, as anticipated, after breaking down theSU(4)-symmetry toSU(2) ⊗ U(1) the Hodge-type structure of th
theory is still preserved. Obviously, because the maximal number of scalar supercharges of twistedN = 16,D = 2
super-Maxwell theory isNT = 8, the generatorQ must be a certain linear combination ofQα and�Qα .
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Up to now we have shown that the BRST complex of the twistedN = 16, D = 2 super-Maxwell theory
possesses actually a Hodge-type structure. Moreover, we have verified that the cohomological action is o
type and that it corresponds to the case with the maximal numberNT = 8 of scalar supercharges and the larg
possible global symmetry groupSU(4). On the other hand, we could also perform a topological twist ofN = 8,
D = 2 super-Maxwell theory, whose underlying BRST complex possesses a Hodge-type structure, too. In t
we would get the minimal number ofNT = 4 scalar supercharges and the lowest possible global symmetry
SU(2) [13].

3. The Hodge-type structure of the basic cohomology

The twisted action (3) has still an ordinary gauge symmetry, which we have not considered yet. Now, we
show that by adding to (3) the usual gauge fixing and (anti)ghost dependent terms the Hodge-type structu
underlyingbasic cohomology, i.e., the BRST complex including also the ordinary gauge symmetry, is prese
To this end we introduce twoSU(4)-quartets of Grassmann-odd scalar ghost and antighost fields,Cα and C̄α ,
which transform as the fundamental and its complex conjugate representation ofSU(4), respectively.

Then, the complete gauge-fixed action reads

(13)

S(NT =8) =
∫
E

d2x

{
1

4
Fab(A + iV )Fab(A− iV ) + 1

2
∂a(Aa + iVa)∂

b(Ab − iVb) + 1

8
∂aMαβ∂aM

αβ

− εabζα∂aψ
α
b − ηα∂

aψα
b + ∂aC̄α∂aC

α

}
.

This action, in spite of the fact that the gauge symmetry is fixed, exhibits still an invariance under the fol
bosonic symmetry,

(14)WαβAa = −2∂aM
αβ, WαβMγδ = −4δα[γ δβ δ]∂aAa, Wαβψ

γ
a = 2iεαβγ δ

(
∂aζδ + εab∂

bηδ
)
,

where we have written down only the non-vanishing transformation rules. However, below it will be show
the generatorWαβ of that symmetry is just the BRST Laplacian.

Furthermore, in order to ensure the nilpotency of the BRST and co-BRST operators, we introduce
auxiliary fields, namely, theSU(4)-singlets of Grassmann-even scalar fieldsB, B̄ andG, Ḡ. By the help of these
additional fields the action (13) can be rewritten as

(15)

S(NT =8) =
∫
E

d2x

{
1

4
iεabBFab(A + iV ) − 1

4
iεabB̄Fab(A − iV ) − 1

2
B̄B + 1

2
iG∂a(Aa + iVa)

− 1

2
iḠ∂a(Aa − iVa) − 1

2
ḠG + 1

8
∂aMαβ∂aM

αβ

− εabζα∂aψ
α
b − ηα∂

aψα
b + ∂aC̄α∂aC

α

}
,

and the Hodge-type�-symmetry (4) must be supplemented by the following replacements,

(16)ϕ ≡
[
B Cα G

B̄ C̄α Ḡ

]
⇒ �ϕ =

[−B̄ Cα −Ḡ

−B C̄α −G

]
,

where, again, two successive�-operations onϕ yield �(�ϕ) = ±ϕ.
Let us now give the transformations rules for the generators of the basic cohomology, which, just as

will be denoted byΩα (BRST operator),�Ωα = ± � Ωα� (co-BRST operator) andWαβ = {Ωα, �Ωβ} (BRST
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Laplacian). Thereby,Ωα and �Ωα include besides the shift and co-shift symmetries,Qα and �Qα , the ghost-
dependent ordinary gauge symmetriesδG(Cα) as well.

The transformation rules for theoff-shell BRST symmetriesΩα are

ΩαAa = ψα
a + ∂aC

α, Ωαψβ
a = −iεab∂

bMαβ, ΩαVa = −iψα
a , ΩαMβγ = 2iδα[βζγ ],

Ωαζβ = iδαβB, ΩαCβ = 0, Ωαηβ = iδαβG, ΩαC̄β = 1

2
iδαβ(G − Ḡ), ΩαB = 0,

(17)ΩαB̄ = 0, ΩαG = 0, ΩαḠ = 0.

From combiningΩα with the Hodge-type�-symmetry (4) and (15) one gets the corresponding transform
rules for theoff-shell co-BRST symmetries�Ωα.

Then, for the non-vanishing transformations generated by the BRST LaplacianWαβ one obtains

WαβAa = −2∂aMαβ, WαβMγδ = −2iδα[γ δβδ](G − Ḡ), Wαβψ
γ
a = 2iεαβγ δ

(
∂aζδ + εab∂

bηδ
)
,

which, after elimination ofG and Ḡ through their equations of motion, agree, as promised, with (14). Le
emphasize, that the BRST LaplacianWαβ , in contrast to [1], doesnot vanish on-shell, due to the presence of sca
fieldsMαβ . This is a consequence of the fact that the topological nature of our model is actually encode
shift and co-shift symmetriesQα and�Qα , and not in the vanishing of the BRST Laplacian as in [5].

Furthermore, by a straightforward calculation it can be verified thatΩα and�Ωα actually leave the action (15
invariant, i.e., it holds(Ωα, �Ωα)S(NT =8) = 0. Both operators, together withWαβ , satisfy the following BRST
complex,{

Ωα,Ωβ
} = 0, Wαβ = {

Ωα, �Ωβ
} �= 0,

{
�Ωα, �Ωβ

} = 0,[
Wαβ,Ωγ

] .= 0,
[
Wαβ, �Ωγ

] .= 0.

Obviously, this basic cohomology is analogous to the de Rham cohomology: the both nilpotent BRST
BRST operators,Ωα and�Ωα = ± �Ωα�, being interrelated by the duality�-operation, correspond to the exter
and the co-exterior derivatives,d andδ = ± � d�, respectively, and the BRST LaplacianWαβ = {Ωα, �Ωα} is the
analogue of� = {d, δ}, so that we have indeed a perfect example of a Hodge-type cohomological theory
dimensions.

4. Topological observables

As already pointed out earlier, when the gauge-fixed action (15) is formulated on a compact two-dime
Riemannian manifold we break down the global symmetry groupSU(4) in such a way that the resulting action spl
into a topological term (Ω-cocycle) and aΩ-exact term, and that the discrete Hodge-type�-symmetry is preserved
mappingΩ to �Ω . Alternatively, the same action can be also obtained from the cohomological action (1
adding the usual gauge-fixing and (anti)ghost dependent terms, see Eq. (3), and by introducing an appro
of auxiliary fields.

With regard to this, let us note two unusual features of the action (12) which are relevant for the constru
two-dimensional observables of that topological model. Its most striking property is that the both, shift and
symmetryQ and�Q, are not equivariantly nilpotent (due to the absence of the usual ghost for ghost fieldφ) but,
on-shell, rather they are strictly nilpotent even prior to the introduction of the ghost and antighost fieldsC andC̄.

Another remarkable property is thatAa − iVa andAa + iVa are invariant under one of the supercharges, nam
Q in the former and�Q in the latter case. Thus, for the both BRST and co-BRST operatorsΩ and�Ω one should
expect the existence of two different sets of observables, depending either onAa − iVa in the former case or o
Aa + iVa in the latter case. In fact, these observables can be constructed in a similar way as in the cas
topological sigma models [14]. Therefore, we shall omit any details and simply quote the results.
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To begin with, we first associate the zero-formsW0 and�W0 to the BRST and co-BRST transformsΩC̄ and
�ΩC̄ (which, on-shell, correspond to the gauge-fixing function∂aAa), respectively, via the BRST and co-BRS
invariant ghost fieldC. These zero-forms can be used as building blocks for constructing the following bot
of k-forms,Wk and�Wk , being interrelated by the Hodge-type�-operation,

W0 = (ΩC̄)C, W1 = dxµ
(
(ΩC̄)(Aµ − iVµ) − C∂µC̄

)
,

W2 = dxµ ∧ dxν
(
C̄∂µ(Aν − iVν) − (Aµ − iVµ)∂νC̄

)
,

and

�W0 = (�ΩC̄)C, �W1 = δxµ
(
(�ΩC̄)(Aµ + iVµ) − C∂µC̄

)
,

�W2 = δxµ ∧ δxν
(
C̄∂µ(Aν + iVν) − (Aµ + iVµ)∂νC̄

)
,

dxµ = eµa dx
a andδxµ = εµνeνa dx

a , with eµa being the two-bein on a smooth connected, oriented Rieman
manifold M endowed with metricgµν . Here,d = dxµ ∂µ and δ = dxµ εµν∂

ν are the exterior and co-exterio
derivative, respectively.

Thesek-forms obey the following recursion relations, which are typical for any topological gauge theory

0= ΩW0, dW0 = ΩW1, dW1 = ΩW2, dW2 = 0,

(18)0= �Ω�W0, δ�W0 = �Ω�W1, δ�W1 = �Ω�W2, δ�W2 = 0.

Now, if γ is ak-dimensional homology cycle,∂γ = 0, onM then the integratedk-forms

Ik(γ ) =
∫
γ

Wk,

by virtue of (18), areΩ-invariant,

ΩIk(γ ) =
∫
γ

ΩWk =
∫
γ

dWk−1 = 0, k > 0.

Moreover, ifβ = ∂α is the boundary of a(k + 1)-dimensional surface,k < 2, so thatβ is trivial in homology, then
Ik(γ ) depends only upon the homology class ofγ up to aΩ-exact term,

Ik(γ + ∂α) =
∫

γ+∂α

Wk = Ik(γ ) +
∫
α

dWk = Ik(γ ) +
∫
α

ΩWk+1 = Ik(γ ).

Finally, following [14], one can introduce gauge invariant correlation functions of arbitrary products of theIk(γ ),

Z(γ1, . . . , γr) =
∫

Dϕ exp
(−S(ϕ)

) r∏
i=1

∫
γi

Wki (ϕ),

which, by construction, both areΩ-invariant and invariant under metric deformations which preserve the holon
structure. The same constructions hold for thek-forms�Wk .

Summarizing, we have shown that, on-shell, the vanishing of the BRST Laplacian of the Hodge theory p
in [5] can be avoided, if we view the Maxwell action as the classical part of a more involved cohomological
which is obtained by aNT = 8 topological twist ofN = 16,D = 2 super-Maxwell theory with global symmet
groupSU(4). Then, the complete gauge-fixed cohomological action is of Witten type and the underlying
cohomology is really of Hodge type. The non-Abelian case will be presented elsewhere.
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