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Abstract

The proof will be given that the commonly used West and Yennie integral formula for the relative phase of Coulomb and elastic hadronic
amplitudes leads to a strong limitation of physical characteristics and should be abandoned. At the present it is only the eikonal model that may

provide a reliable basis in analyzing corresponding data.
© 2007 Elsevier B.V. Open access under CC BY license.

1. Introduction

The high energy elastic scattering of charged nucleons (if
the spins of colliding particles are not taken into account) is
being commonly described with the help of total elastic ampli-
tude [1]

FCN (s, 1) = FC(s, 1) + FN (s, 1)e*®6:D), (1)
where FN(s, ) is hadronic amplitude, F C (s, t)—Coulomb
amplitude and o @ (s, t)—relative phase; « = 1/137.036 is fine
structure constant, s—the square of the CMS energy and —
four momentum transfer squared.

While the Coulomb amplitude F€ (s, r) is known from QED
the hadronic (nuclear) amplitude FN(s,) represents open
question; due to the absence of any reliable theory of strong in-
teractions at small momentum transfers its phenomenological
shape is being looked for. This shape is believed to be deter-
mined from the measured elastic differential cross section data
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defined as
do(s,1)
dr

where p is momentum value in the CMS system.

There are, however, two unknown functions in Eq. (1):
FN(s,t) and ®(s,1). Many attempts have been done to find
whether it is possible to express @(s,t) with the help of
hadronic amplitude. West and Yennie [2] derived in the case of
charged point-like nucleons (s >> m?, m being nucleon mass)
and within the framework of one-photon exchange the for-

2)

l2|FC+N(S, t)izs
sp

mula
0
®(s,1)=7a|In[ = —f dv 1—FN(”)>
@@, D =Fo i 7 T s )|
—4p?

3)
The upper (lower) sign corresponds to the scattering of particles
with the same (opposite) charges.

It is believed commonly that the West and Yennie integral
formula (3) is quite general in the sense that it holds for any
shape of ¢ dependent hadronic amplitude F (s, ). However,
in our recent paper [3] we have introduced that the integral for-
mula (3) of West and Yennie may be regularly applied only to
the elastic hadronic amplitudes F Nis, 1) having the constant

-
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ratio between real and imaginary parts at all values of ¢. As
the given statement has not been explicitly proved the corre-
sponding reasoning will be given in the following and the con-
sequences will be discussed.

2. Limitation of West and Yennie integral formula

The formula of West and Yennie is now being commonly
made use of in all analyses of elastic nucleon data. And prac-
tically all quantities characterizing elastic processes have been
based on its application.

The phase function a® (s, t) is regarded always to be real,
which requires to hold for any admissible ¢:

0
dv _(FN(s, )\ _
/|t—r|“<FN<s,r>>=O' @

—4p?

The condition (4) may be transformed to the condition

0
I(s,0) = / |td_fr| [(REN (5, 0O3FY (s, 7)
—4p?
—RFN (s, )IFN (5, 1)]
=0. ()

Introducing the phase ¢ (¢) and the modulus | F N | of the com-
plex hadronic amplitude (the dependence on the fixed s being
depressed in the following) by

FN(s, 0y =i|FN(1)|e D, (6)

it is possible to write

1) = b ™)
where
t 0
1) = / drf. D). B = / dr £(t.7) ®)
74172 t
and

sin[¢()=¢@] | N
ft, )= { —t |FV ()] fort #t, o
[E@VIFN ()] fort =1,

where the factor sin[¢ (f) — ¢ (t)]/(t — t) is symmetrical in both
the variables t, T € [—4p2, 0]. The function f (¢, t) is continu-
ous and bounded if ¢(¢) is continuous and its derivatives are
bounded for any ¢ € [—4p?, 0]. Similar properties may be as-
sumed for the modulus |F ()| that is non-zero in the whole
interval [—4p?, 0] with the only exception at r = —4p?. It
holds

o S0 — 2]
im ————— = [

Tt t—1

t(0] (10)

and both /1 (#) and I>(¢) are proper integrals [4].

It is then possible to write

t

/ dt%f(t,r)+f(t,t)

—4p2

[h] =

t

fdrg(r,r)+f<r,t>,
_4,,2

; 0
(L] = / dra (4, 0) = FD)

t
0

_ /dtg(t, D= (1) (11)

t

where

9

1, 1)=—f(Ut, 1

g, 1) azf( )
cosleO=¢OIEO] (=D =sinleO=¢ @] | N (7,

(1—1)?

fort #r, (12)
He@V'IFN@) forr=1.

Eq. (7) passes now to the form

' 0
f drg(t,r)—/drg(t,r)+2f(t,t)50 (13)
,4P2 t

which holds for each ¢ € [—4p2,0]. Both the integrals in
Eq. (13) are proper integrals similarly as in Eq. (7) (due to the
assumed finite value of ¢ (r)”—see Eq. (12)). All higher deriva-
tives of I1(¢) and I>(¢) (if they exist) can be derived in a similar
way. It is evident that they are continuous and bounded, too.
From Eq. (7) it can be easily derived that they should fulfill
similar condition, i.e.,

1w =1"@). (14)

It may be shown that all equations (7), (13) and (14) are fulfilled
if

£(t) =¢(t) =const. (15)

And we should ask whether this solution is unique. The ques-
tion may be answered with the help of the following theo-
rem.

3. Uniqueness of the solution

Theorem. Let ¢(t) be continuous function on the closed inter-
val J =[—a,0], a > 0; let F(t) be continuous function and
non-zero with exception of end points defined also on J. Sup-
pose that for all t and t from J it holds

mtaxg‘(t)—;(r) <. (16)
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If foreacht € J,

t

0
[ar OO gy [ OO ) g,

—a t

a7

then the function ¢ (t) is a constant function on J.

Proof. Let us assume that the function ¢ is not constant. Let
us define fax as ¢ (tmax) = max; {(¢). If there are more such
points we can take any of them. Let M be the set of all the num-
bers from J such that ¢ () < ¢ (fmax). Owing to the assumption
that the function ¢ is continuous and non-constant the Lebesgue
measure of the set M, i.e., u(M), is positive.

Let us define further

t
Li(t) =/dTWF(I)

—a

and

0
Lo(t) :/drMF(r).

t

Let us introduce now L (fmax) = L1 (fmax) — L2 (tmax). For —a <
T < tax it holds ¢ (fmax) — ¢ () = 0 and due to the validity of
condition (16) we obtain sin[¢ (fmax) — ()] > 0; as tax — T =
0 and we can assume the function F(t) to be positive it holds
in the corresponding interval L1 (fmax) = 0.

Similarly also for Lj(fmax): for tmax < v < 0 it holds
C(tmax) — ¢(t) = 0. Due to (16) it holds also sin[¢(tmax) —
¢(7)] =2 0. Owing to fax — T < 0, one obtains

sin[¢ (tmax) — ¢(7)] <0

Imax — T
and therefore Ly (tmax) < 0. Consequently it holds L (fmax) = 0
and as the set M has a positive measure we obtain L (#pnax) > O,
which contradicts the requirement (17). And the theorem is
proved. O

The theorem corresponds fully to our problem if we put
—a = —4p?; also the condition (16) required to be valid for
hadronic phase is fulfilled practically in all phenomenological
models. Thus the function ¢ () = const represents the unique
possibility for the ¢ dependence of ¢ (¢) function, if the relative
phase between the Coulomb and hadronic amplitudes (given by
integral formula of West and Yennie (3)) is to be real quantity,
as commonly required.

4. Eikonal model

It follows from the preceding results that the West and Yen-
nie formula cannot be brought to agreement with experimental
data. And a new more suitable approach is to be looked for.

Such an approach may be seen in the eikonal model as the
elastic scattering amplitude may be expressed as the Fourier—

Bessel transformation of elastic eikonal §(s, b),

T Awi
2p

F(s, g’ = —t) = L/dzbeiqg[eZiS(‘Y’b) —1] (18)

where £25 is the two-dimensional Euclidean space of the impact
parameter b. Mathematically consistent formulation of Fourier—
Bessel transformation requires the function F(s,?) to be de-
fined also in the region of unphysical ¢ values as analytical
continuation from the region of physical ¢ values in agreement
with formula (18) (for detail see [5,6]). Then Eq. (18) is valid
at any s and 7.

Due to the additivity of corresponding potentials the Cou-
lomb and hadronic interactions may be characterized by the
total eikonal §€1 (s, b) being the sum of both the Coulomb
8€ (s, b) and hadronic 8V (s, b) eikonals at the same value of
impact parameter b [6,7]:

8§CHN(s,b) =5 (s,b) + 8V (s, b). (19)

The total elastic scattering amplitude can be then written as
[7.8]

FC+N(S, t)

=FC(s, 1) + FN(s, 1)

+ é / d*q' FC(s,q')FN (5,1 — q'P). (20)
Qq/

Eq. (20) shows that at difference to Eq. (1) where the sum of
Coulomb and hadronic amplitudes is weighted by the phase
factor multiplying the hadronic amplitude only, here a new
complex function represented by a convolution integral defined
over kinematically allowed region of momentum transfers §2,/
is added to the sum of both t he amplitudes. Then Eq. (20) may
be finally written as

FON (s, 1) = i?ﬁ 0 20+ FY (s, H[1 FiaG(s, D],

(21)
where
0
Gs.1) = / dr/{1n<5>i[f1<t/)fz<t/)]
t)dt'"
—4p?
+1[M—1]m t’)} (22)
2| FN(s,1) ’ ’
and
2 y ”
1, 1) =/d4>”7fl(t 3{2“ ). (23)
0

here t” =t + 1’ + 2/tt' cos®”. And f;(¢) and f>(r) are form
factors of corresponding charged nucleons.

The form of the total elastic scattering amplitude specified
by Egs. (21), (22), (23) has been used to the analysis of elas-
tic nucleon scattering data in Ref. [8]. The value of the total
cross section and ¢ dependence of the diffractive slope can be
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easily obtained with the help of the optical theorem and as the
logarithmic derivative of the corresponding differential cross
section.

5. Hadronic phase and its ¢ dependence

The eikonal model enables to analyze the distribution of
different values of impact parameter in the different kinds of
hadronic collisions. Including the unitarity condition the val-
ues of so-called root-mean-squares of impact parameter corre-
sponding to different scattering kinds may be determined from
the elastic hadronic amplitude obtained by fitting the experi-
mental data (see Eq. (2)). As to the elastic collisions one can
write [9,10]

(67 ())g = (0o + (07
Jo de it FN (s, 01)?
SO dt|FN (s, )2
Jo dr || FN (s, 24N (s, 1)
S0 dt[FN (s, 1))

Im

(24)

where the modulus of elastic hadronic amplitude itself con-
tributes to the first term and the phase (its derivative) is in-
volved only in the second term. And one can distinguish be-
tween the central picture (contribution of the first term only)
and peripheral picture (depending mainly on the # dependence
of ¢V (s, 1)).

Having started from the West and Yennie formula (3) the
high energy elastic hadron scattering has been interpreted usu-
ally as central; only very weak ¢ dependence of ¢V (s, )) being
allowed. This a priori limitation has brought an artificial dis-
crepancy between the elastic and single diffractive processes,
both having the same dynamical characteristics; and the latter
processes being always regarded as peripheral. This discrep-
ancy is removed when some stronger ¢ dependence of ¢V (s, 1)
is admitted.

6. Conclusion

The strong ¢ dependence of the phase ¢ (s, t) requires also
w N . .
for the ratio p(s, 1) = %((jf)) of real to imaginary parts of the

elastic hadronic amplitude to exhibit similar ¢ dependence. It
leads to the peripheral behavior of elastic hadronic scattering as
shown earlier [8].

And it is possible to conclude that to remove any a priori
limitation the West and Yennie integral formula (3) must be
fully abandoned in analysis of experimental elastic data. At the
present it is only the eikonal model that may represent a reli-
able basis for solving actually the problems connected with a
consistent description of the interference between the Coulomb
and elastic nucleon scattering at high energies.
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