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PERSPECTIVES IN RENAL MEDICINE

Chronic renal allograft rejection: Pathophysiologic
considerations
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Chronic renal allograft rejection; pathophysiologic
considerations.

Chronic rejection is currently the most prevalent cause of
renal transplant failure. Clinically, chronic rejection presents
by chronic transplant dysfunction, characterized by a slow loss
of function, often in combination with proteinuria and hyper-
tension. The histopathology is not specific in most cases but
transplant glomerulopathy and multilayering of the peritubu-
lar capillaries are highly characteristic. Several risk factors have
been identified such as young recipient age, black race, presen-
sitization, histoincompatability, and acute rejection episodes,
especially vascular rejection episodes and rejections that occur
late after transplantation. Chronic rejection develops in grafts
that undergo intermittent or persistent damage from cellular
and humoral responses resulting from indirect recognition of
alloantigens. Progression factors such as advanced donor age,
renal dysfunction, hypertension, proteinuria, hyperlipidemia,
and smoking accelerate deterioration of renal function. At the
tissue level, senescence conditioned by ischemia/reperfusion
(I/R) may contribute to the development of chronic allograft
nephropathy (CAN). The most effective option to prevent re-
nal failure from chronic rejection is to avoid graft injury from
both immune and nonimmune mechanism together with non-
nephrotoxic maintenance immunosuppression.

With time, the short- and long-term results of kidney
transplantation have improved [1] but despite these im-
provements a substantial portion of grafts develop pro-
gressive dysfunction and fail within a decade, even with
the use of immunosuppressive drugs in doses sufficient
to prevent acute rejection [2]. The decline in function is
often associated with hypertension and an increase in uri-
nary protein loss, elements of a clinical syndrome that has
been called chronic allograft dysfunction. Kidney graft

†Deceased July 16, 2004.

Key words: Chronic allograft nephropathy, chronic rejection, risk fac-
tors, humoral responses, senescence.

Received for publication January 29, 2004
and in revised form May 14, 2004
updated on November 23, 2004
Accepted for publication February 21, 2005

C© 2005 by the International Society of Nephrology

biopsies of these patients show fibrointimal thickening of
arteries, interstitial fibrosis and tubular atrophy, lesions
characteristic for chronic allograft nephropathy (CAN).
CAN may be the result of chronic calcineurin nephro-
toxicity, chronic rejection, recurrent or de novo glomeru-
lonephritis, and a variety of other entities such as renal
artery stenosis, nephrosclerosis, or BK virus nephropathy.
The term “chronic” has been debated because it has to do
with time, histopathology, and mechanism of injury [3].
However, in most patients with chronic rejection all three
meanings are applicable. Although graft biopsies are
helpful to differentiate the underlying conditions, chronic
calcineurin nephrotoxicity remains difficult to distinguish
from chronic rejection, especially since both conditions
often coexist in the same specimen. De novo fibrointimal
thickening of arteries, transplant glomerulopathy, capil-
laropathy, and absence of other causes of other causes of
CAN favor the histologic diagnosis of chronic rejection
[4]. Immunologic risk factors are an underused diagnos-
tic tool for true chronic rejection. They should be distin-
guished from nonimmunologic factors which merely act
as progression factors responsible for accelerated loss in
renal function in the presence of chronic rejection. In this
overview the features and risk factors of chronic rejection
are reviewed and hypotheses regarding its pathophysiol-
ogy are highlighted. Subsequently we describe the pro-
gression factors and tissue responses to injury. Finally, we
discuss prevention and therapeutic strategies that should
improve the prognosis of many transplant patients.

CLINICAL AND HISTOPATHOLOGIC FEATURES

Chronic transplant dysfunction as a consequence of
chronic rejection is characterized by a relatively slow but
variable rate of decline in renal function after the initial
3 posttransplant months. The declining renal function is
often found in combination with proteinuria and aggra-
vation or de novo hypertension [5, 6]. Linear regression
analysis of the reciprocal of the serum creatinine concen-
tration over time showed progressive loss of function in
more than 80% of patients with histologic proof of CAN.
Twenty percent to 28% of patients with CAN have more

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82447955?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Joosten et al: Chronic renal allograft rejection

than 0.5 g proteinuria/24 hours compared with 6% to 8%
of patients who do not have this condition [7]. The diag-
nostic value of posttransplant hypertension is very limited
because of its high prevalence.

The histopathology of chronic rejection is character-
ized by CAN (i.e., fibrous intimal thickening of arteries,
glomerulosclerosis, interstitial fibrosis and tubular atro-
phy) [8, 9]. CAN is the result of cumulative damage to
the kidney and is common at 10 years after transplan-
tation being present in over 50% of patients [10]. In
the background of CAN kidneys with chronic rejection
frequently show transplant vasculopathy or glomerulopa-
thy. Transplant vasculopathy is characterized by fibroin-
timal thickening of arteries, breaks in the elastic layer,
and vessel wall infiltration with inflammatory cells. The
intimal thickening is thought to result from the migra-
tion of (myo)fibroblast followed by local proliferation
and deposition of extracellular matrix proteins. Origi-
nally it was thought that the intimal fibromyoblasts were
derived from muscle cells of the media of the affected
vessel or the adjacent media but evidence has been pre-
sented that those cells are from recipient origin and de-
rived from circulating precursor cells [11]. Not only large
arteries are affected, also the small peritubular capillar-
ies can show basement membrane layering as a marker of
transplant capillaropathy [4]. Although this lesion is not
specific, more than seven layers of basement membranes
seems specific for chronic rejection and is found in 38%
of CAN specimens [4]. Finally, the glomerular lesions in
transplant biopsies are variable and include wrinkling and
collapse of the glomerular tuft, glomerular hypertrophy,
mesangial matrix expansion, and focal glomerulosclero-
sis. Transplant glomerulopathy is a lesion characterized
by enlargement of the glomeruli with swelling of the en-
dothelial and mesangial cells, mesangiolysis, infiltration
of the glomeruli with mononuclear cells, mesangial ma-
trix expansion, and splitting of the glomerular basement
membrane (GBM) with a subendothelial deposition of
electron lucent material [12]. Transplant glomerulopathy
can be discriminated from recurrent or de novo membra-
noproliferative glomerulonephritis (MPGN) using elec-
tron and immunofluorescence microscopy. In transplant
glomerulopathy the deposits are electron-lucent and in
MPGN electron-dense deposits were present. Further-
more, patients with transplant glomerulopathy show IgM
with a greater intensity than C3, whereas MPGN patients
showed a greater intensity of C3 [13]. The presence of
transplant glomerulopathy in a renal biopsy is associated
with accelerated graft loss [14].

Since 1991, there have been four international meet-
ings in Banff, Canada, to standardize renal transplant
pathology interpretations and reporting to establish ob-
jective and reproducible end points for clinical trials of
new antirejection agents and to guide therapy [15–17].
Although the Banff scheme has focused mainly on the

Table 1. Risk and progression factors of chronic rejection

Risk factors Progression factors

Young recipient age Cadaveric donor
Sensitization pretransplantation Old donor age
Sensitization posttransplantation Recipient smoking
Histoincompatibility Renal insufficiency
Therapy noncompliance Proteinuria
Acute vascular rejection Hypertension
Late acute rejection Hyperlipidemia

Overweight
Drug nephrotoxicity

classification of acute rejection based on routine light mi-
croscopy readings, the more recent versions of the scheme
deal with chronic allograft nephropathy, recognizing that
tubulointerstitial changes are most accurately sampled
and appear to have prognostic significance [9, 18]. Early
damage in the first posttransplant months occurs predom-
inantly in the tubulointerstitial area and accumulation of
this damage with the injury from rejection episodes in
combination with the irreversibility of these insults de-
termine outcome [19]. The grading of severity of chronic
rejection focused initially on interstitial fibrosis and tubu-
lar atrophy but recently also on chronic glomerular and
vascular changes [17].

RISK FACTORS OF CHRONIC REJECTION

Acute rejection episodes

The most important risk factor of chronic rejection
is previous acute rejection episodes (Table 1). The es-
timated half-life for cadaveric transplants is shorter in
patients who had acute rejection episode than those who
did not, 6.6 years versus 12.5 years [20]. In the recent
era, the average yearly reduction in the relative hazard of
graft failure after 1 year was 4.2% for all recipients, 6.3%
for those who did not have acute rejection episodes but
only 0.4% for those who had an acute rejection episode
[1]. Not all acute rejection episodes lead to chronic re-
jection as type, severity, number, and timing of rejection
determine outcome. Acute vascular rejection is an ad-
verse prognostic feature compared with tubulointerstitial
rejection [21, 22]. In patients receiving tacrolimus-based
immunosuppression, vascular rejection was the most im-
portant predictor of medium-term graft loss.

Acute rejection episodes followed by partial loss of
graft function exert a more detrimental effect on long-
term outcome than acute rejections with complete func-
tional recovery [23, 24]. Recipients with repeated acute
rejection episodes have lower graft survival rates than
those with no or only one acute rejection episode [25,
26]. Finally, timing of the first acute rejection episode
has an impact on the long-term outcome. Acute re-
jection episodes within the first 3 months may have
no effect on chronic rejection, whereas acute rejections
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occurring after 2 to 6 months confer the greatest risk
[7]. We found more contrast in prognosis when the in-
terval to the last acute rejection episode was used [22].
Ten-year graft survival rates censored for causes of graft
loss other than chronic rejection were 94%, 86%, and
45% for patients without an acute rejection episode, with
early acute rejection episodes, and with late acute rejec-
tion episodes, respectively [27]. Apart from clinical acute
rejection episodes, patients may have subclinical rejec-
tion that causes ongoing immunologic injury leading to
chronic rejection [26].

Sensitization

Antibodies against human leukocyte antigens (HLA)
antigens elicited by pregnancies, blood transfusions, or
failed transplants are determined by testing the serum
against a panel of HLA-typed leucocytes. Due to a de-
crease in blood transfusions since the introduction of
erythropoietin, there is a substantial decrease in mean
value of panel-reactive antibodies (PRA) [1]. Despite
a negative cross-match at time of transplantation, sen-
sitized recipients have an increased risk of chronic re-
jection [28]. Especially, sensitization against both HLA
class I and class II results result in an increased rejection
of HLA mismatched grafts [29, 30]. De novo anti-HLA
antibodies posttransplantation has also been correlated
with chronic rejection [31]. More specifically, posttrans-
plant antibodies could be detected in 24% to 100% of
the patients and predate renal dysfunction and graft loss
from chronic rejection [32]. Therefore, the presence of
anti-HLA antibodies, both before and after transplanta-
tion, is associated with chronic rejection.

HLA matching

Major histocompatibility complex (MHC) molecules
of the graft are the principal targets of the immune re-
sponse posttransplantation. The clinical benefits of HLA
matching on graft survival as appreciated in large reg-
istries persists in the recent era despite new immuno-
suppressive drugs [33–36]. HLA-matched grafts have an
estimated half-life of 12.4 years, as compared with 8.6
years for HLA-mismatched grafts [35]. MHC class I anti-
gens share immunogenic epitopes, which have been as-
signed to one or more cross-reactive groups (CREG). In
the United Network of Organ Sharing (UNOS) database
the risk of chronic rejection is 62% higher in CREG-
mismatched patients compared with those receiving a
HLA- and CREG-matched kidney [28]. CREG match-
ing is associated with a reduced frequency of late acute
rejection episodes and improved graft function at 2 years
[27]. In our well-matched cohort of renal transplants mis-
matches were not reciprocal to shares due to an increased
homozygosity of donors. Sharing less CREG was corre-
lated with inferior long-term graft survival [22].

Delayed graft function

Brain death and ischemia/reperfusion (I/R) may cul-
minate clinically in delayed graft function and trigger an
inflammatory cascade with up-regulation of cytokines,
adhesion, and HLA-DR molecules [37]. This “injury”
response increases the graft immunogenicity leading to
more early acute rejection episodes. Delayed graft func-
tion, mostly defined as requirement of dialysis during
the first week after transplantation, is associated with a
small increased risk of chronic rejection in the UNOS
database of almost 89000 cadaveric donor transplant re-
cipients [28]. In single center studies the risk of delayed
graft function on long-term outcome depends on the pres-
ence of acute rejection episodes and the requirement of
a minimum follow-up time [38]. Fully recovered delayed
graft function without acute rejection episodes may not
necessarily be detrimental for long-term graft survival. In
our center, delayed graft function is one of the risk factors
of acute rejection and suboptimal function at one year,
but not independently associated with an increased rate
of graft loss from chronic rejection [39].

Recipient age and race

Young age is associated with a relatively high state of
immune responsiveness to alloantigens, as documented
by a more frequent production of lymphocytotoxic anti-
bodies in response to blood transfusions [40]. Young indi-
viduals are also more likely to forget to take immunosup-
pressive medication [41]. In single center studies, young
recipient age appears to be predictive of chronic rejection
and graft loss censored for patient death with a function-
ing graft [7].

Graft survival in blacks is poor as illustrated by a
current projected half-life of 7.2 years compared with
13.3 years in whites [1]. Acute rejection episodes occur
more common in blacks than in white recipients, a finding
that is mainly caused due to differences in immunologic
responsiveness [42]. In several single center studies black
race is a risk factor of chronic rejection [43, 44].

Inadequate immunosuppression

Low dose, low levels of the drug, and variable oral
bioavailability of cyclosporine in the early posttransplant
period have been reported to correlate with higher rates
of chronic rejection [45, 46]. Noncompliance with im-
munosuppressive treatment occurs in about a fourth of
recipients, as assessed by interview, and is associated with
lower graft survival at 5 years after transplantation [47].

PATHOPHYSIOLOGY OF CHRONIC REJECTION

The majority of risk factors identified are related to
the activation status of the immune system and thereby
recognition of foreign antigens of the graft by the
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recipient. The extent of the alloresponse is a balance be-
tween the immunogenicity of the graft, recipient respon-
siveness, and the level of immunosuppression. Recogni-
tion of the foreign graft–derived antigens can evoke an
immune response of the recipient resulting in rejection
of the graft. However, the degree of histoincompatibility
between donor and recipient determines the immuno-
genicity of the grafts as HLA-mismatched grafts fare
worse as compared to matched grafts [34]. T cells can
recognize the foreign HLA antigens either via direct or
indirect pathways. In the direct presentation pathway
donor-derived antigens are presented on donor-derived
professional antigen presenting cells to recipient T cells.
This mainly results in the activation of CD8+ T cells
and thus T-cell effector functions. Alternatively, indi-
rect presentation is mediated by uptake of donor anti-
gens by infiltrating recipient-derived antigen present-
ing cells. Indirect presentation might result in activa-
tion of B-cell responses and thus production of alloanti-
bodies. Indirect antigen presentation has been suggested
to play an important role in the induction of chronic
rejection [48, 49].

Cellular responses

T cells can express either CD4+ or CD8+, having helper
or cytotoxic T-cell characteristics. The CD4+ helper
T cells are thought to be important for initiation of
graft rejection [50]. Depletion of T cells using antithy-
mocyte globulin, antibodies direct against CD3 or the
interleukin-2 (IL-2) receptor a (IL-2Ra) chain are fre-
quently used as treatment for acute rejection episodes
[51]. Furthermore, blockade of various costimulation
pathways have been used in order to find therapeutic
strategies to prevent both acute and chronic rejection.

If the antigen-MHC complex is recognized by naive T
cells, the dendritic cells can activate the T cell by pro-
viding the proper costimulation of CD28 on the T cell
with B7.1 (CD80) or B7.2 (CD86) on the antigen pre-
senting cells [52]. In addition, costimulation via CD40 on
the DC and CD40L (CD154) on the T cells enhances
the response. The presence of certain cytokines in the
environment determine the type of T helper cell (Th)
that develops, Th1 cells secrete IL-2, interferon-c (IFN-
c), and tumor necrosis factor b (TNF-b), whereas Th2
cells produce IL-4, IL-5, IL-6, IL-10, and IL-13 [53]. Th1
responses favor cell-mediated immune response and Th2
cells potentiate humoral immune responses.

Humoral responses

Currently, humoral responses are thought to be in-
volved in the development of chronic rejection. Humoral
responses are induced after binding of antigen to the
B-cell receptor on immature B cells and subsequent ac-
tivation of several intracellular signaling pathways and

internalization of the antigen. The activated signaling
pathways determine the fate of the B cell [54]. The in-
ternalized antigen is processed and presented as a pep-
tide in the context of MHC class II, interaction of this
MHC complex with the appropriate T-cell receptor in
the presence of CD40-CD40L and B7h-ICOS (inducible
costimulator) costimulation results in activation of the
B-cell and antibody production. Costimulation by CD40-
CD40L and B7h-ICOS are crucial for generation of hu-
moral responses [54, 55].

Blockade of B7h-ICOS [56], CD40-CD40L [57], and
B7-CD28 [52, 58] costimulation have been used as ther-
apeutic strategies to prevent acute and chronic rejection
in experimental models. Most attention has been paid to
the effects of costimulation blockade in acute rejection
models and the analysis focused on cellular responses.
A limited number of reports present the effect of cos-
timulation blockade on chronic rejection and even less
on humoral responses. Various reports have suggested
that costimulation via CD40-CD40L is not required for
the development of chronic rejection in specific models,
in these models alloantibody responses seem less impor-
tant. In nonhuman primates blockade of CD40L did not
affect the production of antidonor antibodies [57]. In con-
trast, blockade of B7h-ICOS costimulation demonstrated
a key role for this pathway in chronic rejection, in addi-
tion decreased antidonor alloantibodies have been found
upon ICOS blockade [56]. On the other hand, late treat-
ment of the recipients with CTLA4-Ig to block CD28-
B7 interactions also attenuated antibody responses. Both
CTLA4-Ig and blocking, anti-CD28 monoclonal antibod-
ies prevent the development of chronic rejection [58]. In
conclusion, both CD28-B7 and ICOS-B7h seem to be in-
volved in the pathogenesis of chronic rejection, and both
are involved in antibody production, supporting a role
for humoral responses in chronic rejection.

Experimental models have frequently been used to
study the relative contributions of different cell types
to the development of chronic rejection. Various defi-
cient or knockout mice that lack components of the im-
mune system were used as recipients of mismatched al-
lografts. Nude mice, that lack functional T cells, or RAG-
1–deficient mice (recombinase activating gene deficiency
resulting in lack of functional B and T cells due to lack
of Ig or T-cell receptor rearrangements) have been used
as recipients of mismatched aortic allografts in the pres-
ence of CD4+ or CD8+ T cells. Mice that received CD4+

T cells developed vascular lesions similar to chronic re-
jection, whereas mice that received CD8+ T cells did not
develop these lesions [59]. CD8+ T cells and B cells seem
to be the effector cells, but they are dependent on the
CD4+ T-cell responses. The role of antibodies in chronic
transplant rejection has been studied in more detail us-
ing similar animal models. In a mice cardiac allograft
model, using SCID mice (lack B- and T-cell responses) as
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recipients almost no lesions developed [60]. Injection of
antidonor antibodies into the SCID recipient resulted in
development of obstructive coronary lesions. In another
model, using IGH knockout mice (lack functional B cells)
as recipients of cardiac allografts in the presence of neu-
tralizing anti-CD4 antibodies, no chronic rejection was
present in contrast to wild-type animals treated with anti-
CD4 antibodies [61]. Furthermore, in an aortic allograft
model with RAG-2–deficient recipient mice it has been
shown that donor-specific cellular and humoral responses
are required for both the initiation and perpetuation of
chronic rejection [60]. Altogether these data implicate
that humoral responses are important in chronic rejec-
tion.

C4d and chronic rejection

In recent years most attention has been paid clini-
cally to C4d deposits in tissue as in situ marker for hu-
moral rejection. C4d is one of the degradation products
of complement component C4, that remains covalently
linked to the tissue after activation. C4d is thought to
be more stably deposited as compared to IgG and there-
fore frequently used as a marker for humoral rejection.
In renal allograft biopsies with chronic rejection C4d de-
posits have been found in the peritubular capillaries of
34% of late allograft biopsies [62]. The percentage of
C4d-positive biopsies is even higher if only biopsies with
chronic rejection were included (61%) and in the sub-
group of patients with transplant glomerulopathy (53%)
[62]. The presence of C4d deposits in the allograft biop-
sies seems to be an independent predictor of kidney graft
dysfunction [63]. C4d deposits in peritubular capillaries
of biopsies taken within the first 6 months posttrans-
plantation were associated with inferior graft survival at
1 year. This risk was reduced if the treatment of the
recipient with mycophenolate mofetil was started 2 to
4 hours before transplantation [64]. Recently, not only
C4d deposits in the peritubular capillaries were studies
but specific antibodies became available that allowed the
study of glomerular C4d deposits in paraffin-embedded
material [65]. Glomerular C4d deposits have been found
in about 16% of renal allograft biopsies [65]. In biopsies
with transplant glomerulopathy the majority of patients
have glomerular C4d deposits [66].

Antibodies against HLA antigens

The high percentage of C4d-positive biopsies with
CAN supports a role for humoral immune responses in
the pathogenesis of chronic rejection. Humoral responses
can be directed against HLA or non-HLA antigens of
the graft. Most attention has been paid to antibodies di-
rected against donor HLA antigens. The presence of C4d
in biopsies correlated well with anti-donor HLA antibod-

ies, 88% of patients with C4d deposits had antibodies in
their circulation [67].

After kidney transplantation anti-HLA antibodies
have been found in 12–60% of recipients. Anti-HLA an-
tibodies have also been found in recipients of heart, lung,
liver and cornea transplants [29]. Renal transplant recipi-
ents with anti-HLA antibodies were 5–6 times more likely
to develop CR and lose their grafts [32]. De novo forma-
tion of antibodies after transplantation is correlated with
the poorest graft outcome, although the presence of an-
tibodies does not necessarily cause immediate graft loss
[29, 68]. The presence of pretransplant antibodies against
both HLA class I and II antigens is most detrimental to
graft survival, whereas the presence of only antibodies
against class I or II antigens does not affect renal graft
survival [30]. The majority (77%) of acute and chronic
rejection episodes occur in the absence of circulating anti-
HLA antibodies measured at the time of rejection [69].
However, almost all patients with chronic rejection have
had circulating antibodies against HLA antigens, but not
necessarily donor HLA antigens [31]. At the time of rejec-
tion, antibodies might be not detectable in the circulation
due to binding to the inflamed tissue [70], underscoring
the need for multiple measurements in time.

Antibodies against non-HLA antigens

Since not all patients with chronic rejection have cir-
culation antibodies directed against donor-HLA anti-
gens and the majority of biopsies showed C4d deposits,
antibodies against other, non-HLA antigens might be
involved. Antibodies against non-HLA antigens can be
reactive with endothelial cells but also with other nonen-
dothelial cell antigens. In clinical transplantation little is
known about the production of antibodies reactive with
non-HLA antigens upon kidney transplantation. Anti-
bodies reactive with a nonclassic HLA class I molecule on
microvascular endothelial cells in the kidney have been
identified in patients with irreversible rejection [71]. Fur-
thermore, nonspecified antibodies binding to endothelial
cells have been found in renal transplant recipients [72].
Antiendothelial cell antibodies were more frequently
found in patients with at least one failed graft as com-
pared to stable renal transplant recipients. Not only kid-
ney transplant recipients produce antibodies against non-
HLA antigens these can also be found in recipients of
cardiac or liver grafts [60].

In experimental models for chronic renal allograft re-
jection antibodies directed against glomerular antigens
have been described [60, 73]. In these rats antibodies
reactive with mesangial cells and GBM antigens were
found. The antigens involved were identified and include
the heparan sulfate proteoglycan perlecan and the a1
chain of collagen type VI in association with the a5 chain
of collagen type IV [73]. Alterations in especially the
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heparan sulfate proteoglycans in the GBM can result
in the development of GBM lesions and the induction
of proteinuria [74]. This suggests that these antibodies
are involved in the development of the lesions found in
patients with transplant glomerulopathy. In fact, in pa-
tients with transplant glomerulopathy glomerular C4d
deposits were found [66] and these patients have circu-
lating antibodies reactive with GBM antigens [75]. Anti-
body responses were only detected in patients with TGP
but not in patients without glomerular abnormalities.
The presence of antibodies correlated with the number
of rejection episodes. Detailed characterization of the
antibody responses in these patients revealed that the
GBM-heparan sulfate proteoglycan agrin was recognized
[75]. Antibodies reactive with the renal tubular basement
membranes have previously been described in patients
with chronic rejection [76]. This suggests that antibod-
ies reactive with renal basement membranes play a role
in the development of chronic rejection. However, large-
scale studies will be necessary to determine the specificity
and predictive value of these antibodies.

PROGRESSION FACTORS

Renal function

Beyond certain time points progression of chronic
transplant dysfunction is largely dependent on nonim-
mune factors (Table 1). Loss of renal mass with sub-
sequent glomerular hypertension and proteinuria and
further loss of nephrons play a role as a progression factor
that controls the rate of decline to end-stage renal failure
[77]. The importance of this type of injury is illustrated by
a lower graft survival rate of transplants that come from
female, black, very young, or very old donors compared
with transplants from donors supposed to be endowed
with a larger nephron mass [78]. However, other studies
could not confirm an effect on graft outcome of donor
kidney size or the ratio of donor versus recipient body
surface area as surrogate marker of renal mass [79].

The relation between renal dysfunction and subse-
quent chronic rejection or graft failure has been reported
in several ways. The relation between renal dysfunction
at this time point and late failure might be confounded
by other risk factors like donor age and previous acute
rejection episodes [22]. Analysis of the course of renal
function is another way to assess the relationship between
renal dysfunction and graft failure. A negative slope of
glomerular filtration rate between 6 and 12 months is sig-
nificantly associated with the occurrence of chronic rejec-
tion after 12 months [80]. Recently, changes in allograft
function were systematically investigated. The best pre-
dictor of failure, a 30% decline in inverse creatinine, was
superior to baseline function and independent of other
risk factors of chronic rejection [6].

Donor age

Increasing donor age is associated with atherosclero-
sis, glomerulosclerosis, tubular atrophy, and interstitial
fibrosis and is associated with decreased long-term graft
function [81]. In addition to increased graft loss, the use
of older donors also results in increased cardiovascular
events and thereby decreases patient survival [82]. In
single center studies, old donor age is an independent
risk factor of chronic rejection [44]. Kidneys from donors
older than 55 years have an increased risk of chronic re-
jection in the UNOS database, but also of nonrejection
failure [28]. These findings are ascribed to the reduced
renal mass, leading to glomerular hypertension, or more
recently to accelerated senescence [83]. Furthermore, it
has been suggested that the higher rate of acute rejection
episodes in kidneys from older donors reflects increased
immunogenicity [84]. With the reduction of acute rejec-
tion episodes and progression of transplant care, the im-
pact of donor age on outcome has been attenuated [85].

Donor source

The higher graft survival of living donor kidneys com-
pared with cadaveric kidneys is often used to illustrate
the importance of early injury. Recipients of unrelated
living donors have better long-term survival than recipi-
ents from cadaveric donors with better degrees of HLA
matching [86]. However, differences in graft survival are
evident only in recipients undergoing acute rejection
episodes [87, 88]. In a group of 588 recipients (326 cadav-
eric and 260 living) treated for acute rejection episodes
a 10-year censored graft survival of 45% was recorded
compared to 91% in recipients without acute rejection
episode. Graft loss from chronic rejection occurred in
30% of cadaveric and 16% of living donors [87]. These
data indicate that the benefit of living related transplan-
tation results from the fact that a living related graft pro-
gresses from acute to chronic rejection at a slower rate
than a cadaveric graft and that the higher rate of survival
is attributed to the fact that kidneys from living donors
are uniformly healthy [88].

Hypertension

Graft survival is inferior in hypertensive patients but
the relation has been shown to be confounded by renal
function [89]. Both high systolic and diastolic blood pres-
sures at 1 year posttransplant are significant predictors
of long-term graft survival [90]. The rate of deterioration
of graft function is associated with diastolic blood pres-
sure. Blood pressure after acute rejection episode cor-
relates with graft survival, in contrast to patients without
acute rejection episodes [91]. Hypertension may promote
atherosclerosis within renal blood vessels or glomerular
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hypertension, which can increase glomerular permeabil-
ity and consequently enhance protein trafficking.

Proteinuria

Proteinuria at 1 year posttransplantation is an impor-
tant risk factor for chronic rejection [7, 92]. Transplant
patients with persistent proteinuria of more than 2 g per
day have a high risk of subsequent deterioration of renal
function. Patients on cyclosporine and persistent protein-
uria of greater than 1 g/day as a result of chronic rejection
have a compromised 5-year graft survival [93]. Resorp-
tion of excessive amounts of protein by proximal tubular
epithelial cells leads to release of inflammatory mediators
from tubular cells and subsequent interstitial injury.

Hyperlipidemia

Hyperlipidemia is a common problem as elevated
cholesterol levels are present in 70% to 80% and hyper-
trygliceridemia in 30% to 40% of transplant patients [94].
Hypertrygliceridemia is correlated with graft dysfunc-
tion in some studies [94]. Hypercholesterolemia post-
transplantation is also associated with graft dysfunction
or death-censored graft loss [95]. Hypercholesterolemia
is an independent risk factor for kidney graft loss from
chronic rejection in male patients with previous acute
rejection episode [96]. Outcome may be adversely af-
fected through the accumulation of oxidized low-density
lipoprotein (LDL) in the renal interstitium and the de-
velopment of fibrosis [97].

Smoking

Smoking is a risk factor for renal outcome as docu-
mented in several studies [98]. A recent report revealed
that 24% of transplant recipients smoke cigarettes at time
of transplantation, of which 90% continues this habit af-
ter transplantation. Smokers had a relative risk on death-
censored graft loss of 2.3, which was independent of
acute rejection episodes [99]. Chronic cigarette smok-
ing reduces renal plasma flow, probably by increasing the
synthesis of the vasoconstrictor endothelin and by reduc-
ing the generation of the vasodilatory endothelial nitric
oxide.

TISSUE RESPONSE TO INJURY

Donor brain death and I/R injury

On the long-term, the survival of renal allografts de-
rived from brain death donors was less compared to living
donors [100]. In clinical transplantations, a substantial
amount of the kidney grafts are derived from brain death
donors underscoring the need to understand this phe-
nomenon. Brain death results in activation of various
inflammatory mediators in renal tissue, resulting in an

influx of mononuclear cells [101]. In these kidneys more
damage is present than in living donors and brain death
results in an up-regulation of selectins on the endothe-
lium, leading to increased leukocyte adhesion and thus
increased inflammation [102].

Not only donor brain death results in increased inflam-
mation, also prolonged ischemia times in transplantation
of cadaveric organs contributes to decreased function of
these grafts compared to living (related) donation. Pro-
longed ischemia leads to the increased occurrence of
delayed graft function, which again can be a predictor
for worse long-term graft survival [39]. Reperfusion with
oxygenated blood is important in restoring the substrates
for oxidative metabolism but this can result in the pro-
duction of free oxygen radicals and thus oxidative stress
[103]. This triggers endothelial cells and leukocytes and
results in the up-regulation of adhesion molecules and cy-
tokine production contributing to renal damage and in-
flammation [103].

The damage of renal I/R injury is independent of the
immunologic background [104] although the immune sys-
tem becomes activated during this process. During is-
chemia, IL-12 and IL-18 are up-regulated in response
to damage, resulting in the up-regulation of INF-c and
subsequently in increased expression of MHC class I and
class II antigens [105]. The endothelium becomes acti-
vated and costimulatory molecules are up-regulated fa-
cilitating T cell interactions possibly leading to rejection
[100].

Acute rejection episodes

Acute rejection episodes can be important in the pro-
gression to chronic rejection. In a rat kidney retrans-
plantation model, early retransplantation in syngeneic re-
cipients prevented progression to chronic rejection, but
later retransplantation resulted in progression to chronic
rejection in the absence of ongoing immune responses
[106]. This suggests that not all factors in the process of
chronic rejection are dependent on alloantigen-mediated
immune responses. In clinical transplantation, persistent
or repeated subclinical acute rejection seemed to con-
tribute to the development of CAN [26]. So persistent
immune activation contributes to the ongoing process of
deterioration of graft function.

Acute rejection episodes are most detrimental if the
organs are derived from donors over 50 years of age [84].
Graft survival of older donor kidneys is lower compared
to organs from younger donors, this effect is more pro-
nounced if the grafts that experienced one or more acute
rejection episodes [84].

Donor age

Donor age is one of the most important progression
factors for the development of chronic rejection [107].
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The effect of acute rejection episodes on older donor kid-
neys suggests that these kidneys have more difficulties to
cope with the repair of damage. In addition, the increased
occurrence of delayed graft function in older donor kid-
neys [108] also suggests that the graft has more problems
in overcoming I/R damage.

CELLULAR AGING IN AGING AND
SENESCENCE

Cells in senescence, induced by telomere shortening
or other unknown stimuli, become arrested in the G1

phase of the cell cycle and are resistant to apoptotic
and other external signals. The cells remain metaboli-
cally active and are called to be in replicative or cellular
senescence [109]. Cells in senescence show alterations
in shape, and expression of extracellular matrix metal-
loproteinases and cytoskeletal collagens [110]. Cells in
senescence have several characteristics, including short-
ened telomeres, increased expression of specific tumor
suppressor genes, and increased activity of senescence
associated b-galactosidase (SA b-gal) [111, 112]. The cell
cycle inhibitors p16 and p21 are frequently studied in re-
lation to cellular senescence and both are thought to be
involved in the G1 arrest observed [113].

Senescence and aging

The lesions observed in aging kidneys are very similar
to the lesions observed in kidneys with CAN; therefore, it
was proposed that the underlying process might be sim-
ilar [83]. In the aging kidney telomere shortening was
predominantly found in the cortex and much less in the
medulla [114]. In addition, p16 expression in the kidney
correlates with age [115].

In an animal study using rats of different ages, no short-
ening of telomeres was observed during aging. However,
the expression of p16 increased and SA b-gal and lipo-
fuscin (an aging pigment) accumulated in the tubular ep-
ithelial cells, thus indicating that shortening of telomeres
is not required for the induction of the senescent phe-
notype [116, 117]. However, if specifically measured, the
percentage of short telomeres was significantly increase
with ageing compared to young organs in all organs ex-
cept the brain [117]. The finding of normal length telom-
eres in kidneys that have phenotypic characteristics of
senescence suggests that shortening of telomeres is not
essential. However, it could still be that other changes in
telomere structure are present. The cell cycle regulator
p21 is also described in tubular epithelial cells of aging rats
[118], supporting the development of senescent tubular
epithelial cells in aging.

Senescence in renal transplantation

In human renal allograft biopsies with CAN an in-
creased expression of p21 was found. P21 protein was

present in glomerular, tubular, and interstitial cells, but
only the expression in tubular epithelial cells correlated
with the number of acute rejection episodes [119]. Fur-
thermore, in biopsies with CAN, they also found in-
creased expression of p16 and p27, another member of
the Kip family [120]. The tubular expression of p16 and
p27 in normal kidneys was dependent on age. SA b-gal
staining of kidneys with CAN was associated with the
severity of CAN [121]. In addition the age of the donor
was a major determinant in the occurrence of replicative
senescence [121].

We used the Fisher (F344) to Lewis (Lew) rat model of
chronic renal allograft rejection to determine telomere
shortening, p21 and p16 expression and SA b-gal accu-
mulation [122]. Telomere length analysis of both F344 to
Lew and Lew to F344 renal allografts revealed shortening
of telomeres. More detailed analysis revealed shorten-
ing of telomeres after 45 minutes of warm ischemia. This
supports the hypothesis that oxidative stress is responsi-
ble for telomere shortening [123, 124]. Furthermore, we
found a transiently increased expression of p21 at day 7,
and p16 accumulation in tubular epithelial cells starting
at day 7 both in rats with or without chronic rejection.
However, SA b-gal expression was exclusively observed
in kidneys with chronic rejection.

Based on the data of Melk et al [116] and our re-
sults [122] we conclude that telomere shortening is not
required and not sufficient to induce replicative senes-
cence in rat kidneys. More important, these papers to-
gether show that senescence is present both in ageing rat
kidneys and in kidneys allografts with chronic rejection,
which supports the hypothesis that chronic rejection is a
representation of accelerated aging [83]. However, both
in aging rats and in grafts with chronic rejection the char-
acteristics of senescence were only found in the tubu-
lointerstitial compartment. Therefore, we believe that
senescence is most important in the development of the
tubulointerstitial lesions, including tubular atrophy, but
that additional mechanisms are required for the devel-
opment of specific glomerular and vascular lesions that
are observed in grafts with chronic rejection.

PREVENTION AND TREATMENT

Prevention

Because of the lack of effective treatment, efforts
should be made to prevent chronic rejection. Measures
are directed to the risk factors of chronic rejection, in-
cluding sensitization, histoincompatibility, acute rejec-
tion episodes, and insufficient immunosuppression. Allo-
cation strategies should primarily aim for HLA-matched
transplants that have an established superior long-term
outcome compared to HLA-mismatched grafts [34, 125].
In the case of mismatches, functional matching should
aim for the selection of donors with HLA molecules
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nonstimulatory to both the cellular and humoral immune
system of the recipient [126]. In this way, sensitization due
to a transplant could be prevented and facilitate future
transplants in the case of graft loss. Besides optimal im-
munosuppression, prevention of premature graft failure
requires a multifactorial approach aiming at early and
tight control of blood pressure, proteinuria, lipids, glu-
cose, weight, and smoking [127, 128].

Monitoring

Protocol biopsies and immune monitoring of both the
cellular and humoral response are potential tools to de-
tect subclinical rejection activity beyond the early phase
after transplantation. Protocol biopsies and treatment of
subclinical acute rejection episodes with corticosteroids
may lead to better outcome [26]. Gene expression
profiling of acute rejection biopsies showed increased
expression of immunoglobulins supporting a role for an-
tibodies in the pathogenesis of acute and chronic rejec-
tion [129]. The enzyme-linked immunosorbent spot assay
(ELISPOT) of peripheral blood lymphocyte reactivity to
HLA peptides or donor-stimulator cells might be a useful
method of measuring indirect alloreactivity [130]. Early
detection of in situ C4d deposition and circulating donor-
specific antibodies may lead to timely specific strategies
for humoral rejection [131].

Immunosuppressive treatment

The introduction of cyclosporine Neoral, tacrolimus,
and mycophenolate mofetil in the 1990s has been associ-
ated with a reduction in the incidence of acute rejection
episodes during the first year after transplantation [132,
133]. Unfortunately, longer follow-up of these agents did
not reveal much effect on long-term graft survival or the
prevalence of chronic rejection [24, 132]. Although some
papers suggest a slightly improved long-term graft sur-
vival [1], improved graft survival by the prevention of
late acute rejection episodes has been observed in pa-
tients who stay on mycophenolate for a prolonged period
of time [134, 135]. Rapamycine (sirolimus) may have the
ability to reduce the rates of chronic rejection by further
reduction of the incidence of acute rejection episodes and
inhibition of smooth muscle cell proliferation [136]. Man-
ifestations of chronic rejection are also inhibited by the
novel antiproliferative macrolide everolimus (a sirolimus
derivative) in preclinical models [137]. Furthermore, the
use of sirolimus-eluting stents in coronary arteries sup-
ports the vasculoprotective effects of sirolimus [138].

Calcineurin inhibitor nephrotoxicity induced by both
cyclosporine A and tacrolimus still results in loss of graft
function [139]. Rapamycin and mycophenolate mofetil
are immunosuppressive drugs that are not nephrotoxic
[139]. Prevention of calcineurin inhibitor nephrotoxicity
by using decreased dosing or switching to nonnephrotoxic

immunosuppressive drugs might contribute to increase
long-term graft survival [140]. In addition everolimus
seems promising as immunosuppressive therapy in pa-
tients with calcineurin inhibitor nephrotoxicity [139, 141].

There is no established treatment for chronic rejec-
tion, mainly because of the presence of irreversible dam-
age at time of diagnosis. Nevertheless, in early phases of
the disease or in those patients in whom inadequate im-
munosuppression is the precipitating cause, a change in
the immunosuppressive regimen may stabilize or even
reverse part of the renal dysfunction. However, random-
ized trials regarding the treatment of chronic rejection
have not been reported. If there is evidence of coexist-
ing acute rejection episode, a beneficial response of a
trial with methylprednisolone has been observed [142].
In some recipients on cyclosporine (Neoral), conversion
to tacrolimus resulted in sustained improvement of renal
function [143]. Adding mycophenolate mofetil to main-
tenance immunosuppression provided no clear benefit in
a small retrospective study [144]. Recently, a large mul-
ticenter randomized trial was conducted to study the ef-
fect of mycophenolate mofetil in comparison to azathio-
prine in cadaveric kidney transplantation [145]. In this
study there was no difference in the occurrence of rejec-
tion episodes and since the costs for mycophenolate were
15 times higher they concluded that azathioprine should
be the first choice [145]. In contrast, others have reported
that treatment with mycophenolate mofetil reduced the
risk of chronic renal allograft failure [146]. Biopsy-proven
CAN at 1 year posttransplantation was decreased in
patients treated with mycophenolate mofetil compared
to azathioprine treatment [147] and graft survival at
3 years posttransplantation seemed better if mycopheno-
late mofetil was used [36]. Furthermore, reduction and
possible withdrawal of calcineurin inhibitors with either
the addition or continuation of mycophenolate mofetil
slowed the rate of loss of renal function in patients with
CAN [148]. Reduction of antidonor antibody synthesis
by the combination of mycophenolate and tacrolimus is
a novel promising approach for the treatment of humoral
chronic rejection [149].

Nonimmune interventions

Nonimmunologic measures to halt or retard progres-
sion of chronic rejections have focused on aggressive con-
trol of blood pressure, proteinuria, and hyperlipidemia.
Treatment of hypertension reduces progression to renal
failure in native kidney diseases but this effect has not
yet been proven in renal transplantation. In patients on
calcineurin inhibitors dose reduction or withdrawal may
improve blood pressure [148]. Calcium entry blockers,
beta blockers and angiotensin-converting enzyme (ACE)
inhibitors have similar antihypertensive efficacy after re-
nal transplantation and are often used in combination to
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achieve adequate control. Significant reduction of pro-
teinuria has been reported as a beneficial effect of ACE
inhibitors and angiotensin II receptor antagonists in clin-
ical transplantation [150, 151]. These drugs have the po-
tential to prevent the progression of chronic failure. In a
small group of transplant recipients the slope of the curve
of inverse serum creatinine and time decreased when they
were subjected to a low-protein diet of 0.6 g/kg [152]. It is
not yet clear whether treatment of hyperlipidemia slows
the progression of chronic transplant dysfunction, but in
the presence of concomitant risk factors of cardiovascu-
lar disease an increasing number of patients are being
treated with statins [153].

CONCLUSION

Chronic rejection remains an important problem upon
renal transplantation, not at least since its pathogen-
esis is still not completely understood and thus treat-
ment is difficult. Chronic rejection seems to be an ac-
cumulation of damage obtained in both the early post-
transplant period and later in time. In addition, the re-
nal quality to start with is an important factor and in-
jury by repeated (sub)clinical rejection episodes seems
a major contributor. Risk factor analysis revealed that
besides acute rejection episodes, recipient age, race, sen-
sitization, HLA matching, pretransplantation injury, and
immunosuppression determine outcome. Graft survival
is furthermore limited by progression factors, including
renal dysfunction, donor age, donor source, hyperten-
sion, proteinuria, hyperlipidemia, and smoking. In the
pathophysiology immune responses appear crucial, es-
pecially humoral responses against both HLA and non-
HLA, tissue-specific antigens seem involved. Moreover,
the tubulointerstitial lesions present during CAN might
be a consequence of accelerated aging. In order to find ap-
propriate therapeutic strategies for prevention and treat-
ment of chronic rejection more detailed insights in the
pathogenesis are indispensable.

Reprint requests to Dr. C van Kooten, Department of Nephrology,
C3P, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden,
The Netherlands.
E-mail: kooten@lumc.nl
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