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a  b  s  t  r  a  c  t

Starch  extruded  in  the  presence  of  a  plasticizer  results  in  a material  called  thermoplastic  starch  (TPS).
TPS mixed  with  poly(butylene  adipate  co-terephthalate)  (PBAT),  soybean  oil  (SO),  and  surfactant  may
result  in  films  with  improved  mechanical  properties  due  to greater  hydrophobicity  and  compatibility
among  the  polymers.  This  study  characterized  films  produced  from  blends  containing  65%  TPS  and  35%
PBAT  with  SO  added  as  compatibilizer.  The  Tween  80  was  added  to prevention  of phase  separation.  The
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elongation  and  resistance  were  greater  in the  films  with  SO.  The  infrared  spectra  confirmed  an  increase  in
ester  groups  bonded  to  the PBAT  and  the  presence  of  groups  bonded  to  the  starch  ring,  indicating  TPS–SO
and PBAT–SO  interactions.  The  micrographs  suggest  that  the films  with  SO  were  more  homogenous.  Thus,
SO is considered  to  be  a good  compatibilizer  for  blends  of  TPS  and  PBAT.

© 2012 Elsevier Ltd. Open access under the Elsevier OA license.

ipids

. Introduction

The extrusion of starch in the presence of plasticizers, such as
lycerol, results in a material known as thermoplastic starch (TPS).
PS may  be used to produce low-cost biodegradable materials and
o minimize environmental impact, as starch is biodegradable and

 renewable resource (Thunwall, Kuthanová, Boldizar, & Rigdahl,
008).

The addition of a plasticizer increases the flexibility of the
lms because its presence among the starch chains reduces their

ntermolecular interactions by separating them, thereby increas-
ng their mobility (Mali, Sakanaka, Yamashita, & Grossmann, 2005).
owever, the plasticizers as glycerol or sorbitol are hydrophilic
ompounds, which increase sensibility of the films and their insta-
ility under different conditions of relative humidity (RH) (Müller,
amashita, & Laurindo, 2008). According to Talja, Helén, Roos, and

ouppila (2008),  at RH above 60%, there may  be a substitution of
he starch–starch and starch–glycerol interactions by starch–water
nd glycerol-water interactions, or there may  be an increase in
he crystallinity of the films, which may  cause a decrease in their
longation.

The design of films from blends of starch with other biodegrad-

ble polymers has been studied as an option for obtaining starch
lms with better mechanical and barrier properties (Avérous &
oquillon, 2004; Avérous & Fringant, 2001; Brandelero, Grossmann,

∗ Corresponding author. Tel.: +55 047 3531 3700; fax: +55 047 3531 3701.
E-mail address: renataherrera@yahoo.com.br (R.P.H. Brandelero).
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& Yamashita, 2011; Costa, Scapim, Brandelero, Grossmann, &
Yamashita, 2008; Olivato, Grossmann, Yamashita, Eiras, & Pessan,
2011; Ren, Fu, Ren, & Yuan, 2009; Sarazin, Li, Orts, & Favis, 2008).
PBAT is a biodegradable polyester that features mechanical proper-
ties similar to those of polyethylene films (BASF, 2009), and several
authors have studied the formation of blends of this polymer with
starch (Avérous & Fringant, 2001; Brandelero et al., 2011; Costa
et al., 2008; Ren et al., 2009).

Ren et al. (2009) researched the properties of elongation and
rupture resistance in TPS/PBAT films. The authors found that
increasing the amount of polyester increased the elongation and
decreased the resistance. The best results were obtained from films
with high concentrations of maleic anhydride added as a compati-
bilizer, given that starch and PBAT are not very compatible.

According to Kalambur and Rizvi (2006),  starch films with other,
less polar biodegradable polymers display immiscibility among the
polymeric phases, evidenced by the losses in the mechanical prop-
erties. The extrusion of starch in combination with substances that
interact with the hydroxyls of the starch, resulting in covalent
bonds among the polymers of the blend, may  increase the interfa-
cial adhesion between the polymer chains, in addition to increasing
the elongation and rupture resistance of the films (Kalambur &
Rizvi, 2006; Raquez et al., 2008; Ren et al., 2009).

The mechanical properties and water vapor impermeability
of films prepared with TPS/PBAT blends are inferior to those of

conventional films, with greater losses in these properties as the
amount of starch increases. Additionally, the RH alters these param-
eters, which limits the applications of these films in the food
industry (Avérous & Fringant, 2001; Costa et al., 2008; Ren et al.,

https://core.ac.uk/display/82447869?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
dx.doi.org/10.1016/j.carbpol.2012.07.015
http://www.sciencedirect.com/science/journal/01448617
http://www.elsevier.com/locate/carbpol
mailto:renataherrera@yahoo.com.br
dx.doi.org/10.1016/j.carbpol.2012.07.015
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Table  1
Formulations of the films prepared from blends of TPS + PBAT with the addition of soybean oil (SO) and/or Tween 80 (TW).

Formulations Starch (g/100 g
TPS + PBAT)

PBAT (g/100 g
ATP + PBAT)

Glycerol (g/100 g
starch)

Soybean oil
(g/100 g starch)

Tween 80 (g/100 g
starch)

FB (TPS/PBAT) 65 35 30 0 0
FBSO0.5 65 35 24.5 0.5 0
FBSO1.0 65 35 24.0 1.0 0
FBSO0.5TW0.5 65 35 24.0 0.5 0.5
FBSO1.0TW0.5 65 35 23.5 1.0 0.5
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FBSO1.0TW1.0 65 35
FTPS 100 0 

009). The addition of hydrophobic substances, such as oils and
atty acids, may  decrease the hygroscopicity due to the increase in
he hydrophobic portions in the film, thereby decreasing the water
apor permeability and generally causing a loss in tensile resis-
ance and elongation (García, Martino, & Zaritzky, 2000; Kester &
ennema, 1986).

Bourtoom and Chinnan (2009) and Han, Seo, Park, Kim, and Lee
2006) studied the addition of lipids to starch films and found that
he films became less resistant and less flexible as the amount
f lipids increased. According to the authors, the presence of
hese substances caused phase separation, decreasing the struc-
ural integrity of the films. Debeaufort and Voilley (1995) and
erez-Gago and Krochta (2001) showed that the addition of lipids
long with surfactants improves the mechanical properties and
ater vapor impermeability of the films due to the decrease in the

ize of the fat globules, resulting in the more compact structure,
revention of phase separation and increase in hydrophobicity.

Soybean oil (SO) is an abundant and renewable raw material
hat features a mixture of triglycerides in its chemical composi-
ion, containing saturated, monounsaturated, and polyunsaturated
atty acids. Oleic acid (22.98%), linolenic acid (7.23%), and linoleic
cid (54.51%) are the major components (Hammond, Johnson,
ang, Su, & White, 2005). Ethoxylated sorbitan monooleate, called

ween 80 (TW), is a non-ionic surfactant that displays a high
ydrophilic/lipophilic balance (>10) and is applied as a surfactant

n oil-in-water systems (Rodrígues, Osés, Ziani, & Maté, 2006).
The objective of this study was to characterize films produced

rom blends of TPS and PBAT with added SO and Tween 80 and to
est the effect of these substances on the microstructure, mechan-
cal properties and water absorption capacity of these films under
ifferent moisture conditions.

. Materials and methods

.1. Materials

Starch from cassava (Manihot esculenta) was  provided by Inde-
il  Ind. Com. Ltda. (Brazil). The polymer poly(butylene adipate

o-terephthalate) (PBAT) was provided by the company BASF
Brazil) under the commercial name of Ecoflex® F BX 7011. Com-

ercial glycerol (Dinâmica, Brazil) was used as a plasticizer, and
thoxylated sorbitan monooleate (Synth, Brazil) under the com-
ercial name Tween 80 (TW) was used as a surfactant. Tween 80

as a hydrophilic/lipophilic balance (HLB) of 15.0 and a density of
.07 g/cm3. Refined commercial SO from the Bunge Alimentos S.A.
efinery was acquired at the local market.

.2. Preparation of the films by extrusion blow molding
The films were processed in a single-screw pilot extruder
BGM, model EL-25, Brazil) by a balloon-blowing system that was
quipped with a 250-mm-diameter screw, a circular array with

 cooling ring for the formation of 150–300-mm-diameter films,
23.5 0.5 1.0
23 1.0 1.0
30 0 0

a winder, and a granulator. The screw speed was maintained at
30 rpm, and the temperature program used was  120 ◦C for the three
cannon areas, 120 ◦C for the pellet-forming array, and 125 ◦C in zone
1 and 130 ◦C in zone 2 of the circular array of the balloon.

TPS/PBAT films were processed that contained SO and Tween
80 in the amounts described in Table 1. Films with 100% TPS (FTPS)
and films with 65% TPS + 35% PBAT without surfactant and/or SO
(FB-TPS/PBAT) were prepared as controls. The amount of glycerol
added varied according to processability criteria.

The starch, glycerol, Tween 80, and SO were homogenized
and extruded for the production of TPS pellets. The TPS pellets
were mixed with the PBAT pellets and were extruded, produc-
ing TPS/PBAT pellets that were again extruded to obtain a more
homogenous material. The films were produced by the balloon-
blowing extrusion system, wound, and stored in laminated paper
packages until the time of analysis. The starch films were produced
from the mixture of the starch and the glycerol, and three cycles of
pelleting were performed to standardize the shear suffered by the
starch.

2.3. Determination of the density and the thickness

The thickness of the films was  determined using a manual
micrometer (0.001-mm resolution, Mitutoyo, Brazil). The final
thickness was  determined by the arithmetic mean of 18 random
measurements covering the area of the film. The density was
determined in 2.5 cm × 2.5 cm square specimens that were first
conditioned for 30 days in a desiccator with calcium chloride; after
this period, the specimens were weighed to calculate the density,
which was the arithmetic mean of 18 measurements.

2.4. Mechanical properties

The mechanical properties that were evaluated followed the D
882–88 of the ASTM standard (ASTM, 1996). The maximum tensile
strength and the elongation at rupture were analyzed. The tensile
strength properties were determined using a Stable Micro Systems
texture analyzer, model TA.TX2i (England). The specimens were cut
to dimensions of 100 mm in length and 10 mm in width and were
conditioned in desiccators containing saturated saline solutions
that provided RH levels of 32.8%, 52.9%, and 90% until equilibrium
was  reached. The distance between the clamps was  50 mm,  and
the traction speed was  8.3 mm/min. The tests were performed in a
room maintained at 25 ◦C, with five replicates.

2.5. Fourier transform infrared analysis (FT-IR)

The infrared analysis was  performed on a Bomen FT-100 FT-IR
spectrophotometer (Canada) with an attachment to read the total

reflectance and equipped with a diamond/ZnSe crystal with triple
reflection; the apparatus belonged to the Chemical Laboratory of
the State University of Maringá. The spectral region investigated
was  4000–400 cm−1, with a spectral resolution of 4 cm−1. The
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Table 2
Thickness, density, and moisture of the films under different relative humidity (RH) equilibrium conditions.

Film Thickness (�m)  Density (g/cm3) RH (%) Moisture (g
water/g solids)

FTPS 334a 2.24a 33 0.10 ± 0.001ab

53 0.22 ± 0.073a

90 0.67 ± 0.005a

FB(TPS/PBAT) 200b 1.34bc 33 0.16 ± 0.002a

53 0.21 ± 0.010ab

90 0.59 ± 0.020b

FBSO0.5 221b 0.91d 33 0.09 ± 0.010b

53 0.14 ± 0.005ab

90 0.37 ± 0.010e

FBSO1.0 237b 1.26c 33 0.10 ± 0.010ab

53 0.12 ± 0.050b

90 0.41 ± 0.005cde

FBSO0.5TW0.5 119b 1.18cd 33 0.08 ± 0.050b

53 0.13 ± 0.010ab

90 0.46 ± 0.010c

FBSO1.0TW0.5 145b 1.20cd 33 0.12 ± 0.009ab

53 0.17 ± 0.002ab

90 0.45 ± 0.008cd

FBSO0.5TW1.0 173b 1.12cd 33 0.09 ± 0.010b

53 0.13 ± 0.010ab

90 0.41 ± 0.030cde

FBSO1.0TW1.0 118b 1.56b 33 0.10 ± 0.004ab

53 0.14 ± 0.008ab
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amples were conditioned for 15 days in a desiccator containing
2O5. The spectra were obtained in triplicate.

.6. Determination of the water sorption

Film specimens were produced measuring 25 mm × 25 mm  and
tored in a desiccator containing calcium chloride for 30 days.
ubsequently, the specimens were weighed and conditioned in a
ealed container containing saturated saline solutions at RH val-
es of 32.8%, 52.4%, and 90%. The specimens were weighed until
hree equal consecutive values were obtained, and the moisture
as determined in a stove at 105 ◦C.

.7. Scanning electronic microscopy

The micrographs were obtained on a JEOS-LSMP 100 scanning
lectronic microscope (Japan) of the Microscopy Laboratory of the
tate University of Londrina. The films were kept in desiccators with
2O5 for 15 days and were frozen in liquid nitrogen, fragmented,
nd fixed on aluminum stubs. The stubs were covered with a layer of
old (Sputter Coater Balzers – SCD-50, Baltec Austria) (40–50 nm)  at
5 ◦C under a pressure of 2.6 × 107 Pa for 180 s. The covered samples
ere analyzed at 15 kV. The magnification of the observation was

00×.

. Results and discussion

The blends of TPS/PBAT were able to produce films by blow

xtrusion. Blends of TPS/PBAT added with OS or OS + TW showed
ood processability, unlike the blends of TPS and PBAT added only
ith TW do not flowed continuously through the extruder barrel,

nd it was not possible to produce the film.
59 0.42 ± 0.010

 the same column in the same column indicate a difference at 0.05 level by Tukey’s

3.1. Moisture, thickness, and density

The values of the moisture of the films under the RH condi-
tions studied are presented in Table 2. The films with PBAT in the
mixture displayed the lowest moisture at 53% and 90% RH and dif-
fered significantly (p < 0.05) from the films with 100% starch (F100)
(Table 2). All of the films exhibited increased moisture with increas-
ing RH, and the greatest values were obtained for the films with
100% starch.

The films containing SO or SO + TW displayed lower moisture
under high RH conditions (90%) in comparison to the films without
SO, indicating that the oil reduced the hygroscopicity of the films.
There was  no difference between the moisture levels of the films
with SO and those with SO + TW,  indicating that the observed effect
is due to the presence of the lipid.

The films containing SO and/or TW displayed lower thick-
ness and density values than the control films (FTPS and
FBTPS/PBAT), with the exception of the FBSO1.0TW1.0 formula-
tion, which displayed a higher density than FB (TPS/PBAT). The
addition of SO and/or TW led to a lower density and thickness
of the films, likely due to the increase in interfacial adhesion
among the polymers of the blend, resulting in more compact
films.

3.2. Mechanical properties

Films with 100% TPS showed relative low elongation at break
(32%) and low tensile strength (0.55 MPa) (Figs. 1 and 2) and
these values are similar to those found by Pelissari, Grossmann,
Yamashita, and Pineda (2009) that worked with of cassava starch
films with 18% (w/w)  of glycerol produced by blow extrusion. Mali,

Grossmann, García, Martion, and Zaritzky (2006) reported strain at
break of corn, cassava and yam films (28%, 46% and 25%, respec-
tively) produced by casting with 40% of glycerol. The source starch
influences the mechanical properties due the different amounts
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Fig. 1. The elongation (%) of starch films (F100) and starch + PBAT films without (F0) and with the addition of SO (F1 and F2) or with SO + TW (F3, F4, F5, and F6). Films
followed by the same letter under the same RH condition displayed similar behavior (Tukey’s test at 5%).

Fig. 2. The maximum rupture resistance of starch films (F100) and starch + PBAT films without (F0) and with the addition of SO (F1 and F2) or with SO + TW (F3, F4, F5, and
F6).  Films followed by the same letter under the same RH condition displayed similar behavior (Tukey’s test at 5%).



1 drate

a
g
s

s
t
p
c
c
i
m

s
(
fi
a
t
c
S
T
t
v
o
f
p
m
S

w
f
a

(
T
d
S
d
f
t
v
s
b
z
c

i
d
n
9
o

m
s
t
T
a
t
R
S
w
a
o
l

t
t

456 R.P.H. Brandelero et al. / Carbohy

mylase and amylopectin. The films produced in this work showed
ood elasticity due the higher amylopectin content in cassava
tarch than others starches.

Films with 35% of PBAT presented higher tensile strength and
imilar elongation than100% TPS films (Figs. 1 and 2). According
o Avérous and Fringant (2001) the mechanical properties of films
roduced from TPS/PBAT blends are depend of the polyester con-
entration, and according to Ren et al. (2009) the higher the starch
ontent in the blend, the higher the amount of starch not compat-
ble with PBAT, which produces starch agglomerates in the film

icrostructure and reduces the strength and elongation.
Films of TPS/PBAT with 65% of TPS added with 1% SO (FBSO1.0)

howed higher elongation (Fig. 1) and higher tensile strength
Fig. 2) than films without SO. The mechanical properties of FBSO1.0
lm (65% TPS) were similar to the films with 50% TPS obtained in

 previous work (Brandelero, Yamashita, & Grossmann, 2010), so
he SO permitted to incorporate more TPS in the blend without
hanging their mechanical characteristics. Comparing films with
O (FBSO0.5 and FBSO1.0) and films with SO + TW,  the addition of
W does not cause significant changes in the mechanical proper-
ies of the films. Films containing 0.5% SO showed higher elongation
alues at 53% RH when a surfactant was added. Similar results were
btained by Rodrígues et al. (2006) in starch films with Tween sur-
actant. According to the authors, the surfactant may  facilitate the
resence of glycerol between the starch chains, increasing their
obility, being the effect verified only when the minor amounts of

O was used.
The effect of the soy oil on the mechanical properties of the films

as probably due to the interaction of the carboxylic groups of the
atty acids present in the oil with the rings of the PBAT and starch,
s is indicated in the infrared spectra (Fig. 3).

The films with 100% TPS (FTPS) and the films with 65% TPS
FBTPS/PBAT) displayed increases in elongation with increasing RH.
he maximum values were obtained under 53% RH, and the values
ecreased under conditions of high RH (>90% RH). The films with
O and SO + TW displayed similar elongation values under the con-
itions of 53% RH and 90% RH, as shown in Fig. 1. Talja et al. (2008)
ound a similar behavior in starch films. According to these authors,
he increase in elongation reaches its maximum at 60% RH, and the
alues subsequently decrease with increasing RH due to the sub-
titution of starch–starch and plasticizer–starch bonds for weaker
onds, such as starch–water, or due to the increase in the crystalline
ones of the films, which would decrease the mobility of the starch
hains.

The films with added SO or SO + TW displayed a notable increase
n the elongation with humidity values greater than 33% (Fig. 1),
isplayed elongation values between 200% and 350%, and there was
o significant difference between the values obtained at 53% RH and
0% RH, indicating that the high RH associated with the presence
f SO favored the elongation of the films.

Under humidity conditions greater than 33% RH, the films for-
ulated with SO displayed an increase in elongation of at least

even-fold compared with the films with 100% starch (FTPS) and
he films with 65% starch without the addition of SO or TW (FB-
PS/PBAT), as shown in Fig. 1. These results suggest that SO acted
s a plasticizer, increasing the mobility of polymers chains and that
here was synergy between the presence of SO and the increase in
H. The increase in the elongation of the films with the addition of
O cannot be related to only with the effect of the water, as there
as no difference in moisture between the conditions of 33% RH

nd 53% RH (Table 2), and the films with 100% or 65% starch with-
ut the addition of SO or SO + TW displayed the highest moisture

evels and lowest elongation values.

Bourtoom and Chinnan (2009) observed an effect contrary to
hat observed in this study. These authors found a decrease in
he elongation of starch films with added lipids. According to the
 Polymers 90 (2012) 1452– 1460

authors, the films displayed reduced structural integrity due to
phase separation. In contrast, Pelissari et al. (2009) observed an
increase in elongation with the presence of oregano oil in starch
films. According to the authors, the effect is related to the plasticiz-
ing action of the oil.

The maximum rupture resistance varied with the RH and with
the formulation (Fig. 2). Comparing films with 100% TPS and 65%
TPS under 53% RH, it is evident the increase of tensile strength in the
films with addition of PBAT, from 0.55 MPa  (FTPS) to 4.58 MPa  (FB-
TPS/PBAT). The PBAT is a hydrophobic polymer and the PBAT films
show good mechanical properties, explain the better mechanical
properties of the films elaborated with TPS/PBAT blends under all
RH conditions tested.

The films with 100% (FTPS) and 65% (FB-TPS/PBAT0) of TPS with-
out the addition of SO or SO + TW displayed less resistance than
the films that contained these substances for all of the RH condi-
tions that were evaluated. The results for the resistance displayed
in Fig. 2 indicate that the presence of SO reinforced the structure of
the films.

Under conditions of low RH (33% RH) the films containing SO
displayed high tensile strength and high rigidity. These films dis-
played moderate resistance and high flexibility at RH higher than
33%, and the most resistant films under these conditions were those
with 65% or 100% starch without the addition of SO or SO + TW.  At
53% RH, the films containing SO with and without surfactant were
the most resistant, of which the films with 0.5% SO (FBSO0.5) were
the most resistant (6.41 MPa). At higher RH levels, the values of the
maximum rupture resistance decreased for all of the films (Fig. 2).
That effect is due to the plasticizing action of the water on the starch
chains; other authors have shown this behavior in starch films (Mali
et al., 2006; Talja et al., 2008).

The reduction in resistance with the addition of TW may  be
related to interactions between the starch and the surfactant. Chen,
Kuo, and Lai (2009) and Brandelero et al. (2010) showed a reduction
in the resistance and elongation of starch films with the addition of
surfactants. According to the authors, surfactants are amphiphilic
molecules and their hydrophilic groups may  form complexes or
may  interact with the starch, decreasing the amylose–amylose
interactions, whereas the hydrophobic portion (groups with high
molecular mass) of the surfactant may  form aggregates between
the starch chains, impeding the structural formation of the film.

Many authors have shown a reduction in the mechanical resis-
tance of the films when lipids are added (Bourtoom & Chinnan,
2009; Han et al., 2006; Liu, Kerry, & Kerry, 2006; Pelissari et al.,
2009; Shellhammer & Krochta, 1997). In the present study, the
resistance increased in the presence of SO, which is contrary to
the behavior observed in films with 100% starch with lipids added.

Comparing the results for the mechanical resistance of the films
analyzed in this study with those obtained by Ren et al. (2009),
who  found an increase in resistance when a compatibilizer was
added to the starch/PBAT blends, it can be suggested that SO acted
as a compatibilizer between the starch and the PBAT. According to
these authors, the increase in resistance is due to the increase in the
interfacial adhesion among the polymers in the presence of a com-
patibilizer. The compatibilizing action of SO may  be confirmed by
the micrographs (Fig. 4), which showed greater structural integrity
in the films with the lipids added when compared with the films
without SO (FBTPS/PBAT).

3.3. Infrared spectra
The spectra obtained for the films prepared with 100% TPS
(FTPS), with 100% PBAT, and with SO are shown in Fig. 3B, and the
spectra of the films prepared with TPS/PBAT blends are shown in
Fig. 3A.
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ig. 3. The infrared spectra obtained for starch + PBAT films without (F0) and with 

Kijchavengkul, Auras, and Rubino (2008) characterized the
nfrared spectra for PBAT films. Furthermore, Fang, Fowler,
omkinson, and Hill (2002) and Zullo and Iannace (2009) obtained
he spectra for potato starch and cornstarch films. The spectra
btained by these authors were similar to those presented in Fig. 3B,
hich were obtained in this study.

The spectrum determined for the PBAT film was characterized
y the presence of a peak in the region of 1708 cm−1 due to the
tretching of the carbonyl groups (C O), a peak in the region of
269 cm−1 due to stretching of the C O groups that represented
he ester bonds, and stretching between 1020 and 880 cm−1 due
o the presence of the substituted benzene ring. The starch films
FTPS) were characterized by the presence of a long band in the
egion of 3300 cm−1 due to the vibrational stretching of the inter-
nd intra-chain bonded hydroxyls; in the 2968 cm−1 region, a band
as present due to stretching in the C H groups bonded to the

ing, along with a peak in the 1151–931 cm−1 region due to the
ibrational stretching of the C O groups, with peaks at 1080 and

020 cm−1that are characteristic of the stretching of the C O group
onded to the glucose ring.

In the spectra for SO (Fig. 3B), a low-intensity peak was observed
t 3012 cm−1 due to the stretching of the CH present in alkene;
dition of SO and/or TW (A) and for the films with 100% starch or PBAT and SO (B).

peaks in the 2925 cm−1 and 2856 cm−1 regions were related to the
stretching of the CH2 of alkane groups; peaks in the 1742 cm−1

region were related to C O and those in the 1110 cm−1 region
were related to the C O group, both of which were related to ester
bonds; peaks in the 1467 cm−1 region were related to the defor-
mation of the CH2 group of alkane; and a peak in the 720 cm−1

region was related to the asymmetric angular deformation of CH2
groups, which is characteristic of long-chain hydrocarbons (Fig. 3B).
The spectrum of Tween 80 displayed a long band in the 2914 cm−1

region related to the CH groups, along with peaks in the 1795 cm−1

and 1095 cm−1 regions that were related to C O and C O ester
bonds, respectively, and peaks in the 904 cm−1 region that were
related to the CO group.

Observing Fig. 3A, it is evident that the spectra of the films con-
taining 65% starch with or without the addition of SO and/or TW
were similar with respect to the peaks and bands. However, when
SO or SO + TW was added, the films displayed more intense bands
and peaks in the 1740–1710 cm−1, 1270 cm−1, and 1020 cm−1
regions, and the FOS0.5 films displayed the greatest intensity of
peaks and bands in these spectral regions (Fig. 3A). Films with a
greater amount of TW (FBSO0.5TW1.0 and FBSO1.0TW1.0) com-
pared with the other films did not display a band at 3340 cm−1,
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The films with SO displayed more intense peaks in the region
hat indicates the presence of C O and C O groups of ester bonds in
n of SO or TW (F0), with the addition of SO (F1 and F2), and with the addition of SO
the PBAT (1710 and 1270) and in the region that shows the presence
of C O groups bonded to the starch ring (1020). Thus, the presence
of SO in the films led to an increase in these bonds. The carbonyl
groups of the ester bonds may  interact with hydroxyl starch groups
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hrough weak interactions known as hydrogen bridges; hydropho-
ic interactions may  also occur between the oil and the polyester
ue to the similarity in polarity, and the results indicate that there
as an increase in C O groups bonded to the glucose ring. There-

ore, under these conditions, a greater interfacial adhesion between
he polymers of the blend was obtained, likely due to the summa-
ion of the effects of various weak interactions.

Substances capable of increasing the adhesion between the
olymer chains and thus to promote an improvement in the prop-
rties of the films are known as compatibilizers (Kalambur & Rizvi,
006; Ren et al., 2009). These substances are added to allow a reac-
ion of the starch with other chemical groups through a process
nown as reactive extrusion. Raquez et al. (2008) showed that TPS
lms extruded in the presence of maleic anhydride displayed a peak

n the infrared spectrum at 1720 cm−1, which is characteristic of the
O group. According to the authors, this finding indicates the pres-

nce of an ester bond between the starch and the compatibilizer.
nder the temperature and pressure conditions at the extrusion
rocess, it is unlikely that a covalent bond occurred between SO
nd the polymers of the blend. The observed effect on the mechan-
cal properties was likely due to the presence of weak interactions
etween SO and the starch and between SO and the PBAT.

.4. Scanning electronic microscopy

The micrographs of the films are shown in Fig. 4. It was  evident
hat the films with 100% starch have a compact and homogenous
tructure. With the addition of PBAT, there was  damage to the
icrostructure, and the films were considered to be less homoge-

ous (Fig. 4F BTPS/PBAT), possibly due to the incompatibility
etween the starch (hydrophilic phase) and the PBAT (hydrophobic
hase). The films with only SO added (FBSO0.5 and FBSO1.0) dis-
layed more compact structures (Fig. 4), which is reminiscent of
he starch films (FTPS), but without the presence of microfissures
FBSO0.5). These results suggest that the effect of SO is related not
nly to the increase in the hydrophobic portions of the film array
ut also to the improved compatibility among the polymers in the
resence of oil, as shown in the infrared spectra.

A loss of structural integrity was observed with the addition
f TW in the films with 0.5% SO (FBSO0.5TW0.5, FBSO1.0TW0.5,
BSO0.5TW1.0, and FBSO1.0TW1.0) due to the presence of agglom-
rations, especially in film F4. Similar to this study, Chen et al.
2009) observed the presence of agglomerations in micrographs of
assava starch films with the addition of sucrose esters. The struc-
ure became less compact after increasing the amount of TW to
% (FBSO0.5TW1.0 and FBSO1.0TW1.0) due to the increase in the
mount of agglomerations that are dispersed in the film array.

Brandelero et al. (2010) found agglomerations in TPS/PBAT films
ith the addition of 2% Tween. More agglomerations were present

n films with a higher surfactant/starch ratio (T/S). Comparing these
esults with those found in this study, it can be confirmed that the
ize of the agglomerations depends on the ratio between the con-
entrations of starch and surfactant and that the agglomerations
ill be smaller and more dispersed as the T/S ratio decreases.

. Conclusions

Starch + PBAT films containing a large amount of starch with
dded soybean oil exhibit good mechanical properties, and increas-
ng humidity improves the performance of the films. Films with oil
xhibit less moisture. The micrographs and infrared spectroscopy

evealed an increase in the compatibility among the polymers. The
resence of lipids improves processability by extrusion and allows
or a reduction in the amount of glycerol, resulting in a marked
xpansion of the balloon and films that can be wound. The soybean
Polymers 90 (2012) 1452– 1460 1459

oil acted as a good compatibilizer between TPS and PBAT, which
improved the other characteristics of the film. The compatibiliz-
ing effect of soybean oil between starch and PBAT is related to the
increase in groups that are characteristic of ester bonds and groups
that are bonded to the glucose ring. Therefore, lipids are chemically
associated with the polymers of the blends, increasing the interac-
tions among the polymeric fractions and improving the polymeric
mixture by increasing the interfacial adhesion of the polymers.
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