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Abstract

In this paper, we study mixed variational-like inclusions and Jη-proximal operator equations in Banach
spaces. It is established that mixed variational-like inclusions in real Banach spaces are equivalent to fixed
point problems. We also establish a relationship between mixed variational-like inclusions and Jη-proximal
operator equations. This equivalence is used to suggest an iterative algorithm for solving Jη-proximal
operator equations.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Variational inequalities and variational inclusions are among the most interesting and impor-
tant mathematical problems and have been studied intensively in the past years since they have
wide applications in mechanics, physics, optimization and control, nonlinear programming, eco-
nomics and transportation equilibrium and engineering sciences, etc. (see, for example, [1–7]).
The resolvent operator techniques for solving variational inequalities and variational inclusions
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are interesting and important. The resolvent operator technique is used to establish an equiv-
alence between mixed variational inequalities and resolvent equations. The resolvent equation
technique is used to develop powerful and efficient numerical techniques for solving mixed vari-
ational inequalities and related optimization problems.

In this paper, we generalize the resolvent equations by introducing J η-proximal operator
equations in Banach spaces. A relationship between mixed variational-like inclusions and J η-
proximal operator equations is established. We propose an iterative algorithm for computing the
approximate solutions which converge to the exact solutions of J η-proximal operator equations.

2. Formulation and preliminaries

Throughout the paper, we assume that E is a real Banach space with its norm ‖ · ‖, E� is the
topological dual of E, d is the metric induced by the norm ‖ · ‖, CB(E) (respectively, 2E) is the
family of all nonempty closed and bounded subsets (respectively, all nonempty subsets) of E,
D(·,·) is the Hausdörff metric on CB(E) defined by

D(A,B) = max
{

sup
x∈A

d(x,B), sup
y∈B

d(A,y)
}
,

where d(x,B) = infy∈B d(x, y) and d(A,y) = infx∈A d(x, y). We also assume that 〈·,·〉 is the
duality pairing between E� and E and F :E → 2E�

is the normalized duality mapping defined
by

F(x) = {
f ∈ E�: 〈x,f 〉 = ‖x‖‖f ‖ and ‖f ‖ = ‖x‖}, for all x ∈ E.

Definition 2.1. Let A :E → CB(E�) be a set-valued mapping, J :E → E�, η :E × E → E, and
g :E → E be three single-valued mappings.

(1) A is said to be λA-Lipschitz continuous with Lipschitz constant λA � 0 if

H(Ax,Ay) � λA‖x − y‖, for all x, y ∈ E;
(2) J is said to be η-strongly accretive with constant α > 0 if〈

Jx − Jy,η(x, y)
〉
� α‖x − y‖2, for all x, y ∈ E;

(3) g is said to be k-strongly accretive (k ∈ (0,1)) if for any x, y ∈ E, there exists j (x − y) ∈
F(x − y) such that〈

j (x − y), gx − gy
〉
� k‖x − y‖2;

(4) η is said to be Lipschitz continuous with constant τ > 0 if∥∥η(x, y)
∥∥ � τ‖x − y‖, for all x, y ∈ E,

where F :E → 2E�
is normalized duality mapping.

Definition 2.2. Let η :E × E → E and ϕ :E → R ∪ {+∞}. A vector w� ∈ E� is called an
η-subgradient of ϕ at x ∈ domϕ if〈

w�,η(y, x)
〉
� ϕ(y) − ϕ(x), for all y ∈ E.
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Each ϕ can be associated with the following η-subdifferential mapping ∂nϕ defined by

∂ηϕ(x) =
{ {w� ∈ E�: 〈w�,η(y, x)〉 � ϕ(y) − ϕ(x), for all y ∈ E}, x ∈ domϕ,

∅, x /∈ domϕ.

Definition 2.3. Let E be a Banach space with the dual space E�, ϕ :E → R ∪{+∞} be a proper,
η-subdifferentiable (may not be convex) functional, η :E × E → E and J :E → E� be the map-
pings. If for any given point x� ∈ E� and ρ > 0, there is a unique point x ∈ E satisfying〈

Jx − x�, η(y, x)
〉 + ρϕ(y) − ρϕ(x) � 0, for all y ∈ E,

then the mapping x� → x, denoted by J
∂ηϕ
ρ (x�) is said to be J η-proximal mapping of ϕ. We

have x� − Jx ∈ ρ∂ηϕ(x), it follows that

J
∂ηϕ
ρ (x�) = (J + ρ∂ηϕ)−1(x�).

Definition 2.4. A functional f :E × E → R ∪ {+∞} is said to be 0-diagonally quasi-concave
(in short 0-DQCV) in y, if for any finite subset {x1, . . . , xn} ⊂ E and for any y = ∑n

i=1 λixi with
λi � 0 and

∑n
i=1 λi = 1,

min
1�i�n

f (xi, y) � 0.

Given single-valued mappings P,f,h :E → E�, g :E → E, η :E × E → E and multivalued
mappings M,S,T :E → CB(E�). Let ϕ :E → R ∪ {+∞} is a lower-semicontinuous functional
on E (may not be convex) satisfying g(x) ∩ dom(∂ηϕ) = ϕ, where ∂ηϕ is η-subdifferential of ϕ.
We consider the following mixed variational-like inclusion (MVLIP): Find x ∈ E, u ∈ M(x),
v ∈ S(x) and w ∈ T (x) such that g(x) ∈ dom(∂ηϕ) and

(MVLIP)
〈
P(u) − (

f (v) − h(w)
)
, η

(
y,g(x)

)〉
� ϕ

(
g(x)

) − φ(y), for all y ∈ E.

(2.1)

We present some special cases of (MVLIP) to show that (MVLIP) is more general and unify-
ing one.

Special cases.

(i) If E = H is a Hilbert space and P ≡ 0, f,g,h,M are identity mappings and S and T are
single-valued mappings, then (MVLIP) reduces to the problem of finding x ∈ H such that
x ∈ domϕ and

〈
T (x) − S(x), η(y, x)

〉
� ϕ(x) − ϕ(y), for all y ∈ H. (2.2)

It is considered and studied by Lee, Ansari and Yao [8].
(ii) If E = H is a Hilbert space and ϕ ≡ δk , the indicator function of the closed convex set in H

defined by

δk(x) =
{

0, x ∈ K,
+∞, otherwise,
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f,h,g and M are identity mappings and η(y, x) = y − P(x), then (MVLIP) becomes the
problem of finding x ∈ K , v ∈ S(x), w ∈ T (x) such that〈

P(x) − (v − w),y − P(x)
〉
� 0, for all y ∈ K. (2.3)

Such a problem is considered and studied by Verma [11].
It is now clear that for a suitable choices of the maps involved in the formulation of (MVLIP),

we can derive many known variational inclusion considered and studied in the literature.

Theorem 2.1. [1] Let E be a reflexive Banach space with the dual space E� and ϕ :E →
R ∪ {+∞} be a lower-semicontinuous, η-subdifferentiable, proper functional which may not
be convex. Let J :E → E� be η-strongly accretive with constant α > 0. Let η :E × E → E be
Lipschitz continuous with constant τ > 0 such that η(x, y) = −η(y, x), for all x, y ∈ E and for
any x ∈ E, the function h(y, x) = 〈x� − Jx,η(y, x)〉 is 0-DQCV in y. Then for any ρ > 0, and
for any x� ∈ E�, there exists a unique x ∈ E such that〈

Jx − x�, η(y, x)
〉 + ρϕ(y) − ρϕ(x) � 0, for all y ∈ E.

That is, x = J
∂ηϕ
ρ (x�) and so the J η-proximal mapping of ϕ is well defined and τ/α-Lipschitz

continuous.

The following example shows the existence of the mapping η :E × E → E satisfying all
conditions in Theorem 2.1.

Example 2.1. Let E = R be real line and η :R × R → R be defined by

η(x, y) =
{2x − 2y if |xy| < 1/4,

8|xy|(x − y) if 1/4 � |xy| < 1/2,

4(x − y) if 1/2 � |xy|.
Then it is easy to see that:

(1) 〈η(x, y), x − y〉 � 2|x − y|2 for all x, y ∈ R, i.e. η is 2-strongly monotone;
(2) η(x, y) = −η(y, x) for all x, y ∈ R;
(3) |η(x, y)| � 4|x − y| for all x, y ∈ R, i.e. η is 4-Lipschitz continuous;
(4) for any x ∈ R, the function h(y,u) = 〈x − u,η(y,u)〉 = (x − u)η(y,u) is 0-DQCV in y.

If it is false, then there exists a finite set {y1, . . . , yn} and u0 = ∑n
i=1 λiyi with λi � 0 and∑n

i=1 λi = 1 such that for each i = 1, . . . , n,

0 < h(yi, u0) =
{

(x − u0)(2yi − 2u0) if |yiu0| < 1/4,

(x − u0)8|yiu0|(yi − u0) if 1/4 � |yiu0| < 1/2,

4(x − u0)(yi − u0) if 1/2 � |yiu0|.
It follows that (x − u0)(2yi − 2u0) > 0 for each i = 1,2, . . . , n, and hence we have

0 <

n∑
i=1

λi(x − u0)(2yi − 2u0) = (x − u0)(2u0 − 2u0) = 0,

which is not possible. Hence h(y,u) is 0-DQCV in y. Therefore, η satisfies all assumptions in
Theorem 2.1.
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Proposition 2.1. [10] Let E be a real Banach space and F :E → 2E�
be the normalized duality

mapping. Then, for any x, y ∈ E,

‖x + y‖2 � ‖x‖2 + 2
〈
y, j (x + y)

〉
, for all j (x + y) ∈ F(x + y).

In connection with (MVLIP), we consider the following J η-proximal operator equation prob-
lem (J η-POEP):

(J η-POEP)

{
Find z ∈ E�, x ∈ E, u ∈ M(x), v ∈ S(x) and w ∈ T (x) such that

[P(u) − (f (v) − h(w))] + ρ−1R
∂ηϕ
ρ (z) = 0,

(2.4)

where ρ > 0 is a constant, R
∂ηϕ
ρ = I − J [J ∂ηϕ

ρ (z)], where J [J ∂ηϕ
ρ (z)] = [J (J

∂ηϕ
ρ )](z) and I is

the identity mapping. Equation (2.4) is called J η-proximal operator equation.

3. An iterative algorithm and convergence result

We mention the following equivalence between (MVLIP) and a fixed point problem which
can be easily proved by using Definition 2.3.

Lemma 3.1. Let (x,u, v,w), where x ∈ E, u ∈ M(x), v ∈ S(x) and w ∈ T (x), is a solution of
(MVLIP) if and only if it is a solution of the following equation:

g(x) = J
∂ηϕ
ρ

{
J
(
g(x)

) − ρ
[
P(u) − (

f (v) − h(w)
)]}

. (3.1)

Now, we show that the (MVLIP) is equivalent to the (J η-POEP).

Lemma 3.2. The (MVLIP) has a solution (x,u, v,w) with x ∈ E, u ∈ M(x), v ∈ S(x) and
w ∈ T (x), if and only if (J η-POEP) has a solution (z, x,u, v,w) with z ∈ E�, x ∈ E, u ∈ M(x),
v ∈ S(x) and w ∈ T (x), where

g(x) = J
∂ηϕ
ρ (z) (3.2)

and

z = J
(
g(x)

) − ρ
[
P(u) − (

f (v) − h(w)
)]

.

Proof. Let (x,u, v,w) be a solution of (MVLIP). Then by Lemma 3.1, it is a solution of the
following equation:

g(x) = J
∂ηϕ
ρ

{
J
(
g(x)

) − ρ
[
P(u) − (

f (v) − h(w)
)]}

using the fact R
∂ηϕ
ρ = (I − J [J ∂ηϕ

ρ ]), and Eq. (3.1), we have

R
∂ηϕ
ρ

[
J
(
g(x)

) − ρ
[
P(u) − (

f (v) − h(w)
)]]

= J
(
g(x)

) − ρ
[
P(u) − (

f (v) − h(w)
)]

− J
[
J

∂ηϕ
ρ

{
J
(
g(x)

) − ρ
[
P(u) − (

f (v) − h(w)
)]}]

= J
(
g(x)

) − ρ
[
P(u) − (

f (v) − h(w)
)] − J

(
g(x)

)
= −ρ

[
P(u) − (

f (v) − h(w)
)]
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which implies that[
P(u) − (

f (v) − h(w)
)] + ρ−1R

∂ηϕ
ρ (z) = 0

with z = J (g(x)) − ρ[P(u) − (f (v) − h(w))], i.e. (z, u, v,w) is a solution of (J η-POEP).
Conversely, let (z, x,u, v,w) be a solution of (J η-POEP), then

ρ
[
P(u) − (

f (v) − h(w)
)] = −R

∂ηϕ
ρ (z) = J

[
J

∂ηϕ
ρ (z)

] − z. (3.3)

From (3.2) and (3.3), we have

ρ
[
P(u) − (

f (v) − h(w)
)] = J

[
J

∂ηϕ
ρ

{
J
(
g(x)

) − ρ
[
P(u) − (

f (v) − h(w)
)]}]

− J
(
g(x)

) + ρ
[
P(u) − (

f (v) − h(w)
)]

which implies that

J
(
g(x)

) = J
[
J

∂ηϕ
ρ

{
J
(
g(x)

) − ρ
[
P(u) − (

f (v) − h(w)
)]}]

and thus

g(x) = J
∂ηϕ
ρ

{
J
(
g(x)

) − ρ
[
P(u) − (

f (v) − h(w)
)]}

,

i.e. (x,u, v,w) is a solution of (MVLIP). �
Alternative proof. Let

z = J
(
g(x)

) − ρ
[
P(u) − (

f (v) − h(w)
)]

,

then from (3.2), we have

g(x) = J
∂ηϕ
ρ (z)

and

z = J
[
J

∂ηϕ
ρ (z)

] − ρ
[
P(u) − (

f (v) − h(w)
)]

.

By using the fact that J [J ∂ηϕ
ρ (z)] = [J [J ∂ηϕ

ρ ]](z), it follows that[
P(u) − (

f (v) − h(w)
)] + ρ−1R

∂ηϕ
ρ (z) = 0,

the required (J η-POEP). �
We now invoke Lemmas 3.1 and 3.2 to suggest the following iterative algorithm for solving

(J η-POEP).

Algorithm 3.1. For any z0 ∈ E�, x0 ∈ E, u0 ∈ M(x0), v0 ∈ S(x0) and w0 ∈ T (x0), from (3.2),
let

z1 = J
(
g(x0)

) − ρ
[
P(u0) − (

f (v0) − h(w0)
)]

.

Take z1 ∈ E�, x1 ∈ E such that

g(x1) = J
∂ηϕ
ρ (z1).
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Since u0 ∈ M(x0), v0 ∈ S(x0) and w0 ∈ T (x0), by Nadler’s theorem [9], there exists u1 ∈
M(x1), v1 ∈ S(x1) and w1 ∈ T (x1) such that

‖u0 − u1‖ � (1 + 1)D
(
M(x0),M(x1)

)
,

‖v0 − v1‖ � (1 + 1)D
(
S(x0), S(x1)

)
,

‖w0 − w1‖ � (1 + 1)D
(
T (x0), T (x1)

)
,

where D is Hausdörff metric on CB(E). Let

z2 = J
(
g(x1)

) − ρ
[
P(u1) − (

(v1) − h(w1)
)]

and take any x2 ∈ E such that

g(x2) = J
∂ηϕ
ρ (z2).

Continuing the above process inductively, we can obtain the following:
For any z0 ∈ E�, u0 ∈ M(x0), v0 ∈ S(x0) and w0 ∈ T (x0), compute the sequences {zn}, {xn},

{un}, {vn} and {wn} by iterative schemes such that

(i) g(xn) = J
∂ηϕ
ρ (zn); (3.4)

(ii) un ∈ M(xn), ‖un − un+1‖ �
(

1 + 1

n + 1

)
D

(
M(xn),M(xn+1)

); (3.5)

(iii) vn ∈ S(xn), ‖vn − vn+1‖ �
(

1 + 1

n + 1

)
D

(
S(xn), S(xn+1)

); (3.6)

(iv) wn ∈ T (xn), ‖wn − wn+1‖ �
(

1 + 1

n + 1

)
D

(
T (xn), T (xn+1)

); (3.7)

(v) zn+1 = J
(
g(xn)

) − ρ
[
P(un) − (

f (vn) − h(wn)
)]

, n = 0,1,2, . . . , (3.8)

and ρ > 0 is a constant.

Theorem 3.1. Let E be a reflexive Banach space. Let M,S,T :E → CB(E�) be D-Lipschitz con-
tinuous mappings with Lipschitz constants λM , λS and λT , respectively. Let P,f,h :E → E�

be Lipschitz continuous mappings with Lipschitz constants λp , λf and λh, respectively. Let
g :E → E� be Lipschitz continuous with Lipschitz constant λg and k-strongly accretive
(k ∈ (0,1)) and J :E → E� is Lipschitz continuous with Lipschitz constant λj and η-strongly
monotone with constant α > 0. Assume that η :E × E → E be Lipschitz continuous with Lip-
schitz constant τ > 0 such that η(x, y) = −η(y, x) for all x, y ∈ E and for each given x ∈ E,
the function h(y, x) = 〈x� − Jx,η(y, x)〉 is 0-DQCV in y. Let ϕ :E → R ∪ {+∞} is lower-
semicontinuous, η-subdifferentiable, proper functional satisfying g(x) ∈ dom(∂ηϕ). Suppose
there exists a constant ρ > 0 such that the following condition is satisfied:

0 <
[
λjλg + ρ(λP λM + λf λS + λhλT )

]
<

α
√

1 + 2k

τ
(3.9)

then there exist z ∈ E�, x ∈ E, u ∈ M(x), v ∈ S(x) and w ∈ T (x) satisfying (J η-POEP) and the
iterative sequences {zn}, {xn}, {un}, {vn} and {wn} generated by Algorithm 3.1 converge strongly
to z, x, u, v and w, respectively.
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Proof. From Algorithm 3.1, we have

‖zn+1 − zn‖ = ∥∥J
(
g(xn)

) − ρ
[
P(un) − (

f (vn) − h(wn)
)] − [

J
(
g(xn−1)

)
− ρ

[
P(un−1) − (

f (vn−1) − h(wn−1)
)]]∥∥

�
∥∥J

(
g(xn)

) − J
(
g(xn−1)

)∥∥ + ρ
∥∥(

P(un) − (
f (vn) − h(wn)

))
− (

P(un−1) − (
f (vn−1) − h(wn−1)

))∥∥. (3.10)

By the Lipschitz continuity of J and g, we have∥∥J
(
g(xn)

) − J
(
g(xn−1)

)∥∥ � λj

(∥∥g(xn) − g(xn−1)
∥∥)

� λjλg‖xn − xn−1‖. (3.11)

By the Lipschitz continuity of P,f,h and D-Lipschitz continuity of M,S and T , we have∥∥(
P(un) − (

f (vn) − h(wn)
)) − (

P(un−1) − f
(
vn−1 − h(wn−1)

))∥∥
�

∥∥P(un) − P(un−1)
∥∥ + ∥∥f (vn) − f (vn−1)

∥∥ + ∥∥h(wn) − h(wn−1)
∥∥

� λP ‖un − un−1‖ + λf ‖vn − vn−1‖ + λh‖wn − wn−1‖
� λP

(
1 + 1

n

)
D

(
M(xn),M(xn−1)

) + λf

(
1 + 1

n

)
D

(
S(xn), S(xn−1)

)
+ λf

(
1 + 1

n

)
D

(
T (xn), T (xn−1)

)
�

[
λP λM

(
1 + 1

n

)
+ λf λS

(
1 + 1

n

)
+ λf λT

(
1 + 1

n

)]
‖xn − xn−1‖. (3.12)

Combining (3.11)–(3.12) with (3.10), we obtain

‖zn+1 − zn‖ �
[
λjλg + ρ

(
λP λM

(
1 + 1

n

)
+ λf λS

(
1 + 1

n

)
+ λhλT

(
1 + 1

n

))]
× ‖xn − xn−1‖. (3.13)

By using Theorem 2.1 and k-strong accretiveness of g, we have

‖xn − xn−1‖2 = ∥∥J
∂ηϕ
ρ (zn) − J

∂ηϕ
ρ (zn−1) − [

g(xn) − xn − (
g(xn−1) − xn−1

)]∥∥2

�
∥∥J

∂ηϕ
ρ (zn) − J

∂ηϕ
ρ (zn−1)

∥∥2

− 2
〈
g(xn) − xn − (

g(xn−1) − xn−1
)
, j (xn − xn−1)

〉
� τ 2

α2
‖zn − zn−1‖2 − 2k‖xn − xn−1‖2

which implies that

‖xn − xn−1‖2 � (τ/α)2

1 + 2k
‖zn − zn−1‖2 (3.14)

using (3.14), (3.13) becomes

‖zn+1 − zn‖ �
[λjλg + ρ(λP λM(1 + 1

n
) + λf λS(1 + 1

n
) + λhλT (1 + 1

n
))]τ

α
√

(1 + 2k)
‖zn − zn−1‖,

i.e.

‖zn+1 − zn‖ � θn‖zn − zn−1‖, (3.15)
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where

θn = [λjλg + ρ(λP λM(1 + 1
n
) + λf λS(1 + 1

n
) + λhλT (1 + 1

n
))]τ

α
√

(1 + 2k)
.

Letting θ = [λj λg+ρ(λP λM+λf λS+λhλT )]τ
α
√

(1+2k)
, it follows that θn → θ as n → ∞. From (3.9), we

have θ < 1, and consequently {zn} is a Cauchy sequence in E�. Since E� is a Banach space,
there exists z ∈ E� such that zn → z as n → ∞. From (3.14), we know that the sequence {xn} is
also a Cauchy sequence in E. Therefore, there exists x ∈ E such that xn → x as n → ∞. Since
the mappings M,S and T are D-Lipschitz continuous, it follows from (3.5)–(3.7) that {un}, {vn}
and {wn} are also Cauchy sequences, we can assume that un → u, vn → v and wn → w. Since
J,g,P,f and h are continuous and by (v) of Algorithm 3.1, it follows that

zn+1 = J
(
g(xn)

) − ρ
[
P(un) − (

f (vn) − h(wn)
)]

→ z = J
(
g(x)

) − ρ
[
P(u) − (

f (v) − h(w)
)]

(n → ∞), (3.16)

J
∂ηϕ
ρ (zn) = g(xn) → g(x) = J

∂ηϕ
ρ (z) (n → ∞). (3.17)

By (3.16), (3.17), and Lemma 3.2, we have[
P(u) − (

f (v) − h(w)
)] + ρ−1[I − J

(
J

∂ηϕ
ρ (z)

)] = 0.

Finally, we prove that u ∈ M(x), v ∈ S(x) and w ∈ T (x). In fact, since un ∈ M(xn) and

d
(
un,M(x)

)
� max

{
d
(
un,M(x)

)
, sup
q1∈M(x)

d
(
M(xn), q1

)}

� max
{

sup
q2∈M(xn)

d
(
q2,M(x)

)
, sup
q1∈M(x)

d
(
M(xn), q1

)}
= D

(
M(xn),M(x)

)
.

We have

d
(
u,M(x)

)
� ‖u − un‖ + d

(
un,M(x)

)
� ‖u − un‖ + D

(
M(xn),M(x)

)
� ‖u − un‖ + λM‖xn − x‖ → 0 as n → ∞,

which implies that d(u,M(x)) = 0. Since M(x) ∈ CB(E), it follows that u ∈ M(x). Similarly,
we can prove that v ∈ S(x) and w ∈ T (x). By Lemma 3.2, the required result follows. �
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