Fracture mechanics properties of polymorphic polypropylene

Andrea Monami*, Beate Langerb, Jiri Sadilekc, Jaroslav Kucera, Wolfgang Grellmanna

*Polymer Service GmbH Merseburg, Geusaer Str., Geb. 131, 06217 Merseburg, Germany
bUniversity of Applied Sciences Merseburg, Geusaer Str., 06217 Merseburg, Germany
Polymer Institute Brno, Tkalcovska 36/2, 65649 Brno, Czech Republic
dMartin Luther University Halle-Wittenberg, 06099 Halle/Saale, Germany

Abstract

Polypropylene (PP) is a widely used thermoplastic and polymorphic polymer. Three different types of PP were prepared, namely non-nucleated, α- and β-nucleated PP. These materials were pressed using different cooling rates to influence the degree of crystallinity within the materials, which was determined by differential scanning calorimetry (DSC). The materials resistance against stable crack propagation was described by R-curves. The J – Δa curves were determined using the instrumented Charpy impact test (ICIT) to apply single edge notch bending specimens (SENB) with a high loading velocity. The results show not only the influence of the cooling rate on the degree of crystallinity but also a correlation between the degree of crystallinity and the materials resistance against stable crack propagation. The lower the cooling rate of the material is the higher is the degree of crystallinity and the higher seems to be the materials resistance against stable crack propagation.

© 2014 The Authors. Published by Elsevier Ltd.
Selection and peer-review under responsibility of the Norwegian University of Science and Technology (NTNU), Department of Structural Engineering

Keywords: Polypropylene; polymorphism; R-curve; J value

* Corresponding author. Tel.: +49-3461-46 2895; fax: +49-3461-46 2735.
E-mail address: andrea.monami@psm.uni-halle.de
1. Introduction

The structure and morphology of polymeric materials influence the material properties and especially their toughness very strongly. Polypropylene (PP) is a widely used polymorphic polymer, which can crystallize in several crystalline modifications, namely the \(\alpha \), \(\beta \), and \(\gamma \) forms (Phillips and Wolwowitz (1996), Chiu et al. (2004)). All polymorphic forms can coexist and can be changed from one into another (Maier and Calafut (1998)). The \(\alpha \) form is characterized by a helical structure in a monoclinic unit cell and is the thermodynamically most stable and therefore most common modification of PP (Maier and Calafut (1998), Foresta et al. (2001), Chiu et al. (2004)). The \(\beta \) form is more disordered than the \(\alpha \) form and is hexagonal, having non-parallel, crossed lamellae (Maier and Calafut (1998), Marigo et al. (2004a), Marigo et al. (2004b)). The orthorhombic \(\gamma \) modification can be formed under high pressure (Maier and Calafut (1998)) or by using a nucleating agent (Marigo et al. (2004a), Marigo et al. (2004b)).

The crystal form influences the mechanical properties, due to the different physical and mechanical characteristics of the modifications of the crystallites (Marigo et al. (2004a), Marigo et al. (2004b)). PP with predominantly \(\beta \) crystals shows lower elastic modulus and yield strength at a given strain rate, but higher impact strength, strain of break values (Maier and Calafut (1998)), and higher crack toughness (Raab et al. (2001)) than materials with the \(\alpha \) form of PP. It is known for a long time, that PP containing crystals in \(\beta \) forms show a higher toughness and ductility than PP containing only crystals in \(\alpha \) form (Karger-Kocsis (1996)). Raab (Raab et al. (2001)) already showed, that the structure, crystalline modification and the amount of \(\beta \) phase influences the toughness of PP dramatically. With increasing content of \(\beta \) phase, the fracture toughness increases (Raab et al. (2001)).

The crystalline structure can be changed either by nucleating agents or by the cooling rate. Both methods are applied here by using \(\alpha \) or \(\beta \) nucleation agent. Additionally, the pressed PP plates are cooled with different rates. This setting reflects the change of structure due to the cooling gradient within a thicker bulk material along the transverse section.

2. Materials

In this contribution the crystalline structure of isotactic PP (named PP, Mosten EH 801 by Unipetrol) was modified by nucleating agents to attain PP with crystallites in \(\alpha \)-form (\(\alpha \)PP, ADK) and \(\beta \)-form (\(\beta \)PP, NU100 Star). These materials were pressed to plates with length \(l = 170 \) mm, width \(w = 100 \) mm and thickness \(t = 4 \) mm. The plates were cooled with a rate of \(\nu_c = 1 \) K/min, \(\nu_c = 15 \) K/min and quenched, indicated by abbreviation -1, -15 and -Q, respectively. For quenching, the hot plates were transferred from the hot press into a cold press (ca. 15 °C) which was immediately closed and pressure applied. Specimens were prepared via cutting and milling to achieve a smooth surface.

3. Experimental

3.1. Differential scanning calorimetry DSC

The degree of crystallinity \(\chi \) of the materials was determined by differential scanning calorimetry (DSC) type Q100 from TA Instruments. The sample was heated up to 170 °C with a heating rate of 10 K/min, kept at this temperature for 10 min to eliminate previous structures and then cooled with different cooling rates \(\nu_c \). The cooling rates were 0.06 K/min, 0.1 K/min, 0.5 K/min, 1 K/min, 2 K/min, 5 K/min, 10 K/min and 20 K/min. The melting enthalpy of the PP was determined using the thermogram of the second heating and \(\chi \) was calculated by dividing the melting enthalpy by the melting enthalpy of completely crystalline PP \(\Delta H_m = 207 \) J/g (Ton-That et al., 2006). The calculation of the total amount of \(\chi \) of the different PP materials was done here without distinguishing between \(\alpha \)- and \(\beta \)-form.

3.2. Instrumented Charpy impact test ICIT

The materials resistance against stable crack propagation was characterized by fracture mechanics means of R-curve. To create the R-curve, the \(J \) value \(J_f \) was determined and plotted as a function of stable crack length \(\Delta a \).
To determine J_d, the instrumented Charpy impact test (ICIT) with an impact velocity of 1 m/s combined with the stop-block method was used (Grellmann et al. (2012a), Grellman et al. (2012b), Grellman and Seidler (2013)). By ICIT, the load (F)–displacement (f) curves of unnotched and notched specimens (SENB with the initial notch length $a = 4.5$ mm) were recorded and the characteristic loads maximum load F_{max}, the load at the transition from elastic to elastic–plastic material behavior F_{gy} and the corresponding displacements f_{max} and f_{gy} were determined. Based on the F–f curves of the unnotched specimens, the elastic modulus E_d and the yield stress under dynamic load σ_d can be determined (equations (1) and (2)) with support span $s = 40$ mm, thickness $B = 4$ mm and width $W = 10$ mm.

$$E_d = \frac{F_{\text{gy}}s^3}{4BW^3f_{\text{gy}}}$$

$$\sigma_d = \frac{3F_{\text{gy}}s}{2BW^2}$$

By means of the recorded load (F)-displacement (f) curves of the notched specimens the total energy can be splitted into the amount of elastic energy A_{el} and plastic energy A_{pl} and J_d calculated according to equation (3), with η_{el} and η_{pl} being the elastic and plastic part of the geometry function.

$$J_d = \eta_{\text{el}} \frac{A_{\text{el}}}{B(W-a)} + \eta_{\text{pl}} \frac{A_{\text{pl}}}{B(W-a)} \left[1 - \frac{(0.75\eta_{\text{pl}} - 1)\Delta a}{W-a} \right]$$

During the experiment the crack propagation was interrupted by the stop-block at different displacements of the specimens. Thereafter, the specimens were cooled in liquid nitrogen and cracked at a high velocity. The stable crack length Δa was measured by light microscopy. J_d–Δa curves were constructed following the rules of validity (Hale and Ramsteiner (2001), Grellman et al. (2012a)) and fitting them according to equation (4). From their slope the tearing modulus T_j, which describes the resistance to stable crack propagation, was derived (see equation (5)).

$$J_d = C_1\Delta a^{C_2}$$

$$T_j = \frac{dJ}{d\Delta a} \frac{E}{\sigma_d^2}$$

Additionally, the fracture surfaces were investigated by scanning electron microscopy (SEM) to characterize the deformation mechanics.

4. Results

4.1. Degree of crystallinity χ

The degree of crystallinity χ determined by DSC of the different PP-materials depends on the cooling rate of samples as shown in Fig. 1. The crystallinity is high at very low cooling rates like 0.06 K/min and decreases with rising cooling rates, as expected. With increasing ν_c, the time to form crystallites and their growth decreases, leading to a decrease of the amount of the crystalline phase. The total degree of crystallinity within the materials PP, αPP and βPP differs only slightly, showing a little bit higher χ for the nucleated αPP and βPP by trend. At cooling rates higher than 2 K/min the χ–ν_c curve is almost constant within the tested range. Therefore, the difference of the total degree of crystallinity χ between the materials cooled with 1 K/min and 15 K/min is quite small.
4.2. Influence of the cooling rate on the resistance against stable crack propagation

The resistance against stable crack propagation is influenced by the cooling rate of the materials. The J_{d}-Δa curves of PP prepared with different cooling rates are shown in Fig. 2a. At higher cooling rates, the J_{d}-Δa curves of PP-15 and PP-Q are more flat than that of PP-1. At comparable stable crack propagation Δa, the J_{d} of PP-1 is higher than J_{d} of PP-15 and PP-Q. The J_{d}-Δa curves of PP-15 and PP-Q are very similar. So the resistance of PP-1 against stable crack growth is higher than that of PP-15 and PP-Q, although deformation mechanisms seem to be very similar (see Fig. 2b).

In Fig. 3 the J_{d}-Δa curves of the nucleated PP at different cooling rates are shown. The J_{d}-Δa curves of αPP (see Fig. 3a) show a strong influence of the cooling rate on the materials resistance against stable crack propagation. At a slow v_{c} of 1 K/min (αPP-1), J_{d} is higher than J_{d} of αPP-15 and αPP-Q at comparable Δa. But on the other hand, the curves of αPP-15 and αPP-Q show only marginal differences. The influence of the cooling rate on the resistance of βPP against stable crack propagation is almost negligible. The J values J_{d} of βPP-Q are at comparable stable crack propagation a little bit smaller by trend.
The tearing modulus $T_{J}^{0.5}$ derived at $\Delta a = 0.5$ mm of the different materials depends on the cooling rate and the form of the crystals (see Fig. 4). The biggest differences of $T_{J}^{0.5}$ exist for the materials prepared with a cooling rate of 1 K/min. With increasing cooling rate and decreasing degree of crystallinity χ, $T_{J}^{0.5}$ of nucleated αPP decreases. This effect is most pronounced for αPP. With regard to PP and βPP, the correlation between cooling rate and degree of crystallinity is diminished. Therefore, additional research about the crystalline structure and morphology is inevitable.

5. Conclusions

Three different types of PP were prepared. Virgin PP, PP with an α-nucleation agent (αPP) and PP with a β-nucleation agent (βPP) were pressed to plates using three different cooling rates, namely 1 K/min, 15 K/min and quenched. The degree of crystallinity χ was determined by DSC-measurements at a variety of cooling rates. To describe the materials resistance against stable crack propagation R-curves were made using the ICIT combined with the stop-block method and also the tearing modulus $T_{J}^{0.5}$ determined. It was shown, that the materials resistance against stable crack propagation correlates with the degree of crystallinity χ for PP and αPP. The higher χ is the higher is the materials resistance against stable crack propagation. But this correlation cannot be proofed for βPP. The R-curves of βPP are here not influenced by χ, but seem to depend on additional structural parameters.
6. Acknowledgements

Special thanks to Prof. H. Roggendorf and Dipl.-Ing. S. Borreck of Martin Luther University Halle-Wittenberg for SEM investigations.

7. References

