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On a Mutation Problem for Oriented Matroids

JÜRGEN BOKOWSKI AND HOLGER ROHLFS

For uniform oriented matroidsM with n elements, thereis in the realizable case a sharp lower
boundLr (n) for the number mut(M)of mutations ofM : Lr (n) = n ≤ mut(M), see Shannon [17].
Finding asharp lower boundL(n) ≤ mut(M) in the non-realizable case is an open problem for rank
d ≥ 4. Las Vergnas [9] conjectured that 1≤ L(n). We study in this article the rank 4 case. Richter-
Gebert [11] showed thatL(4k) ≤ 3k+ 1 for k ≥ 2. We confirm Las Vergnas’ conjecture forn < 13.
We show thatL(7k+ c) ≤ 5k+ c for all integersk ≥ 0 andc ≥ 4, and we provide a 17 element
example with a mutation free element.

c© 2001 Academic Press

1. INTRODUCTION

We assume the reader is familiar with basic concepts of the theory of oriented matroids [1].
The Folkman–Lawrence representation theorem provides a bijective map between reorienta-
tion classes of uniform oriented matroids of rankd + 1 and equivalence classes (with respect
to homeomorphic transformations of the projectived-spacePd) of non-degenerated pseudo-
hyperplane arrangements. We make the general assumption in this article that we study the
uniform rank 4 case, i.e., in the pseudoplane arrangements not more than three pseudoplanes
meet in a point of the projective 3-spaceP3. For the set of arrangements inP3 with n pseudo-
planes, orn planes, we denote byL(n), or Lr (n), the minimal number of its simplicial cells,
respectively. We recall Shannon’s result,Lr (n) = n, with a short proof which works in the
same way for arbitrary rank.

THEOREM 1.1 (SHANNON [17]). For a uniform realizable oriented matroidM with n>
4 elements:(1) each element is incident with at least four mutations and(2) the number of
mutations is at least n.

PROOF. M can be represented byn pointsin general position inP3. We delete pointi . The
subsets of three points define a plane arrangementAi with

(n−1
3

)
planes. The cell containing

the i th point has at least four facets generated by pairwise different 3-tuples of points. By
inserting pointi and moving it across the four planes, we confirm (1). The total number of
incidences of a pointi with a mutation is at least 4n. Each mutation was counted four times,
which implies (2). The alternating oriented matroid shows that this bound is sharp. 2

In this article we investigate the non-realizable case and in particular reorientation classes
of oriented matroids withn elements with the property that either condition (1), or condition
(2), of Theorem1.1 is violated. Las Vergnas conjectured that 1≤ L(n), ∀n ≥ 4, in [9].
We confirm this conjecture in Theorem2.1 for n < 13. It is known thatL(n) = n ∀n ≤ 7,
L(8)= 7 (see [6]), andL(12)≤ 10 (see[11]).

In Theorem4.2 we show thatL(9) = 8 and in Theorem4.3 2 ≤ L(10) ≤ 9 and
2≤ L(11)≤ 9.

Finally, in Theorem5.4, we show thatL(7k+ c) ≤ 5k+ c for all integersk ≥ 0 andc ≥ 4,
and we provide a 17 element example with a mutation free element.

2. CONJECTURE OFLAS VERGNAS FOR ASMALL NUMBER OF ELEMENTS

The following result has been mentioned in [2], but a proof has not been published so far.
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FIGURE 1. A mutation free simplex.

THEOREM 2.1 (BOKOWSKI). Las Vergnas’ conjecture, i.e.,1≤ L(n), is true for n< 13.

PROOF. We assume that there is an oriented matroidM without mutationswith minimal
numbern of elements. We consider a corresponding Folkman–Lawrence representation, i.e.,
an arrangement ofn pseudoplanes in projective 3-space. After deleting thei th element, we
obtain at least one simplicial cellCi in the arrangement, by minimality ofM. The i th ele-
ment cutsCi into two triangular prisms. Take such a prism with trianglest1, t2 supported by
the elements 1, 2, and with 4-gons formed by the elements 4, 5, 6 and denote it byP4,5,6.
The point of intersectionY4,5,6 of the pseudoplanes 4, 5, 6 and the trianglest1, t2 define sim-
plicial regionsR1 and R2 in the cell decomposition of the projective 3-space. Each triangle
ti , i ∈ {1,2}must be separated from pointY4,5,6 within Ri by at least three elements 4+3 · i ,
5+ 3 · i , 6+ 3 · i . If there are exactly three such elements, the corresponding combinatorial
structure of the cell decomposition ofRi , containing no simplicial cell, is unique up to a mirror
image, compare Figure1.

Hence, aminimal example must contain at least 5+ 2 · 3 = 11 elements. A minimal
example containing only 11 or 12 elements must contain a pair of adjacent triangular prisms
AT P (glued along a triangle) of Figure1. We could have started our investigation with such
a cell AT P instead ofCi , and hence a minimal example must contain at least 6+ 2 · 3 = 12
elements. We now assume thatn = 12, and we denote the starting cell byAT P4,5,6. In
the simplicial regionsR1 and R2 we find altogether six adjacent triangular prisms, each of
which we call achild of AT P4,5,6. Using these adjacent triangular prisms as starting cells
yield a further six adjacent triangular prisms in each case, etc. Consider all adjacent triangular
prismsAT Pi, j,k (glued along a triangle) in the cell decomposition of the projective 3-space.
We define a directed graph (it might have several connected components) having all adjacent
triangular prismsAT Pi, j,k as its vertices and a directed edge(AT Pi, j,k, AT Po,p,q)whenever
AT Po,p,q is a child of AT Pi, j,k The number of edges in this graph going out from a point
is always six. However, the number of edges going to a particular pair of adjacent triangular
prisms cannot exceed three, e.g.,AT P4,5,6 can only be a child ofAT P1,2,4, AT P1,2,5, or
AT P1,2,6, compare again Figure1. This contradiction implies that a mutation free example
must have at least 13 elements. 2
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FIGURE 2. Folkman–Lawrence representation, seven mutations, eight elements.

3. THE SEVEN-MUTATION EXAMPLE WITH EIGHT ELEMENTS

We look for oriented matroids withn elements in which mut(M) <n. The smallest reori-
entation class with this property is the seven-mutation exampleX(8) which is unique within
the set of reorientation classes with eight elements, compare [6]. It is a minor of all known
examplesfor which the number of mutations is smaller than the number of elements. In par-
ticular, it appears as a minor not only in the infinite class of Richter-Gebert, but also in our
infinite classes of examples. We have depicted the Folkman–Lawrence representation of this
example in affine 3-space in Figure2.

The two elements appearing as the bottom and the lid are parallel (inseparable) elements.
Their boundaries have to be identified (they meet at infinity). We see the inner mutation inci-
dent with the lid and an additional three mutations below. The remaining three mutations are
incident with the bottom and the lid at the dark triangles. The arrows mark a cyclic component.
The understanding of this structure was decisive for our findings, namely Theorem5.4.
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4. SMALL NUMBERS OFELEMENTS AND MUTATIONS

The overview for our mutation problem forn = 8 was done in [6] with the result that the
reorientation classwith seven mutations is the unique smallest example within this class of
eight elements.

THEOREM 4.1 (BOKOWSKI AND RICHTER-GEBERT [6]). L(8)= 7.

A fast algorithm for the inductive generation of oriented matroids has been described in [5].
We have used this method and a modified version of the corresponding C++ program to
generate all reorientation classes of oriented matroids with a small number of elements for
which there is an element that is incident with less than four mutations (condition (1) in
Theorem1.1). This set of reorientation classes contains in particular those examples having
less mutationsthan elements (condition (2) in Theorem1.1).

Within the class with nine elements we found precisely five reorientation classes with less
than nine mutations, namely with eight mutations. All these five reorientation classes are
extensions ofX(8).

THEOREM 4.2. L(9)= 8.

There arealtogether 9 276 595 reorientation classes with nine elements. Precisely 650 of
these reorientation classes have an element which is incident with less than four mutations
(condition (1) in Theorem1.1). They are all non-Euclidean examples.

A similar overview for 10 elements would require several CPU years, so we only looked at
all extensions with up to 10 elements of the interesting exampleX(8). Within this subclass
there are 179 reorientation classes with mut(M) < 10. All of them have nine mutations and
a minor with nine elements and eight mutations.

Within the class of 11 elements we only considered those being extensions of one of the
above-mentioned 179 reorientation classes with less than 10 mutations. Here we found pre-
cisely two reorientation classes with 11 elements and only nine mutations. Figures3 and4
show the rank 3 contractions of these interesting examplesX(11,9)a and X(11,9)b gener-
atedby the omawin software. Omawin can be obtained from [4]. Both reorientation classes
have a symmetry generated by the permutation(1,2,3)(4,5,6)(7,8,9).

We summarize our findings for 10≤ n ≤ 12.

THEOREM 4.3. 2≤ L(10)≤ 9, 2≤ L(11)≤ 9, 1≤ L(12)≤ 10.

The lower bound forL(12) is due to Theorem2.1. Forn = 10 andn = 11 it can be im-
proved by using refined arguments similar to those in the proof of Theorem2.1. Assume that
L(10)= 1. SinceL(9) = 8, we can assume that there exists an element cutting a simplicial
cell into two triangular prisms. In the restriction of the Folkman–Lawrence arrangement to
the five elements involved, we have two pairs of simplicial regions(R1, R2) and (R′1, R′2).
The argument of the proof of Theorem2.1 shows that 2≤ L(10). Now we assume that
L(11)= 1. Since 2≤ L(10), we can assume that there exists an element cutting a simplicial
cell into two triangular prisms. In the restriction of the Folkman–Lawrence arrangement to
the five elements involved, we have two pairs of simplicial regions(R1, R2) and (R′1, R′2).
Either we have an additional simplicial region or the cell decomposition has the structure
of Figure 1 with two pairs of adjacent triangular prisms. In this case we can look at the
Folkman–Lawrence arrangement restricted to the six elements defining two pairs of adjacent
triangular prisms. Using the above argument again on the two pairs of simplicial regions at the
ends of these ATPs shows that 2≤ L(11). The upper bound for 12 elements can be obtained
by an appropriate lexicographic extension of, e.g., exampleX(11,9)a, or we use an example
of Richter-Gebert [11].
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FIGURE 3. Rank 3 contractions, 11 elements and nine mutations.

4.1. The reorientation class X(11,9)a. In Figure3 wehave depicted all rank 3 contractions
of thereorientation classX(11,9)a. The nine simplicial cells are listed as their facet elements:

(1,2,4,5) (1,2,8,9) (1,3,4,6) (1,3,7,8) (2,3,5,6)

(2,3,7,9) (4,7,10,11) (5,8,10,11) (6,9,10,11).

Deleting the following 3-tuples of elements

(1,2,3) (7,8,10) (7,8,11) (7,8,9) (7,9,10) (7,9,11) (8,9,10) (8,9,11)

leads to the reorientation classX(8).
We have one inseparable pair:(10,11).
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FIGURE 4. Rank 3 contractions, 11 elements and nine mutations.

4.2. The reorientation class X(11,9)b. In Figure4 wehave depicted all rank 3 contractions
of thereorientation classX(11,9)b. The nine simplicial cells are listed as their facet elements.

(1,2,4,5) (1,3,4,6) (1,4,7,9) (1,7,10,11) (2,3,5,6)

(2,5,7,8) (2,8,10,11) (3,6,8,9) (3,9,10,11).

Deleting the following 3-tuples of elements

(1,2,3) (1,2,6) (1,3,5) (1,5,6) (2,3,4) (2,4,6) (3,4,5) (4,5,6)

(7,8,10) (7,8,11) (7,8,9) (7,9,10) (7,9,11) (8,9,10) (8,9,11)

leads to the reorientation classX(8).
We have four inseparable pairs:(1,4) (2,5) (3,6) (10,11).
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5. INFINITE SEQUENCES

So far we have studied the mutation problem for a small number of elements. We now
consider the general case and, in particular, what can be said about the asymptotic behavior
when the number of elements tends to infinity. So far the best result in this direction was
due to Richter-Gebert, limn→∞

L(n)
n ≤

3
4. We do not copy the proof from [11] which would

need several pages. We assume the reader is familiar with these results. Our result in this
section, limn→∞

L(n)
n ≤

5
7, usesthese building blocks together with additional arguments.

Theorem5.1follows from Theorem5.2by induction.

THEOREM 5.1 (RICHTER-GEBERT [11]). L(4k) ≤ 3k+ 1 for all integers k≥ 2.

THEOREM 5.2 (RICHTER-GEBERT [11]). Given an oriented matroidM with n ≥ 5 ele-
ments,a mutation[1,2,3,4], and an inseparable pair(1,2), there is an extensionM(1,2,3,4)
ofM with n+ 4 elements andmut(M(1,2,3,4)) = mut(M)+ 3.

The idea behind Theorem5.2is the following. Take an affine arrangement of pseudoplanes
representingM (with an arbitrary elementg > 4 as the plane at infinity). Insert four new
pseudoplanesa1, . . . ,a4 between the elements 1 and 2, so that the intersection of these six
elements is the pseudoline 1∩ 2. A small deformation of these six elements can be used to
obtain a uniform arrangement in which the restriction to the elements{1,2,3,4,a1, . . . ,a4}

is isomorphic toX(8), and all cocircuits formed by these elements are within the former cell
[1,2,3,4].

Figure2 shows the inner structure of the former mutation[1,2,3,4] after theextension.
Bottom and lid represent the elements 3 and 4. The old mutation is replaced by four new
ones.

By generalizing the above construction we obtain the following theorem.

THEOREM 5.3. LetM, andN be oriented matroids with m≥ 5, and n≥ 5 elements,
respectively, with the following properties:

(i) M has a mutation[1,2,3,4] and an inseparable pair(1,2),
(ii) N has a mutation[1,2,3,4] and an inseparable pair(3,4),

(iii) in the pseudoplane3 ofN , theline 3∩ 4 is incident with exactly three triangles.

Then there exists a uniform oriented matroidM�N with m+n−4 elements and|mut(M)|+

|mut(N)| − 4 mutations. IfM or N has an inseparable pair(a,b) with a,b /∈ {1,2,3,4},
then there is an inseparable pair inM �N .

The proof of Theorem5.3is similar to Theorem5.2(see [11, 14] for details).N \{1,2,3,4}
plays therole of the elementsa1 . . . a4 inserted into the mutation[1,2,3,4] of M. The
elements 1, 2, 3, 4 ofM andN are identified inM �N .

Relabeling the elements ofX(11,9)b as follows leads to an oriented matroidN that fulfills
the assumptions of Theorem5.3.

3→ 1, 9→ 2, 10→ 3, 11→ 4.

This leadsto the following theorem.

THEOREM 5.4. There are infinite sequences of oriented matroids showing that:

(1) L(7k + c) ≤ 5k + c for all integers k≥ 0 and c≥ 4.
(2) L(7k + c) ≤ 5k + c− 1 for all integers k≥ 0 and c≥ 8.

PROOF. Take the alternating oriented matroid withc elements asM andtake forN the
oriented matroid described above. Applying Theorem5.3 k times confirms (1). For (2) set
M = X(8). 2
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6. A MUTATION FREE ELEMENT

We found a reorientation classE(17)with 17 elements in which one element is not inci-
dent with any mutation. The smallest previously known example with this property had 20
elements and was described in [10, 11]. We present our new example as a list of rank 3 con-
tractions inFigure5. The example is interesting in the context of extension spaces of oriented
matroids, see[16]. It leads to the smallest known (non-realizable) Lawrence polytope with
triangulations whichdo not admit any flip.
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FIGURE 5. Reorientation classE(17)with a mutation free element 1.
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Consider the reorientation classM = X(11,9)b\{4,5,6}. It is isomorphic to anX(8),
with ‘inner’ mutation [1,2,3,10], which means 1, 2, 3, 10 are the unique four elements
within M that are incident with four mutations. Element 10 inX(11,9)b is incident with
only three mutations; in other words, the insertion of the three new elements eliminated one
of the mutations incident with 10. We obtainX(8) from the unique reorientation class with
five elements by the same extension.

Even though the construction does not work for arbitrary mutations, it could be applied to
one of the oriented matroids which was found during the computer search. This example had
11 elements and one element incident with only two mutations. Applying the above extension
twice led to the oriented matroidE(17)with 17 elements, and a mutation free element.

7. REMARKS

We do not know any exampleM with mut(M) < n that does not haveX(8) as a minor.
We do not know any Euclidean example that contradicts condition (1) of Theorem1.1.

The dataof all oriented matroids mentioned in this paper are available from [13]. A list of
all reorientationclasses withn ≤ 9 elements is available from the second author.
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