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Cytochrome bd is a respiratory quinol:O2 oxidoreductase found in many prokaryotes, including a number of
pathogens. The main bioenergetic function of the enzyme is the production of a proton motive force by the
vectorial charge transfer of protons. The sequences of cytochromes bd are not homologous to those of the
other respiratory oxygen reductases, i.e., the heme–copper oxygen reductases or alternative oxidases (AOX).
Generally, cytochromes bd are noteworthy for their high affinity for O2 and resistance to inhibition by cyanide.
In E. coli, for example, cytochrome bd (specifically, cytochrome bd-I) is expressed under O2-limited conditions.
Among the members of the bd-family are the so-called cyanide-insensitive quinol oxidases (CIO) which often
have a low content of the eponymous heme d but, instead, have heme b in place of heme d in at least a
majority of the enzyme population. However, at this point, no sequence motif has been identified to
distinguish cytochrome bd (with a stoichiometric complement of heme d) from an enzyme designated as CIO.
Members of the bd-family can be subdivided into those which contain either a long or a short hydrophilic
connection between transmembrane helices 6 and 7 in subunit I, designated as the Q-loop. However, it is not
clear whether there is a functional consequence of this difference. This review summarizes current knowledge
on the physiological functions, genetics, structural and catalytic properties of cytochromes bd. Included in this
review are descriptions of the intermediates of the catalytic cycle, the proposed site for the reduction of O2,
evidence for a proton channel connecting this active site to the bacterial cytoplasm, and the molecular
mechanism by which a membrane potential is generated.
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1. Diversity of respiratory oxygen reductases

Respiratory oxygen reductases (terminal oxidases) are enzymes at
the end of the respiratory chains of organisms which couple the
oxidation of a respiratory substrate (one-electron donor, cytochrome
c, or two-electron donor, quinol (QH2)) to the four-electron reduction
of O2 to water. There are three families of oxygen reductases (Fig. 1).

1.1. Heme–copper family

The first, most extensively studied family comprises the heme–
copper oxygen reductases. They have a binuclear O2-reduction site
composed of a high spin heme (a3, o3, or b3) and a copper ion (CuB), and
these enzymes generate a PMF via a “proton pump” mechanism [1–7].
The PMF is utilized for various biosynthetic activities (e.g., ATP
production), solute active transport and mechanical movement (e.g.,
flagellar rotation). The heme–copper family of oxygen reductases
includes both cytochrome c oxidases and quinol oxidases. Most of the
heme–copper oxygen reductases are members of one of three distinct
subfamilies: A, B, and C [8,9]. TheA subfamily includes themitochondrial
cytochrome c oxidases as well as many prokaryotic cytochrome c
oxidases andquinol oxidases. Enzymes in theA-subfamily utilize at least
two proton pathways to deliver protons to the active site or for proton
pumping. The B subfamily includes a number of oxygen reductases from
extremophilic prokaryotes, such as the ba3-type oxygen reductase from
T. thermophilus [10]. The enzymes of the C subfamily are all cbb3-type
oxidases [11]. Recently, it has been shown that the enzymes from the B
and C subfamilies utilize only one proton-conducting input pathway
[10,12]. High-resolution X-ray crystal structures of the heme–copper
oxidases from all three subfamilies have been reported [11,13–23].

1.2. Alternative oxidase (AOX) family

The second family of respiratory oxygen reductases comprises
cyanide-resistant AOX found inmitochondria of higher plants, fungi and
protists aswell as inprokaryotes and someanimal species [24]. In plants,
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Fig. 1. Respiratory oxygen reductases. The bd-family is subdivided into the A-subfamily
(long Q-loop), B-subfamily (short Q-loop) and the cyanide insensitive oxygen
reductases (CIO). These are subdivisions based entirely on spectroscopic and structural
observations and are not phylogentically defined clades.
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this is a homodimeric enzyme associated with the matrix side of the
inner mitochondrial membrane. AOX uses UQH2, but not cytochrome
c, as the electron donor, and contains a non-heme di-iron carboxylate
active site for O2 reduction.

AOX does not produce a PMF, and is not coupled to transmembrane
charge transfer. However, AOX is responsible for heat generation in
some tissues, and plays a role in the regulation of energy metabolism,
facilitating turnover of the TCA cycle, protection against oxidative stress,
and homeostasis. To date, no high-resolution AOX structure has been
reported, but crystals that diffract to better than 3.0 Å have been
described [25].

1.3. Cytochrome bd-family

The third family of oxygen reductases comprises cytochromes bd.
These are quinol oxidases found in a wide variety of prokaryotes. They
show no sequence homology to any subunit of heme–copper family
Fig. 2. Proposed cytochrome bd model.
members or AOX and do not contain any copper or non-heme iron
[26–33]. This two-subunit integralmembrane protein (subunits I and II)
contains three hemes, b558, b595 and d, and it is generally thought that
hemes b595 and d form a di-heme site for the reduction of O2 (Fig. 2)
[34–43]. Unfortunately, no X-ray structure of any bd-type oxygen
reductase has been reported. Cytochrome bd generates a PMF by
transmembrane charge separation, but does sowithout being a “proton
pump” [41,44–50]. In a number of organisms, the bdoxygen reductase is
induced under O2-limited conditions as well as under other growth
conditions that can be considered stressful, such as Fe deficiency
[51–54]. All known members of the bd-family of oxygen reductases
are quinol oxidases, most commonly using ubiquinol or menaquinol as
substrates.

Analysis of prokaryotic genomes shows that many aerobic
prokaryotes do not contain any member of the bd-family, but contain
only heme–copper oxygen reductases. However, there are a number
of prokaryotes that encode more than one bd-family member, for
example, two: E. coli [53,55], Bacillus subtilis [56]; three: Vibrio
cholerae [57]; and as many as six bd-type oxygen reductases: some
Acidithiobacillus strains. Organisms that express one or more bd-type
oxygen reductases, usually also possess at least one heme–copper
oxygen reductase. However in some cases (e.g., Lactobacillus plantarum
[58], Zymomonas mobilis [59], the two Thermoplasma strains [60])
cytochrome bd is the only oxygen reductase.

1.3.1. The Q-loop
The hydrophilic region of subunit I connecting transmembrane

helices 6 and 7, facing the outside of the prokaryotic cell, has been
implicated as part of the quinol binding site [61–66], and this is
referred to as the “Q loop”. Some of the bd-family oxygen reductases
have an insert in the C-terminal portion of the Q-loop and, hence, have
a “long Q-loop”, e.g., enzymes isolated from Escherichia coli and
Azotobacter vinelandii [67,68]. The majority of bd-type oxygen
reductases have a “short Q-loop”, e.g., the enzyme isolated from
Bacillus stearothermophilus [67–69]. It is not clear what the functional
consequences are, if any, from this difference in the size of the Q loop.

1.3.2. Cyanide insensitive oxidases (CIO)
An anecdotal observation is that some of the “short Q-loop”

oxygen reductases appear to have an altered heme content, in which
the amount of heme d is significantly reduced (or totally missing) and
is replaced by a heme b. This appears to be the case for a B. subtilis
cytochromebd [70].When theseenzymes,with a lowcontent of hemed,
have been characterized in bacterial membranes, respiration continues
even in the presence of 1 mMKCN [71], but themembranes do not have
the spectroscopic signature of heme d (a peak in the reduced form near
630 nm) [71–75]. As a result, these enzymes have been called cyanide
insensitive oxidases (CIO) [73]. Examples are P. aeruginosa [71–73,76],
P. putida [77], P. pseudoalcaligenes [74], Staphylococcus carnosus [78],
C. jejuni [75], and Z. mobilis [59]. On the contrary, using low temperature
absorption spectroscopy, EPR and mass spectrometry, Mogi et al. [79]
reported that CIO in themembranes fromG. oxydanshas the sameheme
contents present in a classical cytochrome bd, although reveals unique
spectroscopic and ligand-binding properties. Whether the CIO heme
composition is strain- and/or growth-specific, or the heme spectral
features were not detected due to a very low enzyme concentration in
the testedmembranes remains tobe studied. It is nowclear thatCIOs are
bd-family oxygen reductases.

cioA and cioB genes which encode CIO in P. aeruginosa and P.
pseudoalcaligenes were sequenced [73,74]. They comprise the cio
operon. CioA and CioB are homologous to subunits I and II of
cytochrome bd-I from E. coli and the bd-oxidase from A. vinelandii [73].
Histidine and methionine residues identified in cytochrome bd-I from
E. coli as the axial ligands to heme b558 and heme b595 are conserved
[73]. It was proposed that the slight differences in sequence and
structure of the CydB subunit are responsible for cyanide resistance

image of Fig.�2
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[78]. It is of interest to note that cytochrome bd of the cyanobacterium
Synechocystis sp. PCC 6803 appeared to be structurally related to CIO
[80]. To date, no CIO has been purified and characterized, primarily
because these enzymes appear to be particularly labile. At low O2

tensions, the opportunistic pathogen P. aeruginosa synthesizes HCN as
a metabolic product at concentrations of up to 0.3 mM [81]. Under
these conditions, the heme–copper oxidases are inhibited. CIO likely
has a role in allowing aerobic respiration under cyanogenic and
microaerobic growth conditions [71,73,82]. Cyanide can be found in
tissues infected with P. aeruginosa [83] that is consistent with the
conclusion that CIO is required for full pathogenicity of P. aeruginosa
in the cyanide-mediated paralytic killing of nematodes [84]. Mutation
or overexpression of the cioAB genes of P. aeruginosa leads to
temperature sensitivity for growth, difficulty exiting stationary
phase, abnormal cell division and multiple antibiotic sensitivity [85].

There is no distinguishing feature in the sequences of the genes
that allows one to differentiate CIO from other cytochrome bd family
members. It is not yet clear whether the “short Q-loop” is a
requirement for having the CIO phenotype or under what conditions
such enzymes may or may not contain a stoichiometric content of
heme d.
2. Physiological functions

The bioenergetic function of cytochrome bd is to conserve energy in
the formofΔμH+ [41,45–50], although theH+/e− ratio is 1, half the value
of the A-subfamily heme–copper oxygen reductases such as the
mitochondrial cytochrome c oxidase or cytochrome bo3 from E. coli
because the bd-type oxygen reductases donot pumpprotons [45,49,50].

Apart from PMF generation, cytochrome bd endows bacteria with a
number of vitally important physiological functions. Cytochrome bd
facilitates both pathogenic and commensal bacteria to colonize O2-poor
environments [86–89], serves as an O2 scavenger to inhibit degradation
of O2-sensitive enzymes such as nitrogenase [90–98], and support
anaerobic photosynthetic growth [99]. It is of interest to note that
bd-type oxygen reductases predominate in the respiratory chains of
bacteria that cause suchdiseases asbacillarydysentery [100], brucellosis
[88,101], tuberculosis [87], pneumonia, life-threatening sepsis, menin-
gitis [102], as well as Salmonella [103,104], Bacteroides [86], and Listeria
monocytogenes [105] infections. There is a positive correlation between
virulence of bacterial pathogens responsible for these diseases and level
of cytochrome bd expression. Cytochrome bd enhances bacterial
tolerance to nitrosative stress [106–111], contributes to mechanisms
of detoxification of hydrogen peroxide in E. coli [112–114], suppresses
extracellular superoxide production in Enterococcus faecalis [115], and is
involved in the degradation of aromatic compounds in Geobacter
metallireducens [116]. The A. vinelandii cytochrome bdmight be directly
involved in energizing Fe-siderophore transport or in reduction of Fe
(III)-chelates and, thus, metal liberation in the cytoplasm [117]. As a
source of oxidizing power, cytochrome bd-I in E. coli can support
disulfide bond formation upon protein folding catalyzed by the DsbA–
DsbBsystem[118], aswell as thepenultimate stepofhemebiosynthesis,
the conversion of protoporphyrinogen IX into protoporphyrin IX,
catalyzed by protoporphyrinogen IX oxidase [119].

The expression and membrane content of cytochrome bd in E. coli
increase not only at low O2 concentrations [120–122], but also under
other stressful conditions, suchas alkalization of themedium[123], high
temperature [124,125], the presence of poisons in the environment (for
instance, cyanide [126,127]), uncouplers-protonophores [123,128,129]
and high hydrostatic pressure [130,131]. E. coli mutants defective in
cytochrome bd are sensitive to H2O2 [125], zinc [127,132] and a self-
produced extracellular factor that inhibits bacterial growth [133,134]. E.
coli mutants that cannot synthesize cytochrome bd are also unable to
exit from the stationary phase and resume aerobic growth at 37 °C
[135,136].
Since cytochrome bd is found only in prokaryotes, including a
number of human pathogens, the enzyme may be of interest as a drug
target. A search for specific inhibitors of the bd-type oxygen reductases,
which could be used in clinical practice, has been started [137,138]. An
alternative, “positive” potential use of cytochrome bd might be for a
therapy of respiratory chain deficiencies. It is known that mutations
in genes encoding structural subunits of cytochrome bc1 complex and
cytochrome c oxidase can lead to severe neuromuscular and non-
neuromuscular human diseases [139,140]. At the same time, it was
reported that mixing purified cytochrome bd-I from E. coli with
myxothiazol-inhibited bovine heart submitochondrial particles restores
up to half of the original NADH oxidase and succinate oxidase activities
in the absence of exogenous ubiquinone analogs [141]. Respiration
bypassing the bc1 complex is saturated at amounts of added bd-oxidase
similar to that of other natural respiratory components in submito-
chondrial particles. Bacterial cytochrome bd-I tightly binds to the
mitochondrial membrane and functions as an intrinsic component of
the chimeric respiratory chain [141]. Thus, cytochrome bd, as well as
AOX [142–144], might compensate for respiratory chain deficiencies
in human cells.

3. Inhibitors

Table 1 shows the effect of different inhibitors on the respiratory
activity of cytochrome bd from some bacteria. Quinol oxidase inhibitors
canbedivided into twogroups:Q-like compoundsactingat theQbinding
site andheme ligands (e.g., cyanide, azideorNO)acting at theO2binding/
reducing site. A specific feature of cytochrome bd is that it is much less
sensitive to cyanide and azide than aheme–copper oxygen reductase like
cytochrome bo3 [27]. The lower sensitivity of cytochrome bd to anionic
heme ligands may be a result of an elevated electron density on the
central ion of iron due to breaking the conjugate π-electron structure in
the d-type porphyrin ring and/or may point to a more hydrophobic
environmentof theO2-reducing site. Itwas reported that cytochrome bd-
I in E. coli is a bacterial membrane target for a cationic cyclic decapeptide
gramicidin S (IC50~5.3 μM, Table 1), although it has been generally
accepted that the main target of gramicidin S is the membrane lipid
bilayer rather than the protein components [145]. This finding can
provide a new insight into the molecular design and development of
novel gramicidin S-based antibiotics. The effect of gramicidin S on
cytochrome bd-I and some other membrane-bound proteins could be
the alteration of the protein structure through binding to its
hydrophobic protein surface [145].

4. Genetics

4.1. Genes in E. coli encoding the protein subunits and assembly factors

Of the bd family, the best studied oxidase is cytochrome bd-I from
E. coli. The two subunits of cytochrome bd-I are encoded by the
cydAB operon [28,146,147] located at 16.6 min on the E. coli genetic
map [146,148]. It was cloned [149] and sequenced [28]. The molecu-
lar weights of subunit I (CydA) — 57 kDa, and subunit II (CydB) —

43 kDa, determined by sodium dodecyl sulfate-polyacrylamide-gel
electrophoresis [26], are consistent with those of 58 and 42.5 kDa based
onDNAsequence [28]. The enzyme subunits carry threehemes: b558,b595,
and d [34,150]. Heme b558 is located on subunit I (CydA), whereas hemes
b595 andd are likely tobe in the areaof the subunit contact [151]. CydAcan
be expressed and purified without CydB using mutant strains defective
in cydB [152]. The purified CydA retains heme b558 but lacks hemes b595
and d [152]. In addition to the cydAB operon, the two other genes, cydC
and cydD of the cydCD operon located at 19 min on the E. coli genetic
map [132,153,154], are essential for the assembly of cytochrome bd-I
[153–156]. CydC and CydD however are not subunits of cytochrome bd-I.
It was shown that cydCD encodes a heterodimeric ATP-binding cassette-
type transporter that is a glutathione transport system [157]. An orphan



Table 1
Effect of inhibitors on respiratory activity of cytochrome bd.

Inhibitor Bacterium

E. colia B. stearothermophilus A. vinelandii Photobacterium phosphoreum

KCN or NaCN 2 mMb [27] 0.5 mMe [68] – 62 μMb [288]
NaN3 400 mMb [27] 8.2 mMe [68] – 40 mMb [288]
H2O2 120 mMb [27] – – –

2-n-heptyl-4-hydroxyquinoline N-oxide (HOQNO) 7 μMb [27] – 5–20 μMd [249] 8.2 μMb [288]
ZnSO4 or ZnCl2 60 μMb [27] 200 μMe [68] – 2.7 μMb [288]
Piericidin A 15 μMb [27] – – –

Antimycin A 50 μM, 80%c [285] – 11 μMd [279,286] –

Undecylhydroxydioxobenzothiazole (UHDBT) 20 μM, 18%c [285] – 20 μMd [279,286] –

(1,5-Dimethylhexyl)quinazolinamide 100 μM, 88%c [285] – – –

(1-Methyldecyl)quinazolinamide 100 μM, 85%c [285] – – –

Stigmatellin 200 μM, 14%c [285] – – –

Nigericin 100 μM, 44%c [285] – – –

Dibromothymoquinone 100 μM, 38%c [285] – – –

Aurachin A 700 μM, 27%c [285] – – –

Aurachin C 214 nM, 90%c [285] – – –

Aurachin D 400 nM, 93%c [285] – – –

decyl-aurachin D – – 13 nMd[249] –

p-benzoquinone – 120 μM e [68] – –

2,6-Dimethyl-p-benzoquinone – 65 μM e [68] – –

Nitric oxide (NO) 100 nMd [106] – 100 nMd[106] –

Carbon monoxide (CO) – – 0.5–1 mM, 80% g [287] –

Pentachlorophenol (PCP) 200 μMd [32] – – –

2-Thenoyl trifluoroacetone (TTFA) 1 mM, 35%f [26] – – –

Gramicidin S 5.3 μMb [145] – – –

a Data are referred to cytochrome bd-I.
b IC50 for ubiquinol-1 oxidase activity of the purified enzyme.
c Concentration and % inhibition of duroquinol oxidase activity of cytochrome bd-containing membranes.
d Inhibition constant (Ki) for ubiquinol-1 oxidase activity of the purified enzyme.
e IC50 for duroquinol oxidase activity of the purified enzyme.
f Concentration and % inhibition of ubiquinol-1 oxidase activity of the purified enzyme.
g Concentration and % inhibition of ascorbate-2,6-dichlorophenolindophenol oxidase activity of cytochrome bd-containing particles.
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protein, YhcB, was proposed to be a third subunit of cytochrome bd-I
[158], but this was later shown not to be the case [159].

In E. coli, a second cytochrome bd (bd-II) encoded by cyxAB genes
(also named appBC or cbdAB) was identified [160]. The cyxAB genes,
located at 22 min on the E. coli genetic map, are upstream from pH 2.5
acid phosphatase (appA) gene [160]. The cyxAB and appA genes
constitute the complex operon. The cyxA and cyxB genes encode
58.1 kDa and 42.4 kDa integral membrane proteins, respectively. The
deduced amino acid sequences of cyxA and cyxB genes reveal
homologies of 60 and 57%, respectively, to subunit I (CydA) and subunit
II (CydB) of cytochrome bd-I [160].

4.2. Regulation of gene expression in E. coli and other bacteria

Cytochrome bd-I is expressed by E. coli when the O2 tension is low
[120–122,161,162]. The expression of the cydAB operon is controlled by
the two global transcriptional regulators, Arc and Fnr [121,161,163–
169]. Arc is a two-component regulatory system that includes ArcA, a
cytosolic response regulator, and ArcB, a transmembrane histidine
kinase sensor. ArcA controls several hundred genes [170] and responds
to the oxidation state of theQpoolwhich is sensed byArcB [171]. ArcB is
activated in response to the transition from aerobic to microaerobic
growth and remains active during anaerobic growth. Upon stimulation,
ArcB autophosphorylates and then transphosphorylates ArcA [171,172].
Under microaerobic conditions (i.e., O2 tension of 2 to 15% of air
saturation), the increased level of phosphorylated ArcA activates the
cydAB operon [173]. Another global regulator, Fnr (an O2-labile
transcription factor regulating hundreds of genes), controls induction
of anaerobic processes in E. coli [174,175]. The Fnr protein has a Fe–S
cluster which serves as a redox sensor. The levels of the Fnr protein are
similar under both aerobic and anaerobic conditions [165,176], but the
protein is active only during anaerobic growth. The active Fnr protein
represses cydAB operon during the transition to anaerobic conditions
(i.e., O2 tension of less than 2% of air saturation) [167,168,176].

Expression of cyxAB-appA operon (coding for cytochrome bd-II in E.
coli) is induced by phosphate starvation and entry into a stationary
phase [177]. The cyxAB genes can also be induced by anaerobic growth
and this induction is controlled by transcriptional regulators AppY and
ArcA but independent of Fnr, in contrast to cyd operon [177,178].
Cytochrome bd-II is likely to function under even more-O2-limiting
conditions than cytochrome bd-I [178]. Cytochrome bd-II has been
partially purified [179], and contains two subunits by SDS-PAGE with
apparent molecular weights 43 kDa (subunit I) and 27 kDa (subunit II).
These subunits show no cross-reactivity to subunit-specific polyclonal
antibodies directed against the subunits of cytochrome bd-I [179]. The
spectral properties of cytochrome bd-II closely resemble those of
cytochrome bd-I. Of the quinols tested as substrates, cytochrome bd-II
utilizes menadiol as the preferred substrate (although ubiquinol-1, the
most efficient in vitro substrate for cytochrome bd-I, was not tested).
TMPD oxidase activity of cytochrome bd-II is much more sensitive
to cyanide than that of cytochrome bd-I [179]. It was reported that
though the electron flux through cytochrome bd-II can be significant,
the enzyme does not contribute to the generation of the PMF [180].
Shepherd et al. [181] proposed that under conditions of an apparently
fully uncoupled mode, E. coli can create PMF by means of consumption
of intracellular protons in synthesis of γ-aminobutyric acid (GABA) and
the generation of a pH gradient via uptake of glutamate and export of
GABA by glutamate/GABA antiport.

In A. vinelandii, regulation of cytochrome bd expression is achieved
byCydR (an Fnrhomologue),which represses transcriptionof the cydAB
genes [182]. The cydABCD operon coding for cytochrome bd in B. subtilis
was reported to be activated by ResD and repressed by YdiH (Rex) and
CcpA regulators [183–185]. Rex is also a repressor for the cydABCD
operon in Streptomyces coelicolor [127]. ResDmay activate the cydAgene
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in L. monocytogenes [105]. In Rhodobacter capsulatus, expression of
cytochrome bd is likely controlled by RegA regulator [186].

5. Distribution and evolution

The bd-family of oxygen reductases has a wide phylogenetic
distributionwithhomologs found in at least one sequencedmember of 18
bacterial phyla: Acidobacteria, Actinobacteria, Aquificae, Bacteroidetes,
Chlamydiae, Caldithrix, Chlorobi, Chloroflexi, Chrysiogenetes, Cya-
nobacteria, Deferribacteres, Firmicutes, Nitrospirae, Planctomycetes,
Proteobacteria, Thermi, Thermodesulfobacteria and Verrucomicrobia.
To date no bd-family homologues have been detected in the following
12 bacterial phyla: Dictyoglomi, Elusimicrobia, Fibrobacteres, Fusobac-
teria, Gemmatimonadetes, Lentisphaerae, Poribacteria, Synergistetes,
Thermotogales, and candidate phylaNC10, TM7andWWE1.Anumber of
Archaea also encode bd-family homologues, withmembers of the family
found in Crenarchaeota, Euryarchaeota [60] and Korarchaeota. Cyto-
chrome bd-type oxygen reductases are very common is somephyla, such
as the Proteobacteria and Actinobacteria, and sporadically distributed in
others. Interestingly, bd-family homologues have been detected inmany
species described as strict anaerobes such as Methanosarcina barkeri,
Methanosarcina acetivorans [60], Bacteroides fragilis [86], Desulfovibrio
gigas [187–189], Desulfovibrio vulgaris Hildenborough [190], Geobacter
metallireducens [116], Moorella thermoacetica [191] and Chlorobaculum
tepidum [192].
Fig. 3. The bd-family of oxygen reductases. An unrooted phylogenetic tree showing the
relationships between 815 sequences of cytochrome bd oxidases. Members with the
Q-loop insertion (long Q-loop) are shown in red. All other members of the family have
the “short Q-loop”. A number of members from the purple clade have been classified as
cyanide insensitive oxidases (CIO) with a low content of heme d. Cytochromes bd from
Archaea are shown in blue and form two related clades. In contrast, cytochrome bd-type
oxygen reductases from the Firmicutes (yellow) and Bacteroidetes (green) are
highlighted to demonstrate the sporadic distribution of enzymes within these phyla
which resulted from horizontal gene transfer.
Early work suggested that the bd-family of oxygen reductases is an
ancient innovation, already present in the ancestor of both Bacteria and
Archaea [193]. However it was recently reported that the family may
have originated in Bacteria and was later acquired by Archaea via
horizontal gene transfer [60,194]. Phylogenetic analysis of the bd-family
showed that horizontal gene transfer plays a significant role in the
distribution of the family, with many phyla acquiring cytochrome bd
genes multiple times independently (Fig. 3).

Sequence analysis has demonstrated that subunits I and II have
different rates of evolution, with subunit II evolving 1.2 times faster
than subunit I [194]. The biological relevance of this asymmetrical
evolution is currently unknown.

6. Membrane localization

Cytochrome bd is embedded in the prokaryotic cytoplasmic
(plasma) membrane. It was reported that in E. coli, cytochrome bd-I is
not evenly distributed within the plasmamembrane, being concentrat-
ed in mobile (on the subsecond time scale) patches, of the order of
100 nm in diameter [195,196]. These clusters contain variable numbers
of cytochrome bd-I tetramers [196]. Cytochrome bd in cyanobacteria
[197–203] has been reported to also be located in the thylakoid
membrane [200,201,203–207], though this has been disputed [208–
211]. The presence of a bd-type PQH2 oxidase in cyanobacterial
thylakoid and/or cytoplasmic membranes may depend on culturing
conditions and the light regime [201,206].

7. Cofactors and substrates

7.1. Quinones

Thenature of thequinols used by cytochromebd as anelectrondonor
is species-specific. For instance, inA. vinelandii andE. coli the cytochrome
bd enzyme can oxidize ubiquinol (UQH2), in B. stearothermophilus, the
substrate is menaquinol (MQH2). In E. coli, cytochrome bd-I can also
oxidize MQH2 [212,213], which replaces UQH2 upon change of growth
conditions from aerobic to anaerobic [166]. There is evidence that in
cyanobacteria cytochrome bd is active as a plastoquinol (PQH2) oxidase
[200,201,203–206], although some reports have questioned this
conclusion [208–210]. Thepresence or absence of boundQ in solubilized
cytochrome bd-I from E. coli depends on the purification protocol. In
some preparations of the purified enzyme, there is no apparently bound
quinone [26,27,46,214] whereas others clearly contain bound quinone
[41,215]. A stable semiquinone radical has been observed in the E. coli
cytochrome bd-I [216,217].

7.2. Hemes

The two subunits of E. coli cytochrome bd-I carry three metal-
containing redox-centers, two protoheme IX groups (hemes b558 and
b595) and a chlorin molecule (heme d) which are in 1:1:1 stoichiometry
per the enzyme complex. The enzyme contains no Fe–S cluster and no
copper ion [218–222]. Hemeb558 is clearly locatedwithin subunit I. Both
subunits are required for the assembly of heme b595 and heme d,
suggesting that these two hemes may reside at the subunit interface
[151]. Heme b595 appears to be oriented with its heme plane at ~55° to
the plane of themembrane [223]. Themillimolar extinction coefficients
used commonly for the determination of the cytochrome bd concen-
tration in E. coli and A. vinelandii are listed in Table 2.

7.2.1. Heme b558
Heme b558 has been shown to be located within subunit I by

expressing subunit I (cydA) in the absence of subunit II (cydB) and
showing that the isolated subunit I contains heme b558 [152]. Antibodies
directed against subunit I [61,63], as well as selective proteolysis of this
subunit [62,64], inhibit UQH2 oxidase activity of cytochrome bd-I. These
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Table 2
Extinction coefficients used for determination of cytochrome bd concentration in E. coli
and A. vinelandii.

Absorption spectrum Heme Wavelength pair
(nm)

Δε
(mM−1 cm−1)

Reference

E. coli (cytochrome bd-I)
Difference d 628–607 10.8 [37]
Reduced minus
‘as prepared’

d 628–651a 27.9 [36]
d 628–649a 18.8 [27]
b558 561–580 21 [36]
b595 595–606.5 1.9 [36]
All 429–700b 303 [36]

CO/reduced
minus reduced

d 642–622 12.6 [27]
d 643–623 13.2 [48]

Absolute
Reduced d 628–670 25 [41]
‘As prepared’ All 414–700b 223 [36]

A. vinelandii
Difference
Reduced minus
‘as prepared’

d 628–605 9.5 [241]
d 629–608 12 [257]
d 629–650a 27 [257]

CO/reduced
minus reduced

d 622–642 18 [257]

a,bThese values cannot be recommended for determination of cytochrome bd
concentration since.

a The ‘as prepared’ enzyme contains varying amounts of the ferrous heme d-oxy
complex that absorbs at 649–651 nm.

b The intensity of the Soret band is variable depending on the purity of the preparation.

Table 3
Spectral properties of cytochrome bd-I from E. coli. Shown are wavelengths (nm) and
extinction coefficients (in parentheses, mM−1 cm−1) for “reduced-minus-oxidized”
difference absorption spectra. Data are taken from reference [225].

Heme b558 Heme b595 Heme d

Maxima 429.5 (90),
531.5 (5.8),
561 (17.2)

439 (113),
561.5 (8.2),
594 (5.3)

430 (30),
629 (18)

Minima 413 (−40),
497 (−4.3),
545 (~0)

400 (−37),
500 (−3.6),
643 (−1.18)

405 (−23),
468 (−6.3),
657.5 (−2.7),
739±2 (−2.4)

Isosbestic points 421, 450, 518, 573 422, 457, 535, 613 418.5, 449, 602, 648
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findings suggest that heme b558 is associated with subunit I and is
involved inQH2 oxidation. Theα- andβ-bands of the reducedhemeb558
at room temperature reveal maxima at 560–562 and 531–532 nm,
respectively (Table 3) [150,224,225]. The maximum and minimum of
the γ-band in the “reduced minus oxidized” difference absorption
spectrumare 429.5 and 413 nm, respectively (Table 3) [225]. Heme b558
is low-spin hexacoordinate [37], and amino acid residues His1861 and
Met393 of subunit I (E. coli cytochrome bd-I) have been identified as
its axial ligands [226–228]. The location of heme b558 is predicted to be
near the periplasmic surface [67,229].

7.2.2. Heme b595
The spectrum of heme b595 is similar to that of catalases and

peroxidases containing pentacoordinate (high-spin) protoheme IX
[150]. Heme b595 has an α-band at 594–595 nm and β-band at 560–
562 nm in the difference absorption spectrum(Table 3) [150,224,225]. A
trough at 643–645 nm in the difference spectrum of heme b595 is
indicative of the disappearance in the reduced heme b595 of an
absorption feature due to charge transfer from the Fe to the ligand,
characteristic of oxidized high-spin heme b, as in the case of peroxidases.
The γ-band of ferrous heme b595 is characterized by a maximum at
~440 nm as clearly revealed by femtosecond spectroscopy [38]. The
maximumandminimumof theγ-band in the difference “reducedminus
oxidized” absorption spectrum are 439 and 400 nm, respectively
(Table 3) [225]. Heme b595 is high-spin pentacoordinate [37], ligated
by His19 of subunit I [230] and located near the periplasmic surface
[67,229]. The role of heme b595 remains obscure. It is proposed that heme
b595 participates in the reduction of O2 forming, together with heme
d, a di-heme O2-reducing site, somewhat similar to the heme/Cu O2-
reducing site in heme–copper oxidases [35–41,43,231]. In favor of this
hypothesis is the finding that the CD spectrum of the reduced wild type
cytochrome bd in the Soret band shows strong excitonic interaction
between ferrous hemes d and b595 [42]. Modeling the excitonic
interactions in the absorption and CD spectra yields an estimate of the
Fe-to-Fe distance between heme d and heme b595 to be about 10 Å [42].
In the opinion of some, the function of heme b595 is limited to
transferring an electron from heme b558 to heme d [232,233], whereas
1 Here and below — amino acid numbering refers to cytochrome bd-I from E. coli.
others have postulated that heme b595 can form a second site capable of
reacting with O2 [218,234].

7.2.3. Heme d
Heme d is a chlorin-type molecule [235]. Theα-band of the reduced

heme d in the absolute absorption spectrum of E. coli cytochrome bd-I
shows a peak at 628–630 nm. However, upon isolation of the enzyme,
heme d is in the stable oxygenated (O2-ligated ferrous) form, which is
characterizedbyanabsorptionbandwith amaximumat647–650 nmin
the absolute absorption spectrum [236–239]. The affinity of ferrous
heme d for O2 is indeed high, showing the Kd(O2) values of 0.28 μM and
0.5 μM for the enzymes from E. coli and A. vinelandii, respectively
[240,241]. The maximum andminimum of the γ-band in the difference
“reduced minus oxidized” absorption spectrum are 430 and 405 nm,
respectively (Table 3) [225].

Remarkably, the spectral contribution of heme d to the complex
Soret band is much smaller than those of either hemes b [225]. Heme d
is predicted to be located near the periplasmic surface [67,229], and is
the site for capturing and, subsequently, reducing O2 to H2O. In the
absence of external ligands, heme d is in the high-spin state with an
open coordination site for binding O2. The nature of the axial ligation of
heme d to the protein, or evenwhether there is an axial ligand provided
by the protein, is unclear. It has been claimed that the reduction of
cytochrome bd is associated with binding of an endogenous protein
ligand to heme d [242]. The oxidized heme dmay or may not be ligated
to an endogenous protein substituent. Resonance Raman and ENDOR
studies indicate that the ligand is not histidine, cysteine or tyrosinate,
but that the single axial ligand is either a weakly coordinating protein
donor or a water molecule [230,243,244]. In contrast, EPR studies
indicated that the heme d axial ligand is histidine in an anomalous
condition or some other nitrogenous amino acid residue [245]. Finally, it
has been suggested that Glu99 of subunit I is a prime candidate for such
a role [214,246].

7.3. Heme redox potentials

The apparent values for the midpoint redox potentials of hemes
b558, b595 and d for the bd enzymes solubilized in n-dodecyl-β-D-
maltoside at pH 7.0 (Em) are respectively +176, +168, and+258 mV
(E. coli bd-I) and +166, +251, and +310 mV (A. vinelandii) [241].
These are within the range of the values reported earlier for E. coli
[219,220,224,247,248] and A. vinelandii [249]. Notably, the Em value of
heme b558 can depend on the detergent used for solubilization [248]. In
particular, octylglucoside and cholate cause a large decrease in the Em
valueof hemeb558, and this correlateswith the reversible inactivation of
the enzyme [248]. The Em values of all three heme components of
cytochrome bd are sensitive to pH between pH 5.8 and 8.3 with a
ΔEm/ΔpH of−61 mV for heme d and−40 mV for hemes b558 and b595,
indicating that reduction of cytochrome bd is accompanied by enzyme
protonation [248]. A recent study [225] revealed a significant redox
interaction between heme b558 and heme b595, whereas the interaction
between heme d and either both hemes b appears to be rather weak.



Fig. 4. Proposed topology of subunits I and II of cytochrome bd-I from E. coli. The axial
ligands of heme b595 (H19) and heme b558 (H186 and M393) in subunit I are
highlighted. The model is based on the data reported in [67,213,229].

Fig. 5. Scheme for electron and proton transfer pathways in cytochrome bd-I from
E. coli. There are two protonatable groups, XP and XN redox-coupled to the heme b595/
heme d active site. A highly conserved E445 was proposed to be either the XP group or
the gateway in a channel that connects XP with the cytoplasm or the periplasm [41]. A
strictly conserved E107 is a part of the channel mediating proton transfer to XN from the
cytoplasm [48].
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However, the presence of heme d itself decreases the much larger
interaction between the two hemes b [225].

8. Proposed structure

The X-ray structure of cytochrome bd has not been determined.
Conventional studies of the protein topology in the membrane suggest
that all three hemes are located near the periplasmic side of the
membrane [67,229], although an alternative view also exists [250,251].
Fig. 4 shows topological models of subunits I (CydA) and II (CydB) of
cytochrome bd-I from E. coli [213]. Both subunits are integralmembrane
proteins. Subunit I consists of nine transmembrane helices with the
N-terminus in the periplasm and the C-terminus in the cytoplasm [67].
Subunit II is composed of eight transmembraneheliceswith bothN- and
C-termini in the cytoplasm [67]. The Q-loop in subunit I connects
transmembrane helices 6 and 7, and is directly involved in QH2 binding
and oxidation [61–66]. Thus the QH2-oxidizing site in cytochrome bd is
located on the periplasmic side of themembrane. Cytochrome bd-I from
E. coli is proposed to contain a single site for the binding and oxidation of
quinol [65,66,252]. However, evidence for a secondquinonebinding site
in cytochrome bd from Corynebacterium glutamicum has also reported
[69].

Using a set of 815 sequences of genes encoding cytochrome bd, a
number of residues in subunit I are totally (N99%) conserved [213].
These residues include those which are identified as ligands to the
heme components of the enzyme. In addition, since the active site of
O2 reduction is located near the periplasmic surface and protons for
H2O production are taken from the bacterial cytoplasm, there must
be at least one transmembrane proton-conducting pathway to
convey protons from the cytoplasm to the heme b595/heme d site
[41,46,48,67] (Fig. 5). Several polar or ionizable residues that are
highly conserved in the bd-family have been postulated to be a part of
this putative proton channel.

The residues that are totally conserved within the entire bd-family
include His19 (the heme b595 axial ligand [230]), His186 and Met393
(the heme b558 axial ligands [226–228]), Lys252 and Glu257 (involved
in QH2 binding [66]), Arg448 (unknown function), and Glu99, Glu107,
and Ser140 (proposed to be components of a proton channel [48,67]
and important for heme binding in the heme d/heme b595 di-heme
site [213,214]). Slightly less conserved (95–99%) are Glu445 (required
for charge compensation of the b595/d O2-reducing site upon its full
reduction by two electrons [41]), Asn148 (plausible component of a
proton channel), and Arg9 (unknown function) [213]. Somewhat less
conserved (~85%) are Arg391 (stabilizes the reduced form of heme
b558 [253]) and Asp239 (unknown function), however these residues
are totally conserved within the A subfamily of cytochromes bd [213].
Other conserved residues are glycines, prolines, phenylalanines, or
tryptophans, whichmay play structural roles. There is only one totally
(N99%) conserved residue (Trp57) in subunit II [213]. Within the
subfamily of bd-type oxygen reductaseswhich have the “long Q-loop”,
Arg100, Asp29, and Asp120 of subunit II are totally conserved and
Asp58 (subunit II of E. coli cytochrome bd-I) is either an aspartate or
glutamate [213]. The N-terminal portion of subunit II has been
suggested to be involved in the binding of heme d/heme b595 [213,254].

Fig. 3 shows an unrooted tree showing the relative sequence
relationships of 815 sequences of cytochrome bd from the genomes
of Bacteria and Archaea. It is seen in Fig. 3 that the “long Q-loop”
members form a phylogenetic clade distinct from the other members
of the family. This is most likely due to an insertional event within the
Q-loop. This subfamily contains many, but not all, of the cytochrome
bd oxygen reductases from Proteobacteria (including E. coli). Also
shown in Fig. 3 are two clades that define the bd-family members
found in Archaea. In contrast, the bd-family oxygen reductases found
in Firmicutes or Bacteroides are distributed widely among the
phylogenetic groups shown in Fig. 3. This illustrates the large role
played by horizontal gene transfer in the distribution of the bd-type
oxygen reductases.
9. Binding of ligands (other than O2)

Since hemes d and b595 in cytochrome bd are in the high-spin
pentacoordinate state, they could potentially bind ligands. One may
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anticipate that the enzyme in the reduced state binds electroneutral
molecules like O2, CO, and NO, whereas the oxidized cytochrome bd
prefers ligands in the anionic form such as cyanide and azide. Heme d
binds ligands readily whereas the ligand reactivity of heme b595 is
minor despite the fact that this is a high spin heme [37,39,255]. Heme
b558, although a low-spin hexacoordinate, may also bind ligands to
some extent (e.g., CO or cyanide) [37,255]. Such a marginal reactivity
is possibly due to weakening the bond of the methionine axial ligand
(Met393) to heme b558 iron caused by the isolation procedure and/or
protein denaturation [255].
9.1. Carbon monoxide

Addition of CO to the three-electron reduced formof cytochrome bd,
denoted as R3, causes a red shift of the 628 nm heme d band and the
increased absorption around 540 nm in the visible, as well as a
distinctive W-shaped difference spectrum in the Soret region
[37,39,150,255–257]. The W-shaped feature is due to a small bandshift
of unligated heme b595 induced by CO interactionwith the nearby heme
d [38,40,43]. Only a small fraction of heme b595 (b5%) in cytochrome bd
binds CO at room or low temperature [37,39]. The apparent Kd for
the CO-heme d complex with the fully reduced (R3) cytochrome bd-I
from E. coliwas determined to be ~80 nM [255]. The R3 cytochrome bd
can form a photosensitive heme d-CO complex [258]. Flash photolysis of
CO bound to heme d at cryogenic temperatures results in a
redistribution of CO such that as much 15% of heme b595 is bound to
CO, showing the proximity of these two hemes [35]. Following flash-
photolysis of the heme d-CO complex in the fully reduced enzyme (R3)
at room temperature, CO recombines with ferrous heme d proportion-
ally to the external CO concentration with a second order bimolecular
rate constant of 108 M−1 s−1 (Table 4) [43,222,249,259].

The one-electron reduced form of the enzyme (R1) can also be
examined. Since heme d has a substantially higher midpoint potential
than the other two heme components, heme d is the only heme
reduced in the R1, or mixed-valence, state of the ‘as prepared’ enzyme.
Upon reaction with CO, one gets the CO-heme d adduct (b5583+b595

3+d2+-
CO) [38,40,43,48,107,249]. After flash photolysis of the R1-CO
complex, a substantial fraction of the CO flashed off heme d2+ gets
trapped inside the protein and undergoes geminate recombination
with heme d2+ on the pico- and nanosecond time scale [38,43]. The
data indicate that the redox state of heme b595 controls the pathway
for ligand (CO) transfer between heme d and the bulk phase, which
is open when heme b595 is reduced but closed when heme b595 is
oxidized [38,43,107].
Table 4
Kinetic and thermodynamic parameters for reaction of cytochrome bd with gaseous ligand

E. coli (cytochrome bd-I)

O2 CO

R1-O2 R3-O2 R1-CO R3-CO

kon (M−1 s−1) 2×109a,b 8×107a,c

koff (s−1) 78g 4.2g 6g

Kd (nM) 280h 80i

a [222].
b [47].
c [43].
d [241].
e [249].
f [278].
g [107].
h [240].
i [255].
9.2. Nitric oxide and other nitrogen-containing ligands

A number of small nitrogen-containing molecules can react with R3

cytochrome bd from E. coli and A. vinelandii. NO3
−, NO2

−, N2O3
2−

(trioxodinitrate), NH2OH and NO, when added to membranes contain-
ing cytochrome bd or the purified enzyme, give rise to decrease in
amplitude and shift of the 630 nm peak of ferrous heme d to
641–645 nm [31,37,106,107,218,245,257,260–264]. It appears that all
of these ligands result in chemical reactions, forming the same or a very
similar heme–nitrosyl compound [31], e.g., heme d2+-NO adduct. It has
also been suggested that a heme b5952+-NO adduct can be observed upon
adding nitrite to cytochorme bd in membranes [218].

Cytochrome bd can also produce a stable complex with NO in the
R1 state, in which ligand bound heme d is reduced while the b hemes
are oxidized [107,245]. The rates of NO dissociation from heme d2+

in both R3 and R1 states of cytochrome bd were determined [107]. In
the R3 state, NO dissociates from heme d2+ at an unusually high rate,
koff=0.133 s−1 [107], which is ~30-fold higher than the off-rate
measured for the ferrous heme a3 of the mitochondrial cytochrome c
oxidase (koff=0.004 s−1 [265]). These data are consistent with the
proposal that, in the heme–copper oxidases, CuB acts as a gate
controlling ligand binding to the heme in the active site [266]. Another
remarkable featureofNOdissociation fromcytochromebd is that thekoff
value in theR1 state (0.036 s−1), althoughstill quite high, is significantly
lower than that measured with the R3 enzyme [107] (Table 4). These
data show that the redox state of heme b595 controls the kinetic barrier
for ligand dissociation from the active site of cytochrome bd, similar to
the observations with CO dissociation from ferrous heme d [38,43,107].
The unusually high NO dissociation rate from cytochrome bd may
explain the observation [106] that the NO-poisoned cytochrome bd
recovers respiratory function much more rapidly than a heme–copper
oxygen reductase. It is postulated that expression of bd-type, instead of
heme–copper-type oxygen reductase, enhances bacterial tolerance to
nitrosative stress, thus promoting colonization of host intestine or other
microaerobic environments [107,108]. It was reported that, apart from
ferrous heme d, NO can also react with the oxoferryl and ferric state of
heme d, yielding the oxidized nitrite-bound heme d and the nitrosyl
adduct, respectively [110,111].
9.3. Cyanide

Reaction of ‘air-oxidized’ cytochrome bd with KCN causes the
decay of the ferrous heme d oxy-complex [267–273]. Cyanide-
induced changes to the EPR-spectrum include a low-spin signal and,
s at room temperature.

A. vinelandii

NO O2 CO

R1-NO R3-NO R3-O2 R1-CO R3-CO

2×109d 1×108e 1.5×108e

2.8×108f

0.036g 0.133g
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after prolonged incubation, a second weak low-spin signal that may
indicate some interaction of cyanide with heme b595 [220,257,274]. A
simple and fast method for conversion of the oxygenated enzyme into
the O form with the use of lipophilic electron acceptors [239] allowed
us to study the interaction of cyanide with the homogenous oxidized
preparation of cytochrome bd [37]. The MCD spectrum of the O
cytochrome bd-I from E. coli is dominated by an asymmetric signal in
the Soret. Submillimolar cyanide has no effect on the initial MCD
spectrum. 50 mM KCN induces minor changes of the MCD signal in
the Soret band, which can be modeled as transition of a part of the
low-spin heme b558 (15–20%) to its low-spin cyano-complex [37].
There is no evidence of the interaction of high-spin ferric heme b595
with the ligand [37]. On the contrary, based on the EPR spectra,
Tsubaki et al. [36] proposed that the treatment of ‘air-oxidized’
cytochrome bdwith cyanide results in a cyanide-bridging species with
a “heme d3+\C_N\heme b595

3+” structure. However the authors [36]
did not account for the electron released from heme d upon cyanide
binding to ‘as prepared’ cytochrome bd. Resonance Raman studies
suggest that heme d is in the high-spin pentacoordinate state when it
is compounded with cyanide [230,275]. This would require either that
the endogenous axial ligand to heme d is displaced by cyanide,
maintaining a high-spin pentacoordinate state, or that there is no
endogenous axial ligand to heme d in the fully oxidized form of the
enzyme.
9.4. Hydrogen peroxide

Addition of excessH2O2 to E. colimembranes containing cytochrome
bd-I [276] and the purified enzyme in the ‘as prepared’ [231,237] or the
O [46,231,277] states gives rise to an absorption band at ~680 nm. The
reaction of H2O2with theO cytochrome bd also induces a red shift of the
γ-band [231,277]. H2O2 binds to ferric hemedwith anapparentKd value
of 30 μM, but it seems not to interact with heme b595 [231,277]. The O
cytochrome bd reacts with H2O2 with a second order rate constant of
600 M−1 s−1. The decay of the H2O2-induced spectral changes upon
addition of catalase (k~10−3 s−1) is about 20-fold slower than
expected for dissociation of H2O2 from the complex with heme d
assuming a simple reversible binding of peroxide [277]. This suggests
that the interaction of H2O2 with cytochrome bd is essentially
irreversible, giving rise to the F state of heme d [277]. The assignment
of the compound 680 to the F state of heme d is confirmed by resonance
d-CO [d………CO I]

>> ps

~200 p

~50 n
Fig. 6. Top: Scheme for reaction of fully reduced cytochrome bdwith O2. The three rhombuses
in the ferrous state. Bottom: Photolysis of CO from heme d in the fully reduced enzyme. Two
[43]. The state (d+CO) denotes a state where CO escaped from the enzyme.
Raman spectroscopy data [221]. Heme d in the F state is suggested to
be high-spin pentacoordinate [275].

10. Proposed catalytic mechanism

As discussed above, under physiological conditions cytochrome bd
from different prokaryotes likely oxidizes UQH2, MQH2 or PQH2. In
vitro a bd-type oxygen reductase can also utilize short chain
ubiquinols, menadiol, duroquinol, and artificial electron donors such
as TMPD. Of the in vitro substrates, ubiquinol-1 (plus excess
dithiothreitol) shows the highest turnover numbers [248,278]. The
activity of the purified oxidase depends on the nature of the detergent
in which the enzyme is solubilized. Cytochrome bd-I from E. coli is
inactive in octylglucoside or cholate but shows high activity in Tween-
20, Triton X-100 [248] or N-lauroyl-sarcosine [106]. The ubiquinol-1
oxidase activity of cytochrome bd-I has a broad optimum above pH 7.5
but decreases at more acidic pH values [248]. Cytochrome bd
possesses three distinct active sites — for QH2 oxidation, TMPD
oxidation and O2 reduction. All the three sites seem to be located at or
close to the periplasmic surface of the membrane. Electrons donated
from QH2 transfer to heme b558 and then to the b595/d di-heme site,
whereas electrons donated from TMPD transfer directly to the b595/d
site bypassing the QH2-binding site and heme b558 [62,279].

10.1. Mechanism of generation of the proton motive force

Cytochrome bd from E. coli andA. vinelandiiwas reported to generate
a transmembrane electric potential both in single turnover [41,46–48]
and under multiple turnover [27,44,280] conditions (H+/e−~1
[34,45,49,50]; q/e−~1 [281]). When reconstituted into liposomes,
cytochrome bd generates an uncoupler-sensitive transmembrane
voltage difference with a value of 160–180 mV (negative inside)
[27,44]. The QH2 molecule generated by the dehydrogenases of the
respiratory chain can diffuse laterally within the bilayer, finding its way
into the QH2 oxidizing site located near the outer side of themembrane.
Upon oxidation of QH2, two protons are released into the periplasmic
space, and twoelectrons are transferred through heme b558 to the b595/d
O2-reducing site, also located near the periplasmic surface of the
membrane. The four protons used for O2 reduction are taken up from
the cytoplasm. Single-turnover electrometric experiments show that
the generation of the membrane potential is associated with electron
transfer from heme b558 to the b595/d active site [41,46–48]. However,
s ~20 ns

s

d + CO[d………CO II]

represent hemes b558, b595, and d, respectively. Theminus sign denotes that the heme is
different configurations of dissociated CO in the enzyme (d…COi, i=I, II) are proposed
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since all of the three hemes are likely located close to the periplasmic
side of the membrane [67,229], the electron transfer itself is expected
to be parallel to the membrane surface and, therefore, cannot be
electrogenic [46]. Rather, it is proposed that electron transfer fromheme
b558 to the b595/d active site is coupled to vectorial proton transfer from
the cytoplasm towards the active site on the opposite (periplasmic) side
of the membrane [41,46–48]. The latter implies that there must be a
proton-conducting channel connecting the cytoplasm to the b595/d
active site [41,46,48] (Fig. 5). The transmembrane potential originates
primarily from protons moving from the cytoplasm to the O2-reducing
site on the opposite side of the membrane, and this accompanies
electron transfer from heme b558 to the b595/d active site. As shown in
Fig. 5, it is proposed that near the b595/d active site there are two
protonatable sites (XP and XN) that are accessible to the cytoplasm via a
proton-conducting channel.
10.2. Reaction of the fully reduced enzyme (R3) with O2

The reaction of the R3 cytochrome bdwithO2 has been studied using
the flow-flash method [282] by means of spectroscopic and electro-
metric techniques [41,46–48,222]. Recording absorption spectra and
membrane potential development with 1 μs time resolution resolves
the sequence of the catalytic intermediates and establishes which
catalytic steps are linked to electric potential generation [47]. The
scheme for this reaction is presented in Fig. 6 (top panel). The initial
complex of R3 cytochrome bd with CO (R3-CO) is photolyzed (the
photolysis details are shown in Fig. 6, bottom panel) in the presence of
O2. The unliganded R3 enzyme, generated by the CO-photolysis, binds
O2 very rapidly, forming the ferrous heme d oxy species (A3). The
R3→A3 transition is not electrogenic and its rate is proportional to [O2]
(kon=1.9×109 M−1 s−1 [47,222]). The A3 formation is followed by
electron transfer from heme b595 to form state P. The A3→P transition
occurs with τ=4.5 μs and is also nonelectrogenic [47]. Thus, electron
transfer from heme b595 to heme d is not coupled to membrane
Fig. 7. Cytochrome bd catalytic cycle. The scheme is based on the reports of Jünemann et al. [
and Borisov et al. [283]. Solid arrows show the natural catalytic reaction pathway. Dotted a
experimentally. The O form of the enzyme is most likely not to be an intermediate of the cat
potential generation [41,47]. It is proposed that P is a peroxy complex
of ferric heme d [47]. If this is the case, the bound peroxide is likely not
to be in the anionic form but at least singly protonated. The proton
may come from one of two postulated protonatable groups, XP and
XN, near the b595/d di-heme active site upon oxidation of the hemes
[41]. P is further converted into F upon electron transfer from heme
b558 with τ=48 μs. Formation of F is coupled to generation of a
membrane potential [41,46–48] due to the accompanying proton
transfer through the proposed proton channel (Fig. 5). At the F stage,
the b-type hemes are in a ferric state and heme d in an oxoferryl state.
When cytochrome bd contains bound QH2, the reaction proceeds
further to form the O enzyme. The F→O transition occurs with
τ=1.1 ms and is electrogenic as well [41,47] since this also involves
electron transfer from heme b558 to the b595/d active site with the
accompanying proton transfer.

Cytochrome bd can bindO2 being in the R1 state. Remarkably, in this
reaction, the dependence of the rate of O2 binding on [O2] is hyperbolic
thus revealing a saturation behavior. This is not observed for O2 binding
to the R3 enzyme [241]. It is speculated that the R1 enzyme exists in
the two different conformations in equilibrium, but only one of these
forms binds to O2. When in the “closed” conformation, cytochrome
bd provides no access for O2 to heme d2+, whereas in the “open”
conformation, O2 binds easily. The R3 enzyme is always in the open
conformation [241].
10.3. Catalytic cycle

Several relatively stable forms of cytochrome bd corresponding to
the intermediates of the catalytic cycle have been identified. Under
aerobic conditions, cytochrome bd is predominantly in the one-
electron-reduced state bound to O2 (A1), with lesser amounts of the
F and O forms. Under anaerobic conditions, the reduced forms of the
enzyme lacking an O2 ligand with one (R1) and three (R3) electrons
can be generated and examined. A short-lived complex of the three-
278], Kavanagh et al. [289], Matsumoto et al. [252], Belevich et al. [47], Yang et al. [290],
rrows indicate transitions that are not being part of the catalytic cycle can be observed
alytic cycle [290]. Intermediates populated at steady-state [283] are highlighted in gray.
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electron reduced cytochrome bd with O2 (A3) [46,47,222,241], an
“peroxide” intermediate P [47] and an oxoferryl compound F
[46,47,222] can be sequentially formed (Fig. 6). Turnover intermedi-
ates of E. coli cytochrome bd-I detected at steady-state are A1 and F
species (~40% each) and, to a lesser extent (~20%), a species with
ferric heme d and possibly one electron on heme b558 (R1) [283].
These data differ from those obtained with mammalian cytochrome c
oxidase, in which oxygenous intermediates were not found to be
populated at detectable levels under similar conditions [284]. A
plausible scheme of the catalytic cycle of cytochrome bd is shown in
Fig. 7.

10.4. Role of heme b595

Exogenous ligands added to cytochrome bd bind to heme d but do
not bind to a majority of the heme b595 population [31,37,39,255].
Heme b595, although in the high-spin pentacoordinate state, is
resistant to interaction with the classical ligands of high-spin iron-
porphyrin complexes. It cannot be ruled out that despite the high-spin
pentacoordinate state of the iron-porphyrin group, the specific features
of the protein environment are such that this redox cofactor is protected
from interaction with ligands. In such case, the participation of heme
b595 in O2 reduction in cooperation with heme d is unlikely and its role
would be limited to the transfer of an electron to heme d. A more likely
explanation is the following: (1) both heme b595 and heme d potentially
can bind ligands; (2) thehemes are located close to each other forminga
di-hemeactive site; (3) the spatial proximity of hemes b595 and d results
in steric restrictions allowing the di-heme site to bind only one ligand
molecule; and (4) heme d has a higher affinity for ligands than heme
b595, in which case the final result observed upon addition of a ligand
will always be the ligand binding to heme d, whereas heme b595 will
remain mainly in the unliganded state [37,39,231,255]. The data on the
redox coupling of the two hemes to the same ionizable groups [41], and
the migration of CO within the protein from heme d to heme b595 at
cryogenic temperatures [35] are in agreement with this proposal.
Modeling the excitonic interactions in absorption and CD spectra of
cytochrome bd yields an estimate of the Fed-to-Feb595 distance of about
10 Å [42]. This is markedly larger than that for the Fe/CuB pair in heme–
copper oxidases (4–5 Å). If this is the case, heme b595 cannot be a
functional analog of CuB. A possible role of heme b595, apart from
electron delivery to heme d and/or to an oxygenated intermediate
form of heme d, would be as a binding site for hydroxide produced from
heme d-bound O2 upon reductive cleavage of the O\O bond [42].

11. Conclusion

There are at least two reasons why cytochromes bd may be of
interest. First, they are found in many pathogenic bacteria and there is
growing evidence for a positive correlation between the virulence and
the level of cytochrome bd expression. We hope that our knowledge
on the structure and function of the bd enzymes will provide new
tools to combat diseases caused by pathogens, for instance, by using a
bacterial bd-type respiratory oxygen reductases as a drug target.
Second, it would be useful to knowwhat are the common features and
the differences between the mechanisms of O2 reduction to H2O by
cytochromes bd and heme–copper oxidases. Such a comparison could
allow us to gain further insight into the elements essential for proton
pumping coupled to the redox reaction inherent in heme–copper
oxidases.
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