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Taking the dth distance power of a graph, one adds edges between

all pairs of vertices of that graph whose distance is at most d. It is

shown that only the numbers −3, −2, −1, 0, 1, 2d can be integer

eigenvalues of a circuit distance power. Moreover, their respective

multiplicities are determined and explicit constructions for corre-

sponding eigenspacebases containingonly vectorswith entries−1,

0, 1 are given.
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1. Introduction

Given a graphG and apositive integerd, thedthdistance powerG(d) ofG is obtained fromG by adding

edges between all pairs of vertices whose distance is at most d. This implies that G(1) is isomorphic to

G. We are interested in distance powers of the circuit graph on n vertices (denoted by Cn). They belong

to the important class of circulant graphs.

Circulant graphs are characterized as follows. Assume that the vertices of a given graph are 0, 1, . . . ,
n − 1 and consider the set N of neighbors of vertex 0. The graph is circulant if and only if under every

possible cyclic rotation of the vertex numbers the set of neighbors of the new vertex 0 remains N.

We shall call N the jump set of the graph. Circulant graphs have many fascinating properties, cf. [1],

and interesting applications. For example, they play a role in the study of redundant communication

networks [2].
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Moreover, circulant graphsmodel quantumsystems. Such a system is periodic if andonly if its graph

is integral, i.e. if it has only integer eigenvalues [3]. The eigenvalues of a graph are the eigenvalues of

its adjacency matrix. This matrix is defined by numbering the vertices of the graph with 0, . . . , n − 1

and letting the entry at position (i, j) be one if the vertices numbered i and j are adjacent and zero

otherwise.1 The zero-one pattern of the adjacencymatrix depends on the chosen vertex numbering of

the vertices, but it follows frombasic linear algebra that its eigenvalues do not. The set of eigenvalues of

a graph, called its spectrum, reflects several structural properties of the graph (see, e.g. the books [4,5]).

There exists an elegant condition due to So [6] that asserts a given circulant graph with vertices

0, 1, . . . , n − 1 is integral if and only if its jump set N consists of complete sets of numbers having the

same gcdwith n. Let us check this condition for distance powers C
(d)
n of circuits. Clearly, the jump set of

a distance powerC
(d)
n is {1, 2, . . . , d, n − d, . . . , n − 2, n − 1}. Note that for oddn the condition k ∈ N is

equivalent toC
(d)
n being the complete graph, for evenn take k − 1 ∈ N. Nowassumen = 2k + 1and let

g = gcd(k, n). From the properties of the gcd it easily follows that necessarily g|1 and therefore k ∈ N,

sinced � 1. Similarly, it follows forn = 2k andg = gcd(k − 1, n) thatg|2. So, ford � 2,wehavek − 1 ∈
N. The bottom line is that a non-complete integral circuit distance powermust necessarily have d = 1,

which means it is a circuit. The eigenvalues of Cn are the numbers 2 cos(2π r/n) for r = 0, . . . , n − 1.

(cf. [7]). It is readily checked that the only non-complete integral circuit distance power are C4 and C6.

So, since integrality is outof reach fornon-complete circuit distancepowers,weanswer thequestion

which integers are possible eigenvalues at all. Some partial results exist in the literature. For instance,

it is well known and easy to show that the circuit graph Cn itself has eigenvalue 0 if and only if 4|n
(see [7]). Much more involved arithmetic expressions are required to describe singularity of circuit

distance powers C
(d)
n (see [8] and Theorem 6 in Section 2). In the special case of circuit squares C

(2)
n

related results were found by Davis et al. in [9]. We show that only the numbers −3, −2, −1, 0, 1, 2d

can be integer eigenvalues of a dth circuit distance power and determine the associated eigenvalue

multiplicities. This is the first goal of the present work, covered in Section 2.

The secondgoal is to study theeigenspaces associatedwith the integral eigenvalues.Wewill show in

Section 3 that it is always possible to choose simply structured bases, in the sense that the basis vectors

contain only entries from the set {−1, 0, 1}. Such bases have been shown to exist for a number of graph

classes. Usually, attention is restricted to the graph kernel, i.e. the eigenspace for the eigenvalue 0. The

existing literature features results on trees and forests [10–12], line graphs of trees [13,14], unicyclic

graphs [15,16], bipartite graphs [17], or cographs [18]. There exists analogous research concerning the

incidence matrix of a graph, where the problem of finding simple kernel bases can be considered as

solved (cf. [19–21]). What makes circuit distance powers interesting is that we can construct simply

structured bases for all eigenspaces of integer eigenvalues. Such a property is obvious for the complete

graphs Kn and, hence, for all usual product graphs (cf. [4]) that can be derived from them, for example

Sudokugraphs (cf. [22]). However, suchproducts are integral and it seems like thenon-complete circuit

distance powers are the first known class of non-integral graphs (excepting C4, C6) with this property.

Finally, in Section 4 we consider multiplicities of arbitrary general eigenvalues of circuit distance

powers. We show that all eigenvalues of C
(d)
n that lie in the interval (d/3, 2d) have multiplicity two.

Moreover, we observe only 0 and −2 may be single eigenvalues. We close with an outlook on path

distance powers where the situation is quite the opposite.

2. Integer eigenvalues and their multiplicities

There exists an explicit formula for the eigenvalues of a circuit distance power. The key is the

observation that they belong to the class of circulant graphs. In this section, we will tacitly assume

that all considered circuit powers C
(d)
n are non-complete, i.e. 1� d < n−1

2
.

Amatrix inwhich the ith column vector (counting from i = 0) can be derived from the first column

vector by means of a downward rotation by i entries is called a circulant matrix [23]. Clearly, with

respect to some suitable vertex numbering, every circulant graph has a circulant adjacency matrix.

1 When dealing with circulant graphs it is convenient to use zero-based matrix indices.
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In the following, let us abbreviate ωn = e
2π i
n .

Lemma 1 [7]. Let (a1, a2, . . . , an)
T be the first column of a real circulant matrix A. Then the eigenvalues of

A are exactly

λr =
n∑

j=1

ajω
(j−1)r
n , r = 0, . . . , n − 1. (1)

where ωn = e
2π i
n .

Theorem 2. The eigenvalues of C
(d)
n are exactly

λ0 = 2d, λr = sin
(
(2d + 1) r

n
π

)

sin r
n
π

− 1 (2)

for r = 1, . . . , n − 1.

Proof. Use Lemma 1 and the following well-known trigonometric identity for the functions Dq(x) of
the Dirichlet kernel [24]:

Dq(x) =
q∑

j=−q

eiqx = sin
((

q + 1
2

)
x
)

sin x
2

. � (3)

Let us now investigate which integer eigenvalues a circuit distance power can have. Writing the

second part of (2) as

(λr + 1) sin
r

n
π − sin

(
(2d + 1)

r

n
π

)
= 0 (4)

we see that it is a trigonometric Diophantine equation of the form

A sin 2πa + B sin 2πb = C (5)

with rational numbers A, B, C, a, b.

Conway and Jones have outlined how to find the solutions for such equations. Theorem 7 of their

paper [25] considers the similar case

A cos 2πa + B cos 2πb + C cos 2πc + D cos 2πd = E. (6)

Adapting their results, we get all nontrivial solutions of Eq. (5) as follows:

Theorem 3. Consider at most two distinct rational multiples of π lying in the interval (0,π/2) for which

some rational linear combination of their sines, but of no proper subset, is rational. The only possible linear
combinations, up to multiplication with a rational nonzero factor, are:

sin
π

6
= 1

2
, sin

3π

10
− sin

π

10
= 1

2
. (7)

Proposition 4. The set of integer eigenvalues of a circuit distance power C
(d)
n is a subset of

{−3,−2,−1, 0, 1, 2d}.
Proof. Consider an integer solution λr of Eq. (4) with 0 < r < n. For |λr + 1| � 3, Theorem 3 implies

that the equation has no solutionswith distinct rational degree sine arguments in the interval (0,π/2).
But evenpermitting arbitrary rational degree sine argumentsdoesnothelp, so that the equation cannot

be solved. �
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It is well known that the degree of regularity of a connected regular graph is an eigenvalue of

multiplicity one (cf. [7]). Therefore 2d is always a single eigenvalue of C
(d)
n . This also follows from

Theorem 2.

Next, we determine when and with which multiplicity the integers −3, −2, −1, 0, 1 occur as

eigenvalues of circuit distance powers.

Theorem 5. Let g = gcd(2d + 1, n). Then the multiplicity of −1 as an eigenvalue of C
(d)
n equals g − 1.

Proof. For λr = −1, Eq. (4) simply becomes

sin

(
(2d + 1)

r

n
π

)
= 0,

so that, equivalently, we need to find all positive integers r < n such that (2d + 1)r = ln for some

integer l. With the coprime integers d′ := (2d + 1)/g and n′ := n/g the last identity becomes d′r =
n′l. Hence l = d′l′ for a suitable integer l′, and therefore 1� r = n′l′ < n. This means 1� r < g. �

Let ordp(n) denote the order of the prime divisor pwith respect to n, i.e.

ordp(n) = max{j ∈ N0 : pj|n}.
Theorem 6 [8]. For given n, d ∈ N let g := gcd(n, d) and h := gcd(n, d + 1). Then the multiplicity of 0

as an eigenvalue of C
(d)
n is⎧⎨

⎩
g − 1 if ord2(d + 1) � ord2(n),
g + h − 1 if ord2(d + 1) < ord2(n) and 2�d,
g + h − 2 if 2|n and 2|d.

Proof. For λr = 0, Eq. (4) takes the form

sin
r

n
π = sin

(
(2d + 1)

r

n
π

)
,

so that we need to determine all integers 0 < r < n and l ∈ N0 such that dr = ln or 2(d + 1)r =
(2l + 1)n. A detailed proof can be found in [8]. �

Let us point out that, since circuit squares C
(2)
n are 4-circulant graphs of type 4Cn(1, 2), Theorem 5

in [9] proves our Theorem 6 in the special case d = 2.

Note that the terms h + g − 1 and h + g − 2 in Theorem 6 are fairly interesting. With the greatest

common divisors g := gcd(n, d) and h := gcd(n, d + 1) we see that the terms are essentially sums of

two multiplicative objects – a somewhat irritating fact for number theorists.

In the same manner as Theorem 6 we can prove the conditions for eigenvalue −2.

Theorem 7. For given n, d ∈ N let g := gcd(n, d) and h := gcd(n, d + 1). Then the multiplicity of −2

as an eigenvalue of C
(d)
n with d > 1 is⎧⎨

⎩
h − 1 if ord2(d) � ord2(n),
g + h − 1 if ord2(d) < ord2(n) and 2|d,
g + h − 2 if 2|n and 2�d.

Theorem 8. A circuit distance power C
(d)
n has eigenvalue 1 if and only if 6|n and d ≡ 1mod 6. In this case,

the multiplicity of the eigenvalue equals two.

Proof. For (λr + 1) = 2 we see from Theorem 3 that Eq. (4) can only have a solution if one of the

arguments is a multiple of π/2. To be precise, the first sine term must equal 1/2 and the second
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sine term must equal 1. This leads to the two solutions r/n = π/6 or r/n = 5π/6 for the first term

(recall that 0 < r < n) and to (2d + 1)r/n = π + 2kπ with k ∈ Z for the second term. Hence, 6|n
and d ≡ 1mod 6. �

Analogously, we obtain the following theorem:

Theorem 9. A circuit distance power C
(d)
n has eigenvalue −3 if and only if 6|n and d ≡ 4mod 6. In this

case, the multiplicity of the eigenvalue equals two.

3. Eigenspaces for integer eigenvalues

According to Davis [23], the column vectors of the matrix

F∗ = n− 1
2

(
ωij

n

)
i,j=0,...,n−1

∈ Cn×n,

which is the conjugate transpose of the Fourier matrix F ∈ Cn×n, constitute a complete and universal

set of complex eigenvectors for every circulant matrix M of order n. Moreover, the rth column of F∗,
denoted by col(r), yields a complex eigenvector for eigenvalue λr of Theorem 2.

In the following, we use this fact to establish real eigenspace bases. Evenmore, we assert that for all

integer eigenvalues of a circuit distance power C
(d)
n there exist associated simply structured eigenspace

bases.

Theorem 10. Every integer eigenvalue of C
(d)
n admits a simply structured eigenspace basis.

Proof. Case λr = 2d: It is well-known [7] that the all-ones vector forms a corresponding eigenspace

basis.

Case λr = −3 or λr = 1: It it easily verified that in both cases the vectors

(1, 1, 0,−1,−1, 0, . . .)T , (1, 0,−1,−1, 0, 1, . . .)T

form a corresponding simply structured basis.

Case λr = 0: Let g = gcd(n, d) and h = gcd(n, d + 1). It follows from the proof of Theorem 6 that

the vectors u1, . . . , ug−1 with uk = √
n · col(kn/g) form a basis of a subspace of kerC

(d)
n . Wewill show

that the vectors u′
1, . . . , u

′
g−1 with

u′
k =

n/g−1∑
m=0

ek+mg − eg+mg

constitute an alternative (real) basis of this subspace.

Let M be the matrix with columns u1, . . . , ug−1. Fix some 1� ι � g − 1 and let M′ be the matrix

with columns u1, . . . , ug−1, u
′
ι. Clearly, rkM′ � rkM = g − 1. Actually, we have rkM′ = g − 1 since

the sum of all row vectors ofM′ vanishes. To see this, consider the summation of the values in a single

column. We have uk = (ω
0kn/g
n ,ω

1kn/g
n ,ω

2kn/g
n , . . . ,ω

(g−1)kn/g
n )T so that its component sum is

g−1∑
m=0

ωmkn/g
n =

g−1∑
m=0

ωkm
g (8)

and therefore a Gaussian period. Because of 1� k � g − 1 we have g�k so that, according to the theory

of Gaussian periods (see [26,27]), the component sum in Eq. (8) is zero. Moreover, the component sum

of u′
ι is zero, too. Hence it follows that u′

ι is a linear combination of the vectors uk . Since the vectors

u′
1, . . . , u

′
g−1 are obviously linearly independent we see that they are a basis for the space spanned by

u1, . . . , ug−1.

In the case that ord2(d + 1) < ord2(n), equivalently 2h|n, the vectors v1, . . . , vh with vk = √
n ·

col(kn/h − n/(2h)) form a basis of another subspace of kerC
(d)
n .
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A similar argument as for the vectors u′
k shows that the vectors v′

1, . . . , v
′
h with

v′
k =

n/h−1∑
m=0

(−1)mek+mh

constitute a basis of the subspace of kerC
(d)
n spanned by the vectors v1, . . . , vh.

Let us consider the cases listed in Theorem 6:

• If ord2(d + 1) � ord2(n), then {u′
1, . . . , u

′
g−1} is a basis of kerC

(d)
n .

• If ord2(d + 1) < ord2(n) and 2�d, then {u′
1, . . . , u

′
g−1, v

′
1, . . . , v

′
h} is a basis of kerC

(d)
n .

• If 2|n and 2|d, then {u′
1, . . . , u

′
g−1, v

′
1, . . . , v

′
h} can be reduced to a basis of kerC

(d)
n .

All of the above bases are simply structured.

Case λr = −2: Use Theorem 7. This case is analogous to case λ = 0, only with swapped roles of

g and h. We have complex subspace basis vectors u1, . . . , ug with uk = √
n · col(kn/g − n/(2g)) and

can find real basis vectors u′
1, . . . , u

′
g with

u′
k =

n/g−1∑
m=0

(−1)mek+mg

for the same subspace. Likewise, we have complex vectors v1, . . . , vh−1 with vk = √
n · col(kn/h) and

real vectors v′
1, . . . , v

′
h−1 with

v′
k =

n/h−1∑
m=0

ek+mh − eh+mh.

Case λr = −1: With the help of Theorem 5, we can reason as in the first part of case λ = 0, but

with g = gcd(n, 2d + 1). The same complex vectors u1, . . . , ug−1 and real vectors u′
1, . . . , u

′
g−1 are

obtained. �

Example 11. Theorem 10 asserts that the vectors

(1, 0,−1, 0, 1, 0,−1, 0, . . . , 1, 0,−1, 0)T ,

(0, 1, 0,−1, 0, 1, 0,−1, . . . , 0, 1, 0,−1)T ,

(1, 0,−1, 1, 0,−1, 1, 0,−1, . . . , 1, 0,−1)T ,

(0, 1,−1, 0, 1,−1, 0, 1,−1, . . . , 0, 1,−1)T ,

form a simply structured eigenspace basis of C
(14)
36 for eigenvalue −2.

Remark 12. Note that some of the simply structured bases constructed in Theorem 10 are actually

orthogonal.

Forλ = 2d andλ = −1 this is always the case. Forλ = −3andλ = 1onecanneverobtain a simply

structured basis. For λ = 0, we see by Theorem 6 that the constructed basis is simply structured if

ord2(d + 1) < ord2(n) and gcd(n, d) � 2. Theorem 7 implies an analogous statement for λ = −2.

4. Eigenvalue multiplicities in general

Let us revisit Eqs. (1) and (3) by considering the functions fd : [0, 2π ] → R with

fd(ϕ) := sin((2d + 1)ϕ/2)

sin(ϕ/2)

for ϕ ∈ (0, 2π) and the continuous extension fd(0) = fd(2π) = 2d + 1.
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Fig. 1. Obtaining a lower bound for eigenvalues with multiplicity two.

Let us point out some obvious properties of fd. We have fd(π) = sin((2d + 1)π/2) ∈ {1,−1}.
Moreover, fd(ϕ) is axis symmetric with respect to ϕ = π . The zeros of fd are exactly the integer

multiples kq of q := 2π/(2d + 1) with k = 1, . . . , 2d.

Since we can find the eigenvalues of C
(d)
n as λ0 = 2d and λr = fd(2π r/n) − 1 /= 2d for r =

1, . . . , n − 1, the following fact is obvious:

Observation 13. Any eigenvalue of C
(d)
n of odd multiplicity must necessarily be 2d, 0 or −2.

Theorem 14. Every eigenvalue of C
(d)
n that is greater than d

π
− 1 and less than 2d has multiplicity two.

Proof. A simple upper bound for fd is

u : ϕ �→ 1

sin(ϕ/2)
.

This bound is strictly decreasing on (0,π). Observing symmetry, it follows that u(2q) � fd(ϕ) for ϕ ∈
(2q, 2π − 2q).

We have fd(0) = 2d + 1. So it is clear that fd is nonnegative in the interval (0, q) and non-positive

in the interval (q, 2q).
Claim: fd is strictly decreasing in the interval (0, q).
We consider the derivative

f ′d : ϕ �→ (2d + 1) cos ((2d + 1)ϕ/2) sin(ϕ/2) − sin ((2d + 1)ϕ/2) cos(ϕ/2)

2 sin2(ϕ/2)

and show that f ′d(ϕ) � 0 for 0� ϕ � q. It is easy to see that the first term of the numerator is positive

for 0 < ϕ < q/2 and negative for q/2 < ϕ < qwhereas the second term of the numerator is positive

for 0 < ϕ < q. Clearly, f ′d(ϕ) < 0 for q/2 < ϕ < q. For 0 < ϕ < q/2 consider the ratio of the two

numerator terms, which is

(2d + 1) cos ((2d + 1)ϕ/2) sin(ϕ/2)

sin ((2d + 1)ϕ/2) cos(ϕ/2)
= (2d + 1) tan(ϕ/2)

tan ((2d + 1)ϕ/2)
� 1

as can be concluded, for instance, from the tangent function’s Taylor expansion. This proves the claim.

It follows readily that any eigenvalue of C
(d)
n that is greater than u(2q) − 1 must have multiplicity

two, see Fig. 1. An immediate asymptotic relaxation is obtained by observing that u(2q) > d/π for all

d ∈ N and limd→∞ u(2q)
d/π

= 1. �

If we denote by ϕ0 the unique ϕ ∈ (2q, 3q) such that fd(ϕ) is maximal, then it is clear that one

could improve the bound d/π − 1 in Theorem 14 to a bound d/u(ϕ0) − 1. To do so, however, requires

tedious calculations and we could not get anything considerably smaller than 4d/15 − 1.
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For fixed 1� d � 4, the respective smallest graphs with eigenvalues that fulfil the condition of

Theorem 14 are C
(1)
5 , C

(2)
7 , C

(3)
10 , and C

(4)
12 .

We conclude with some remarks on path distance powers P
(d)
n .

Clearly, one may remove a suitable number of consecutive vertices from a circuit distance power

to obtain a path graph. It follows from this observation that there is a certain relation between the

spectra of path and circuit distance powers since the eigenvalues of a graph and an induced subgraph

interlace (cf. [28]).

However, path distance powers are not circulant and possess many spectral properties that are

quite unlike those of circuit distance powers. With respect to the questions considered so far in

this and the previous sections, we pose a number of conjectures which we derived from computer

experiments:

Conjecture 15. For every integer k there exists a pair (n, d) such that k is an eigenvalue of P
(d)
n .

Conjecture 16. The complete graph K2 is the only path distance power with eigenvalue 1.

Conjecture 17. Every eigenvalue λ /∈ {−2,−1, 0} of P(d)
n is simple.

This is a clear contrast to Observation 13 and Theorem 14. Towards proving Conjecture 17, it has be

shown that for n
2

< d < n − 1 every multiple eigenvalue λ /= −1 of P
(d)
n has multiplicity two [29].

But this result does not apply for values of d outside this range, cf. the graph P
(6)
15 with triple eigenvalue

zero.
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