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The cost and effectiveness of three solids thickening processes, i.e., gravity thickening settlers (GTS),
inclined belt filters (IBF), geotextile bag filters (GBF), were individually evaluated with the biosolids back-
wash produced in intensive aquaculture systems equipped with microscreen drum filters and radial-flow
settlers. The IBF produced the cleanest discharge and highest treatment efficiencies, likely reflecting the
rapid efficiency with which solids are separated from wastewater. The GBF was the least effective pro-
cess, i.e., GBF leachate contained the highest concentrations of TP, TN, and cBOD. However, GBF was most
effective for sludge volume reduction. Capital cost estimates for an IBF were more than twice that of GTS
and GBF of similar treatment capacity. The GTS had the lowest capital and annual operating cost esti-
mates. The estimated annual operating cost of the GBF was orders of magnitude higher than the IBF
and GTS, due to the high cost to replace bags.

� 2010 Elsevier Ltd. Open access under CC BY-NC-ND license.
1. Introduction

1.1. Background

Solids produced in water recirculating systems for fish culture
are comprised of a dilute mixture of uneaten feed, fish feces, and
biological floc that either grows in the water column or is shed
from nitrification reactors or other vessel/pipe surfaces (Cripps
and Bergheim, 2000). Rotating microscreen drum filters and grav-
ity settling units are the most typical methods used to remove
these biosolids from fish culture process water in recirculating sys-
tems. In our experience, the backwash and underflow generated by
these removal mechanisms typically results in a backwash (i.e.,
waste stream) with a total suspended solids (TSS) concentration
of 1000–2000 mg/L (0.1–0.2 % solids). However, drum filter back-
wash alone may contain only 200–400 mg/L TSS. Rapid separation
of these biosolids from water is necessary for efficient capture of
TSS and carbonaceous biochemical oxygen demand (cBOD5), as
well as to reduce leaching of dissolved nitrogen (primarily as
ammonia) and phosphorus (primarily as phosphate). The corollary
also holds true as fresh fecal matter and waste feed will immedi-
ately begin to leach dissolved nutrients and cBOD5 if they are
stored within the water for hours or days. For example, Chen
et al. (1993) reported that 30–40% of the TSS generated in a recir-
culating aquaculture system can decay if they are filtered and
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stored in a plastic-bead filter between 24 h backwash cycles. Sim-
ilarly, Stewart et al. (2006) found that biosolids stored in a quies-
cent sedimentation tank would leach and release 35% of total
phosphorus (TP), 35% of ortho-phosphate, 61% of total kjeldahl
nitrogen (TKN), 24% of total ammonia nitrogen (TAN), and 50% of
total organic carbon (TOC) in the first 24 h. Piedecausa et al.
(2009) determined that, at a temperature of 15 �C, all of the TAN
leached from gilt-head sea bream (Sparus aurata) and European
sea bass (Dicentrarchus labrax) fecal pellets in less than 30 min.
Further, the researchers found that leaching was faster for smaller
particles, and the fastest leaching rate occurs in the first few min-
utes, according to first-order kinetics (Piedecausa et al., 2009).

Effective reduction in overall sludge volume into a form practi-
cal for storage, off-site hauling, composting, or land application for
nutrient reuse and can significantly mitigate waste handling and
disposal costs (Metcalf and Eddy, 1991; Summerfelt and Vinci,
2008). Consequently, backwash flows must be dewatered from ini-
tial concentrations of <0.1–0.2% solids to concentrations of >5–10%
solids to achieve at least a 50–100 fold decrease in biosolids vol-
ume. Gravity thickening settlers (GTS) are the simplest and most
commonly used technology for dewatering biosolids from
intensive fish culture facilities (Henderson and Bromage 1988;
Bergheim et al. 1993, 1998; Chen et al. 1997, 2002; Brazil and
Summerfelt, 2006; Sindilariu et al., 2009), but constructed
wetlands (Summerfelt et al., 1999; Comeau et al., 2001), inclined
belt filters (IBF; Ebeling et al., 2006) and geotextile bag filters
(GBF; Sharrer et al., 2009) are also used. Septic tanks, which are
similar to GTS, are another commonly applied and practical option
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for treating backwash flows from recirculating systems at smaller
fish farms (Summerfelt and Penne, 2007). Application of these
technologies can differ widely in terms of solids and nutrient cap-
ture, footprint requirements, as well as capital and operating costs.
1.2. Gravity thickening settlers

Municipal and industrial wastewater treatment facilities com-
monly use GTS – also called circular, center-feed sedimentation ba-
sins or radial-flow settlers – for sedimentation of liquids
containing high concentrations of suspended solids with relatively
low specific-gravity, such as slow-settling microbiological solids
produced during secondary wastewater treatment (Metcalf and
Eddy, 1991). A GTS introduces water into the center of the vessel
inside a ‘‘turbulence-damping” cylinder. The injected water flows
outward in the vessel’s radial direction to the overflow collection
launder that surrounds the perimeter of the settler. Radial flow
from the center of the tank produces a progressively lower water
velocity along the settling path as the water approaches the efflu-
ent weir surrounding the perimeter of the tank (Metcalf and Eddy,
1991). These flow dynamics help to minimize turbulence and max-
imize solids settling to the base of the GTS, which is either shaped
into a steep 60� cone (as in the present study) or contains a scraper
system to remove settleable solids. Reduction in sludge volume
using gravity thickening mechanisms relies on the settling velocity
of the solids contained in the wastewater influent flow and the
eventual compaction of these solids as they collect at the base of
the vessel. Compaction of suspended solids occurs in gravity thick-
eners as particulates are supported on top of each other (Qasim,
1999). Accordingly, continued compression of solids within the
thickening basin is a function of the accumulation of additional
weight above (Qasim, 1999). Concentrated sludge is then drawn
off from a pipe located at the bottom-center of the sedimentation
basin.

In aquaculture applications, a GTS is sometimes called an off-
line settling basin because it is loaded intermittently. In these
cases, GTS are used to collect, thicken, and store the biosolids con-
tained in microscreen drum filter backwash and settling unit flush-
ing flows (Chen et al., 1997; Bergheim et al., 1993, 1998; IDEQ,
1998; Brazil and Summerfelt, 2006; Summerfelt and Penne,
2007; Summerfelt and Vinci, 2008; Sindilariu et al., 2009). When
used as off-line settlers, GTS are sized using a surface loading rate
of approximately 0.28–0.46 L/s of flow per square meter of settler
plan area (Bergheim et al., 1993, 1998; IDEQ, 1998). The cone bot-
tom of a GTS will typically only provide short (days) to intermedi-
ate (weeks or months) term storage for collected solids.
Concentrated biosolids are then removed at the base of the cone
and are typically land applied, composted, or hauled to a landfill.
Intermediate or long-term storage can result in the formation of
compacted, sticky, and viscous solids that can make effective solids
removal from the base of the cone more challenging (Summerfelt
and Vinci, 2008).

In addition to the use of GTS in effluent treatment applications,
they are also used in intensive aquaculture systems to remove set-
tleable solids that are concentrated within the bottom drain flow
exiting dual-drain circular culture tanks (Davidson and Summer-
felt, 2004, 2005; Johnson and Chen, 2006; Wolters et al., 2009).

In an assessment of the sludge thickening capacity of a gravity
settling cone, Bergheim et al. (1998) determined a solids removal
efficiency of 75–90% despite the infrequent removal of settled sol-
ids from the base of the cone. In subsequent research, Sindilariu
et al. (2009) and Brazil and Summerfelt (2006) assessed rotating
drum filter backwash settling in off-line settling basins and deter-
mined 87% and 97% removal efficiency of total suspended solids,
respectively.
1.3. Geotextile bag filters

GBF have been used to dewater high water content sewage
sludge (Ashworth, 2003; Wett et al., 2005), mine water sludge
and tailings fines (Newman et al., 2004), dairy and swine slurry la-
goons (Baker et al., 2002; Johnson, 2004), and aquaculture waste-
water (Sharrer et al., 2009). This durable, woven polyethylene
fabric can be hydraulically loaded with solids laden water, and
the approximately 425 lm pore size allows filtrate to pass through
the fabric while retaining solids within the bag.

Applying a polymer is required to enhance floc formation, facil-
itate solids retention within the geotextile bags, while maintaining
hydraulic permeability through the bags (Sharrer et al., 2009).
Ebeling et al. (2005) provides details regarding polymer type and
flocculation conditions, i.e., polymer dose, mixing speed and mix-
ing duration, to effectively remove suspended solids and particu-
late phosphorus from water recirculating system microscreen
drum filter backwash. Sharrer et al. (2009) describes GBF dewater-
ing and chemical coagulant application (alum, lime, and ferric
chloride) for dissolved phosphorus removal from water recirculat-
ing system microscreen drum filter backwash. Dissolved phospho-
rus precipitated by coagulants is subsequently removed as
flocculated solids and precipitates are filtered across the geotextile
material. However, leaching of biosolids after long-term storage
can re-solubilize inorganic phosphorus, especially under anaerobic
conditions (Ju et al., 2005; Yang et al., 2007). Solids can be loaded
into the bag and stored for intermediate periods of time (3–
12 months, depending on fill time). After being taken off-line and
allowed to dewater and dry, sludge cake is sufficiently dewatered,
i.e., to approximately 20% solids dry weight (Sharrer et al., 2009),
for shoveling out of the GBF, either manually or using heavy equip-
ment. The dewatered biosolids are suitable for land application,
composting, incineration, or landfill.

Research assessing alum and polymer amended geotextile
bags to dewater dairy lagoons indicates separation efficiencies
calculated on a mass basis of 90.4% of total solids, 85% of total
kjeldahl nitrogen, 100% of organic nitrogen, and 98.6% of phos-
phorus (Worley et al., 2008). In water recirculating system appli-
cations, dewatering microscreen drum filter backwash through
geotextile bags amended with a polymer flocculant, but without
a coagulant, has been shown to achieve separation efficiencies
for total suspended solids, organic nitrogen, inorganic nitrogen,
and total phosphorus of 96%, 73%, 42%, and 31%, respectively
(Personal communication, Thomas Losordo, North Carolina State
University, Raleigh, NC).

1.4. Inclined belt filter

Biosolids dewatering utilizing IBF technology combines the
chemical conditioning of backwash to enhance floc formation with
gravity filtering across a porous material. IBF differs from belt filter
presses, which apply a chemically conditioned backwash flow to a
gravity driven section of the filter where much of the water is
removed, and the remaining sludge is mechanically compressed
between opposing porous belts to remove additional water (MOP
FD-3, 2008; Metcalf and Eddy, 1991). Gravity IBF, a more recent
development in sludge thickening technology, dewaters chemi-
cally conditioned biosolids by gravity through a porous belt, but
does not rely on mechanical compaction (Qasim, 1999). To chem-
ically condition the biosolids, wastewater enters a reservoir
equipped with mixers for chemical amendment in addition to floc
formation and suspension. The solution then spills onto a gravity
filtering zone where the solids are collected on the belt and
scraped into a hopper. Collected sludge contains approximately
10% solids as dry weight (Ebeling et al., 2006) and can be pumped
to a transport tank and land applied, composted, or hauled off-site
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for disposal. Filtrate concentrations of TSS and reactive phosphorus
have been reported to be less than 30 and 0.07 mg/L, respectively
(Ebeling et al., 2006). Use of an IBF to thicken aquaculture back-
wash (Fig. 1) is more mechanically complex than either GTS or
GBF (Summerfelt and Vinci, 2008).

1.5. Objectives

A variety of solids thickening techniques are utilized in the
aquaculture industry, but their treatment efficiency, complexity,
labor requirements, and cost are vastly different. The primary
objective of this research was to compare three solids dewatering
mechanisms, i.e., GTS, IBF, and GBF, in the treatment of micro-
screen drum filter backwash and radial clarifier underflow from
recirculating fish culture systems. These three technologies were
chosen for comparative analysis because they each have distinct
advantages: the GTS is the most commonly used technology for
aquaculture dewatering applications, primarily because of its low
operating and maintenance requirements (Summerfelt and Vinci,
2008); the IBF technology has recently been installed for dewater-
ing biosolids contained in fish farm backwash flows at several
European and North American, especially in situations where a
low phosphorus concentration in treated effluent is required
(Wolters et al. (2009) reports one of these applications); the GBF
has also been used in several recent applications, particularly when
a high solids content sludge is desired. In contrast, sludge treat-
ment wetlands were not included in this study because we thought
that a multi-year study would be required to properly characterize
capture efficiency and dewatering capacity of wetlands that
are operated to store the collected biosolids for up to 10 years.
Centrifuges were not chosen because of their relatively high fixed
and variable costs, plus concerns with relatively large maintenance
requirements.

In this analysis, each technique’s treatment efficiency was as-
sessed in terms of solids capture efficiency (TSS, TVS), nutrient
reduction (nitrogen and phosphorus) capacity, and chemical oxy-
gen demand (COD) and cBOD5 removal, as well as final solids
and nutrient concentration of the thickened biosolds. A secondary
objective was to perform a cost analysis of each technology so that
a fish farmer can determine the most efficient and cost effective
waste treatment technology based upon capital and operating
costs as well as wastewater volume reduction, TSS and cBOD5 re-
moval, and nutrient retention.
Fig. 1. An inclined belt filter (IBF) and coagulation–flocculation tank operated for
microscreen drum filter backwash dewatering at the Craig Brook National Fish
Hatchery (East Orland, ME). Photo background shows alum and polymer dosing
systems and chemical reservoirs (in background).
2. Methods

2.1. Wastewater sources

The comparison of GTS, IBF, and GBF was conducted at The Con-
servation Fund Freshwater Institute (Shepherdstown, West Vir-
ginia, USA) using waste generated from the facility’s commercial
scale fry rearing, partial-reuse (Summerfelt et al., 2004), and fully
recirculating fish culture system (Davidson and Summerfelt,
2005), which were managed to produce approximately 35 mton/
year (80,000 lbs/year) of rainbow trout (Oncorhynchus mykiss). A
series of six pilot-scale fully recirculating fish culture systems that
produced rainbow trout (Davidson et al., 2009) was also used to
supply backwash for treatment. These backwash and flushing
flows were collected (as produced) in a common sump for equal-
ization and subsequent distribution to the experimental biosolids
thickening systems.
2.2. Gravity thickening settler

A single 2.26 m diameter � 2.59 m tall (Fig. 2) GTS was loaded
with biosolids and then emptied on three different occasions, with
each loading event lasting 21 days. Water sampling events were
conducted eight times during each 21 day biosolids loading period
for a total of 24 sampling events. To assess GTS performance,
wastewater was pumped from the common sump using a 1/3 hp
Goulds (Seneca Falls, NY) submersible pump connected to a float
switch that engaged the pump (as needed) at a prescribed sump
depth. Wastewater was intermittently loaded at a surface loading
rate of approximately 10,578 L/m2/day resulting in a mean volume
treated of approximately 38 m3/day. No coagulant or flocculant
amendments were administered. Influent samples were collected
from the wastewater common sump and supernatant samples
were taken from a collection port immediately subsequent to the
supernatant overflow weir.
2.3. Geotextile bag filter

GBF performance was assessed using three replicated bags
operated in parallel, simultaneously, during one 92 day period.
The GBF were fabricated utilizing geotextile material (TenCate
Geotube, Commerce, GA) with apparent pore openings of
425 lm. Each GBF measured approximately 1.4 m (4.6 ft) � 2.2 m
(7.2 ft), resulting in a total surface area of 6.2 m2 (66.2 ft2) per
bag. To capture filtrate from each GBF, bags were positioned at a
1% grade, atop a timber-framed gravel surface covered in pond
liner material, and bags were placed upon PVC-framed plastic
screen (Fig. 3). Wastewater was pumped to each GBF using three
submersible pumps (Model 8-CIM, Little Giant Pump Co., Okla-
homa City, OK) that were placed in the bottom of the common col-
lection sump. A Paragon Model EL72 electronic time controller
(Paragon Electrical Products, Downers Groves, IL) was programmed
to engage hourly pumping events for 0.5 min per event. Immedi-
ately subsequent to each submersible pump outlet, a 2% alum solu-
tion (created by dissolving bulk dry aluminum sulfate, Univar USA
Inc., Kirkland, WA) was applied as a coagulant at a concentration of
50 mg/L and a 2% polymer solution (CE 1950 polymer, Hychem Inc.,
Tampa, FL) was applied as a flocculant at a concentration of 25 mg/
L. Coagulant and flocculant were pumped from individual reser-
voirs using Masterflex Economy Model digital drive peristaltic
pumps (Cole Parmer Instrument Co., Vernon Hills, IL). Peristaltic
pump initiation was controlled concurrently with the submersible
pumps utilizing the same electronic time controller described
above. Mixing of chemical and wastewater was facilitated using
static inline mixers mounted immediately subsequent to chemical



Fig. 2. Photo and cross-sectional illustration of the gravity thickening settler (GTS) that was studied.
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addition, and contact time was enhanced with approximately 30 m
(98 ft) of 5.1 cm (2 in.) diameter PVC pipe prior to each GBF
influent.

Influent samples were taken at a sampling port subsequent to
each submersible pump outlet but prior to chemical addition. Fil-
trate samples were taken from three individual filtrate collection
tanks (Fig. 3) measuring approximately 0.74 m3 (195 gal) in volume,
which enabled discrete capture of the replicate filtrate flows. Total
volume from the previous 24 h of filtrate production was captured
in the collection tanks, manually homogenized, and sub-sampled.

2.4. Inclined belt filter

An IBF from Hydrotech (Vellinge, Sweden), with a coagulation-
flocculation tank (Fig. 4), was evaluated over a 16 day period. A
submersible pump located in the common wastewater sump



Fig. 3. Photo and cross-sectional illustration of the geotextile bag filter (GBF) used for dewatering aquaculture biosolids.
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loaded the coagulation–flocculation tank once every 15 min for
2 min at a rate of 37.9 lpm (10 gpm). In the first chamber of the
coagulation–flocculation tank, a 2% solution of alum (aluminum
sulfate, Univar USA Inc., Kirkland, WA) was dosed at 50 mg/L and
a slow-speed mixer (Fig. 4) promoted chemical mixing and main-
tained solids suspension. Wastewater then flowed into a relatively
small chamber where a high-speed flash mixer (Fig. 4) mixed a 2%
solution of Hychem CE 1950 polymer (Hychem Inc.) at a dose of
25 mg/L with the coagulated wastewater. Coagulated and polymer
amended wastewater then entered a last reservoir where a slow-
speed mixer (Fig. 4) was operated to facilitate biofloc formation
and keep the biosolids in suspension. As the belt filter system
was periodically loaded by additional pumping events, flocculated
wastewater spilled into the IBF (Fig. 4). The IBF contained a perme-
able belt, inclined at a 10� angle, with a pore size of approximately
300 lm. Filtrate passed through the belt as flocculated solids col-
lected on the belt surface, and head loss increased as the water le-
vel rose in the belt settling chamber. A level sensor engaged the
continuous belt and spray wash system, and a rubber scraper re-
moved solids into a collection hopper as the spray bar simulta-
neously cleaned the belt.

Belt filter influent samples were taken from a sampling port
immediately prior to chemical amendment. Filtrate samples were
taken from the system at a treated filtrate collection overflow site
and spray wash samples were taken from sampling port located
immediately after the spray wash apparatus.

2.5. Water quality analysis

Water samples collected to determine treatment efficiencies of
the GTS (influent and effluent), GBF (influent and effluent), and IBF
(influent, filtrate, and spray wash) were analyzed according to



Fig. 4. Drawing shows the two main components of the inclined belt filter (IBF) system for dewatering microscreen drum filter backwash and radial clarifier underflow from a
recirculating aquaculture system. (A) The coagulation/flocculation chambers facilitate chemical conditioning, flocculation, and mixing. (B) The IBF allows for solids
dewatering and sludge collection (IBF Drawing Courtesy of Water Management Technologies, Baton Rouge, Louisiana, USA).
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either APHA (1998) or Hach Chemical Company (Loveland, CO,
USA). Analytical procedures used were: total suspended and total
volatile solids (Standard Method – 2560), 5-Day carbonaceous bio-
chemical oxygen demand (Standard Method – 5210), chemical
oxygen demand (Standard Method –5220 D), total nitrogen (Hach
Methods – 10071 and 10072), total ammonia nitrogen (Standard
Method – 4500-NH3 B & C), total phosphorus (Standard Methods
– 4500 B-C and 4500 P-E), dissolved reactive phosphorus (Standard
Method – 4500 P-E), alkalinity (Standard Method – 2302). Dis-
solved oxygen, temperature, and pH were determined using a Hach
(Loveland, CO, USA) HQ40D handheld multi-parameter meter.
Thickened biosolids were assessed at a contract laboratory (Reli-
ance Laboratory, Martinsburg, WV) using Environmental Protec-
tion Agency (EPA) methods for total nitrogen (calculated), total
kjeldahl nitrogen (EPA 351.3), total nitrate-nitrogen (SW 9210), to-
tal nitrite nitrogen (EPA 351.4), phosphorus (EPA 365.2), potassium
(EPA 6010B), and percent solids (EPA 160.3).

2.6. Data analysis

Means and standard errors were calculated from data collected
from all sampling sites. Removal efficiencies for the GTS and GBF
were calculated based upon mean influent and effluent constituent
concentration. Because the inclined belt filter utilizes water to
clean the belt surface (spray wash) of residual waste, removal effi-
ciencies were calculated to account for the solids not captured in
the belt filter scrapings and re-saturated as a result of the cleaning
process. Consequently, removal efficiencies for the inclined belt fil-
ter were calculated on a mass flow basis by determining the mass
loaded to the inclined belt filter, captured with the belt scrapings,
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and un-captured due to spray wash cleaning in kilograms per day.
Removal efficiencies were calculated based upon mean influent,
effluent, and spray wash discharge mass, i.e., ((influent � (spray
wash + effluent))/influent) � 100.
3. Results and discussion

3.1. General water quality and captured solids characteristics

Study duration and sampling frequency are indicated in Table 1.
Temperature, dissolved oxygen, pH, and alkalinity for influent, fil-
trate, and spray wash are summarized in Table 2. Final solids content
of dewatered sludge was 9 ± 1%, 22 ± 1%, and 11 ± 0% for the GTS,
GBF, and IBF, respectively. Nitrogen, phosphorus, and potassium
(N, P, K) concentrations (on a dry weight basis) were 6.4 ± 2.0 (g/
kg), 2.4 ± 1.1 (g/kg), and 0.1 ± 0.0 (g/kg) for the GTS, 35.6 ± 3.2 (g/
kg), 1.5 ± 0.0 (g/kg), and 0.4 ± 0.0 (g/kg) for the geotextile bags, and
45.9 ± 1.7 (g/kg), 5.5 ± 1.0 (g/kg), and 0.9 ± 0.0 (g/kg) for the IBF.
GBF appeared to be the most effective method for simple sludge vol-
ume reduction with the ability to dewater solids to an extent greater
than 200-fold, which can significantly reduce sludge storage, han-
dling and hauling, or composting costs. The IBF appeared to have
the greater capacity at nutrient and cBOD5 retention. It is likely that
because the solids within the GBF were allowed to remain in situ un-
til the bags were completely loaded (92 days) and allowed to dry for
an additional 7 days, the long period of dewatering time more effec-
tively thickened the solids. Conversely, the higher N, P, K concentra-
tions observed in the IBF sludge cake likely reflected the rapid
efficiency with which solids are separated from wastewater.
3.2. Solids and cBOD5 removal

All three technologies performed similarly in terms of solids re-
moval capacity measured as TSS and TVS (Table 3). Removal effi-
Table 1
Indicates study duration, sampling frequency, surface and hydraulic loading rates,
final percent solids concentrations, and N, P, K concentrations for the gravity
thickening settler (GTS), geotextile bag filter (GBF), and inclined belt filter (IBF).

Geotextile
bag filter

Inclined
belt filter

Gravity
thickening
settler

Study duration (day) 92 16 21*

Sampling frequency (day) 44 8 8
Surface loading rate (L/day/m2) – – 10578
Hydraulic loading rate (L/day/m2) 66 4277 –
Final % solids 22 ± 1 11 ± 0 9 ± 1
Solids nitrogen concentration (g/kg)** 35.6 ± 3.2 45.9 ± 1.7 6.4 ± 2.0
Solids phosphorus concentration (g/kg)** 1.5 ± 0.0 5.5 ± 1.0 2.5 ± 1.1
Solids potassium concentration (g/kg)** 0.4 ± 0.0 0.9 ± 0.0 0.1 ± 0.0

* GTS study was performed three times, each for a 21-day period.
** Dry weight basis.

Table 2
Indicates influent, effluent (i.e., filtrate or supernatant), and spray wash temperature, pH, di
thickening settler (GTS), geotextile bag filter (GBF), and inclined belt filter (IBF).

Temperature (�C) pH (SU)

Gravity thickening settler
Influent 14.8 ± 0.2 7.51 ± 0.05
Effluent (Supernatant) 15.1 ± 0.3 7.23 ± 0.04

Geotextile bag filter
Influent 17.3 ± 0.3 7.55 ± 0.02
Effluent (filtrate) 20.1 ± 0.4 7.20 ± 0.02

Inclined belt filter
Influent 17.2 ± 0.8 7.58 ± 0.09
Effluent (filtrate) 18.8 ± 0.4 7.10 ± 0.07
Spray wash 19.6 ± 0.3 7.84 ± 0.05
ciencies for TSS were 92%, 95%, and 96% for the GTS, GBF, and
IBF, respectively. Similarly, TVS removal efficiencies were 89%,
94%, and 97% for the GTS, GBF, and IBF, respectively. As a result,
all technologies were quite efficient at capturing biosolids. Com-
parison of COD removal capacity indicates removal efficiencies of
80%, 70%, and 89% with the GTS, GBF, and IBF, respectively, indicat-
ing greatest COD removal when applying the IBF (Table 3). Simi-
larly, cBOD5 removal efficiencies were 47%, 57%, and 89% for the
GTS, GBF, and IBF, respectively, further indicating greater perfor-
mance applying the IBF (Table 3). Geotextile bags performed least
effectively in terms of COD and cBOD5 removal. It is likely that
intermediate storage of biosolids within the GBF under anaerobic
conditions resulted in the break down of organic matter and the re-
lease of organic compounds as measured by the COD and cBOD5

tests. Conversely, the relatively rapid rate that the IBF separated
biosolids from the backwash likely reduced the release of organic
compounds.

3.3. Nitrogen and phosphorus removal

Comparison of nutrient reduction capacity indicates TN removal
efficiencies of 58%, 39%, and 86% for the GTS, GBF, and IBF, respec-
tively (Table 4), demonstrating some capture of organically bound
nitrogen in all dewatering techniques. However, release of inor-
ganic nitrogen (TAN) from captured biosolids was evident in all
three dewatering technologies resulting in TAN removal efficien-
cies of �101%, �1461%, and �24% for the GTS, GBF, and IBF, respec-
tively (Table 4). Clearly, the IBF performed the best in terms of
reducing TAN leaching, because this unit rapidly separated bioso-
lids from the wastewater. The geotextile bags performed poorly
in this regard, as solids stored within the bags under anaerobic
conditions promoted TAN leaching. Further, the GBF demonstrated
an increase in nitrogen leaching rate over the course of the exper-
iment and a high proportion of inorganic nitrogen (TAN) relative to
the TN concentration in the bag filtrate (Fig. 5). However, in certain
applications, such as a hydroponic operation (Adler et al., 2000) or
nutrient deficient soil irrigation application, a low TSS and high
dissolved nutrient filtrate could be considered a value-added
resource.

All three technologies exhibited relatively efficient removal of
total phosphorus, producing removal efficiencies of 74%, 68%, and
92% for the gravity GTS, GBF, and IBF, respectively (Table 4). More
leaching of phosphorus occurred across the GTS and GBF, which re-
sulted in effluent dissolved reactive phosphorus (DRP) removal
efficiencies across these units of �145% and �1000%, respectively
(Table 4). GBF filtrate total phosphorus concentration was primar-
ily of the inorganic form (DRP) and the rate of leaching increased
over time (Fig. 6). The IBF, which incorporated 50 mg/L of alum
to precipitate DRP, was more effective in terms of DRP reduction
– resulting in 51% removal efficiency. It is likely that the capacity
for the IBF to coagulate dissolved phosphorus and rapidly separate
ssolved oxygen concentration, and alkalinity concentration (mean ± S.E.) across gravity

Dissolved oxygen (mg/L) Alkalinity (mg/L as CaCO3)

4.6 ± 0.4 279 ± 7
4.2 ± 0.2 312 ± 8

7.6 ± 0.3 303 ± 10
0.1 ± 0.0 363 ± 16

6.7 ± 0.5 268 ± 7
1.7 ± 0.2 282 ± 7
8.3 ± 0.1 271 ± 12



Table 3
Summarizes TSS, TVS, turbidity, COD, and cBOD5 influent and effluent concentrations (mean ± S.E.) and their respective removal efficiencies across the gravity thickening settler
(GTS), geotextile bag filter (GBF), and inclined belt filter (IBF).

TSS (mg/L) TVS (mg/L) Turbidity (ntu) COD (mg/L) cBOD5 (mg/L)

Gravity thickening settler
Influent 1002 ± 313 620 ± 148 301 ± 82 1268 ± 373 251 ± 55
Supernatant 84 ± 4 71 ± 4 61 ± 16 259 ± 27 133 ± 18
% Removal 92 89 80 80 47

Geotextile bag filter
Influent 1874 ± 120 1317 ± 171 621 ± 31 1896 ± 125 541 ± 58
Filtrate 98 ± 4 79 ± 2 56 ± 3 577 ± 20 235 ± 25
% Removal 95 94 96 70 57

Inclined belt filter
Influent 2084 ± 512 1946 ± 113 564 ± 125 2171 ± 652 956 ± 201
Filtrate 26 ± 5 30 ± 9 10 ± 3 174 ± 12 122 ± 17
Spray wash 215 ± 36 113 ± 18 93 ± 19 261 ± 47 109 ± 19
% Removal* 96 97 n/a 89 89

* Estimated percentage of the total mass removed in the IBF scrapings.

Table 4
Summarizes total nitrogen (TN), total ammonia nitrogen (TAN), total phosphorus (TP),
and dissolved reactive phosphorus (DRP) influent and effluent concentrations
(mean ± S.E.) and their respective removal efficiencies for the gravity thickening
settler (GTS), geotextile bag filter (GBF), and inclined belt filter (IBF).

TN (mg/L) TAN (mg/L) TP (mg/L) DRP (mg/L)

Gravity thickening settler
Influent 49 ± 7 1.9 ± 0.4 19 ± 4 1.4 ± 0.2
Supernatant 21 ± 3 3.8 ± 0.8 5 ± 1 3.4 ± 0.3
% Removal 58 �101 74 �145

Geotextile bag filter
Influent 62 ± 4 1.8 ± 0.1 40 ± 2 1.0 ± 0.1
Filtrate 38 ± 2 28 ± 1 13 ± 1 11 ± 1
% Removal 39 �1461 68 �1000

Inclined belt filter
Influent 100 ± 23 3 ± 1 32 ± 3 1.8 ± 0.3
Filtrate 11 ± 1 4 ± 1 1.2 ± 0.2 0.9 ± 0.2
Spray wash 13 ± 2 0.4 ± 0.1 6.1 ± 1.4 0.03 ± 0.02
% Removal* 86 �24 92 51

* Estimated percentage of the total mass removed in the belt filter scrapings.
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solids from backwash flow prevented leaching of additional organ-
ically bound phosphorus. Conversely, continued loading of back-
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Fig. 5. Indicates increasing nitrogen leaching rate over time in geotextile bag filtrate and
nitrogen concentration.
wash into the GBF likely promoted phosphorus leaching from the
solids stored inside the geotextile material.

Although differences existed in study duration and test condi-
tions for each of the technologies evaluated, most differences were
purposefully implemented to meet standard operating procedures
for each technology. Study duration for each technology differed
because the GBF (operated for one 92 day period) and GTS (oper-
ated for three 21 day periods) were only operated for sufficient
time to fill their respective bags/vessels with dewatered biosolids;
the IBF continuously scraped the collected biosolids from its belt,
which allowed the unit to operate practically indefinitely; how-
ever, we operated the IBF only for sufficient duration (one 16 day
period) to replicate the condition for data collection. In addition,
some test conditions differed, e.g., no coagulant or flocculent
amendments were used to pre-treat the wastewater entering the
GTS because biosolids could be captured effectively during settling
without the use of coagulation and flocculation aids. However, the
wastewater entering the GBF and IBF had to be pre-treated with
coagulation and flocculation aids to maintain permeability through
the geotextile filter. We also could not evaluate all three technolo-
gies at full-scale simultaneously, because only sufficient backwash
wastewater was available to load one full-scale technology at a
ay

/L)
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the proportion of inorganic nitrogen (total ammonia nitrogen) relative to the total
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time. Therefore, each technology was evaluated at different times,
which allowed the concentration of wastes in the inlet to vary suf-
ficiently to create slightly different test conditions for each tech-
nology. To compensate for the different inlet conditions, waste
treatment efficiency were calculated for each dewatering technol-
ogies and waste treatment performance was compared on a treat-
ment efficiency basis. We do not think that the differences in test
conditions, study duration, or coagulant/flocculent aid require-
ments were sufficient to significantly change performance results
or our final recommendations.
Table 5
Indicates capital costs associated with installation of a gravity thickening settler (GTS), ge
hypothetical 454 mt/year water recirculating system.

Description GTS Qty. GBF Qty.

Mobilization and demobilization of excavator/compactor – 4
Clearing and grubbing land for site preparation – 3458
Excavating bulk bank measure, excavator – 530
Compaction, riding, vibrating roller – 1
Solids equipment building 60 –
Equalization basin/lift station 1 1
Duplex submersible sewage pump system 1 1
Radial-flow gravity settling cone (30-m diameter, 60�) 2 –
One year of geotextile bag material (3.05-m diameter) – 876
Vinyl polyester liner and field installation – 3485
Mixing tank and inclined belt filter system, installation – –
Two general purpose laborers for equipment installation 5 5
Alum and polymer dosing system – 2
Dosing system placement and installation – 10
Permeate pumping system and installation – 1
Solids pumping system (pump and control panel) 1 –
Solids pumping system placement and installation 2 –
Instrumentation (flow meters) – –
Drainage material, 3/400 gravel fill – 353
Piping, subdrainage, plastic, perforated PVC, 400 – 1105
Slurry piping to storage tank (PVC, 30.5-m long) 1 –
Above ground slurry tank (160-m3) and installation 1 –
Pipe fitter 5 10
System electrical wiring (electrician and helper) 10 –

Subtotal
Design (20%)
Construction admin (10%)
Contingency (25%)
Bond ($12/1000 + 10% O&P)

Grand total

a Assumes 10% overhead and profit for material and equipment, 78.2% overhead and
3.4. Cost analysis

A comparison of the costs associated with large-scale imple-
mentation of GTS, GBF, and IBF technologies at a hypothetical
water recirculating system facility producing approximately
454 mt of fish annually (1000,000 lb/year) was determined. At a
mean facility feed conversion ratio (FCR) of 1.4, approximately
0.2 kg TSS would be captured in the rotating microscreen drum fil-
ter backwash per kg of feed applied and would result in the total
annual production of 127 mt of TSS. Assuming a total system recir-
otextile bag filter (GBF), and inclined belt filter (IBF) for dewatering biosolids from a

IBF Qty. Unit Unit costa GTS cost GBF cost IBF cost

– Ea. 249.18 – 997 –
– m2 1.08 – 3735 –
– m3 1.95 – 1034 –
– Day 1357.12 – 1357 –
130 m2 728.37 43,702 – 94,688
1 Ea. 4543.94 4544 4544 4544
1 Ea. 3849.78 3850 3850 3850
– Ea. 41,661.13 83,322 – –
– m 147.93 – 129,587 –
– m2 32.73 – 114,064 –
3 Ea. 116,696.25 – – 350,089
– Day 891 4455 4455 –
2 Ea. 19,618.50 – 39,237 39,237
10 Day 1350.22 – 13,502 13,502
1 Day 7615.74 – 7616 7616
3 Ea. 12,338.23 12,338 – 37,015
6 Day 891 1782 – 5346
3 Ea. 5863.00 – – 17,589
– m3 54.34 – 19,182 –
– m 37.19 – 41,095 –
3 Ea. 5997.17 5997 – 17,992
1 Ea. 81,168.73 81,169 – 81,169
10 Day 703.53 3518 7035 7035
15 Day 1101.99 11,020 – 16,530

255,697 391,289 696,201
51,139 78,258 139,240
25,570 39,129 69,620
63,924 97,822 174,050
3132 6432 8002

399,462 612,929 1087,113

profit for labor, and a 5% sales tax.



Table 6
Indicates energy consumption and chemical amendment operating costs for the gravity thickening settler, geotextile bag filter, and inclined belt filter for dewatering biosolids from a hypothetical 454 mt/year water recirculating system.
Estimate based upon an electricity cost of $0.10 ($/kW h).

Wastewater treatment
system

Operating unit Energy consumption
(kW/unit)

Run time/cycle
(min/unit)

Number of cycles/day
(per unit)

Daily energy consumption
(kW h/unit)

Number of operating
units

Unit monthly operational cost
($/month)

Gravity thickening
settler

Solids pump 0.829 2.3 24 0.763 1 2.32
Monthly operating cost 2.32
Annual operating cost 27.83

Geotextile bag filter Permeate pump 0.829 10 42 5.802 1 17.65
Polymer storage mixer 0.41 5 1 0.0345 2 0.21
Alum storage mixer
(continuous)

0.41 60 24 9.9467 2 60.51

Polymer dosing pump 0.13 0.42 1440 1.3000 2 7.91
Alum dosing pump 0.21 0.42 1440 2.0722 2 12.61

Alum addition 760 418.23
Polymer addition 38 109.44

Replacement geotextile
bags

72.97 9573.33

Monthly operating cost 10,199.88
Annual operating cost 122,186.83

Inclined Belt Filter Solids pump 0.829 1 156 2.155 3 19.72
Clarified water pump 0.829 10 42 5.802 1 17.70
Belt filter 0.21 0.5 180 0.3108 3 2.84
Mixing tank mixer
(continuous)

0.12 60 24 2.8800 6 52.70

Mixing Tank Mixer (high
speed)

0.12 1.50 720 2.1600 3 19.76

Polymer storage mixer 0.41 1 1 0.0069 3 0.06
Alum storage mixer
(continuous)

0.41 60 24 9.9467 3 91.01

Polymer dosing pump 0.13 0.42 720 0.6500 3 5.95
Alum dosing pump 0.21 0.42 720 1.0361 3 9.48

Alum addition 760 418.23
Polymer addition 38 109.44
Monthly operating cost 746.90
Annual operating cost 8726.17
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culating flow of 100,000 m3/day and drum filter backwash totaling
0.50% of the total system flow, then a volume of approximately 500
m3/day would require further solids dewatering by an on-site
treatment system. Hydraulic loading rates used to size each solids
dewatering technology were 28,500 L/min per unit for the GTS,
65 L/day per m2 fabric area for the GBF, and 132 L/min per unit
for the IBF.

Capital cost estimates for two GTS designed to dewater drum
filter backwash are summarized in Table 5. Using two GTS would
allow for one cone to be removed from service for short duration
without serious interruption in solids dewatering capacity while
biosolids are removed or when GTS maintenance is required. Major
equipment costs include equalization basin/lift station installation,
two 3.3 m (11-ft) diameter 60� cone-bottomed GTS, a 150 m3

(40,000 gallon) cast-in-place tank for storing thickened biosolids,
and solids pumping system to transfer settled solids to the storage
basin. Costs of major GTS equipment, site mobilization, prepara-
tion, and installation, including sales tax and overhead and profit,
total US $255,697 (Table 5).

Capital cost estimates for a GBF system designed to dewater the
biosolids are reported in Table 5. Major equipment for GBF dewa-
tering include equalization basin/lift station installation, first year
of geotextile bags, alum and polymer dosing system, gravel pad
and drain piping, and permeate pumping. Cost of major GBF equip-
ment, site mobilization, preparation, and installation, including
sales tax and overhead and profit, total US $391,289 (Table 5).
However, additional capital cost associated with housing a geotex-
tile bag, at the footprint required, to prevent freezing at higher lat-
itude locations may reduce desirability of its application.

Capital cost estimates for an IBF system to dewater biosolids are
indicated in Table 5. Major equipment, site mobilization, prepara-
tion, and installation costs for a treatment plant utilizing three
IBF’s would total US $696,201.

Cost multipliers associated with design fees, construction
administration costs, contingency funds, and bond fees for any of
the described dewatering options can be mitigated based upon
the resources available to the fish farmer. However, assuming the
cost multipliers listed (Table 5), total capital cost estimates for
installing GTS, GBF, and IBF systems are US $399,462, US
$612,929, and US $1087,113, respectively.

Estimated annual operating cost, including electrical expenses
related to pumping biosolids and chemical amendments (for the
GBF and IBF systems), as well as for purchasing alum and polymer,
total US $27, US $ 121,186, and US $8726, respectively, for the GTS,
GBF, and IBF systems (Table 6). Additional operating costs linked to
the disposal of thickened waste are neglected, because they will
likely vary based upon land application access and regulations,
composting facilities, or local contract hauling fees.

According to this analysis, the GTS system provides biosolids
dewatering capacity and waste capture at the lowest capital and
annual operating cost, assuming that solids disposal fees are ig-
nored for all options. In addition, the thickening cone’s ease of
use and lack of coagulant and flocculant requirements are benefi-
cial in terms of maintenance and operating costs. Capital costs
for both GTS and GBF were less than half of the capital cost of
the IBF. The GBF system, however, had orders of magnitude higher
annual operating costs, due to replacement of the geotextile bags,
than the two other technologies.
4. Conclusions

All three biosolids thickening technologies demonstrated effec-
tive solids capture, but varying degrees of solids dewatering, which
influences the cost of transporting these biosolids to nearby fields
to reuse the nutrients. The GBF demonstrated the greatest ability to
dewater solids, but with significant nutrient leaching into the fil-
trate. Nutrient leaching from the GTS was also evident, although
less so than the GBF. The IBF produced the cleanest discharge,
although more mechanically intricate, operationally complex, and
capital outlay demanding than the GBF and GTS. In contrast, the
GTS had the lowest capital and annual operating cost estimates,
but provided intermediate treatment performance.
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