
Computational Geometry 44 (2011) 206–215

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector
Contents lists available at ScienceDirect

Computational Geometry: Theory and
Applications

www.elsevier.com/locate/comgeo

Relay placement for fault tolerance in wireless networks in higher
dimensions ✩

Abhishek Kashyap a,∗, Samir Khuller b, Mark Shayman a

a Electrical and Computer Engineering, University of Maryland, College Park, United States
b Computer Science, University of Maryland, College Park, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 August 2008
Accepted 17 November 2010
Available online 20 November 2010
Communicated by J. Mitchell

Keywords:
Fault tolerance
Network connectivity

In this paper we consider the problem of adding the smallest number of additional (relay)
nodes to a network of static nodes with limited communication range so that the induced
communication graph is 2-connected (we consider both edge and vertex connectivity). The
problem is NP-hard. We develop algorithms that find close to optimal solutions for both
edge and vertex connectivity. We prove the algorithms have an approximation ratio of 2M
for nodes distributed in a d-dimensional Euclidean space, where M is the maximum node
degree of a Minimum Spanning Tree in d dimensions using Euclidean metrics. In addition,
our methods extend with the same approximation guarantees to a generalization when the
locations of relays are required to avoid certain polygonal regions (obstacles).

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

We consider a wireless network of static nodes with limited communication range, where the induced communication
graph may not be connected. We address the problem of providing connectivity and fault tolerance to the network.

We define fault tolerance as the existence of multiple internally vertex-disjoint (or edge-disjoint) paths between each
pair of the static wireless nodes (terminal nodes). If k-vertex (edge) disjoint paths exist between each pair of nodes, the
network is said to be k-vertex (edge) connected. A k-vertex (edge) connected graph has the property that the failure of any
set of (k − 1) nodes (edges) cannot disconnect the network.

We use additional relay nodes, whose position we can control, to achieve the desired level of connectivity (number of
vertex or edge disjoint paths) among the terminal nodes. We consider the problem to provide 2-(edge, vertex) connectivity
among the terminal nodes using minimum number of relay nodes. The relay nodes are assumed to have same communica-
tion capabilities as terminal nodes, which have a fixed transmission range. We prove the algorithms have an approximation
ratio of 2M , when nodes are distributed in a d-dimensional Euclidean space, where M is the maximum node degree of a
Minimum Spanning Tree in that space. We also extend the algorithms to provide k-connectivity, for k � 2.

An application of our work is to wireless sensor networks. A wireless sensor network is a group of sensor nodes with
sensing, processing and communication capabilities, deployed to achieve a certain objective [19]. Typical applications of
sensor networks are habitat monitoring, environmental monitoring, object tracking, etc. Sensor networks may exist in harsh
network conditions, thus the network must be designed so that failure of some sensor nodes or some communication links
between them does not disrupt the network.

✩ This research was partially supported by AFOSR under grant F496200210217, NSF under grant CNS-0435206, NSF CCF-0430650, NSF CNS-0519554.
A preliminary version of this work (containing approximation analysis for networks in Euclidean plane) was published in Kashyap et al. (2006) [15]. The
work was also published in first author’s Ph.D. thesis (Kashyap, 2006) [14].

* Corresponding author.
E-mail addresses: abhi.kashyap@gmail.com (A. Kashyap), samir@cs.umd.edu (S. Khuller), shayman@ece.umd.edu (M. Shayman).
0925-7721/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.comgeo.2010.11.002

https://core.ac.uk/display/82447637?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.comgeo.2010.11.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/comgeo
mailto:abhi.kashyap@gmail.com
mailto:samir@cs.umd.edu
mailto:shayman@ece.umd.edu
http://dx.doi.org/10.1016/j.comgeo.2010.11.002

A. Kashyap et al. / Computational Geometry 44 (2011) 206–215 207
Fig. 1. Example application — Storm Petrel monitoring.

Fig. 1 shows an example sensor network [24] our work targets. The network was deployed for monitoring of birds, with
patches of sensor nodes deployed around and inside burrows, each patch having a gateway (or multiple so it is not a single
point of failure). The gateways are connected to a base station through a transit network. Sensor and gateway nodes have
very limited energy. Thus, they transmit at low power levels, and have a limited transmission range. It may not be feasible
to construct even a connected topology among the nodes due to their short transmission range and deployment in far-
away regions. This example demonstrates the typical application of our work: the design of fault-tolerant transit network
topology, where sensors are deployed in distant areas of interest.

There has been recent work in topology control of sensor networks. For example, Bredin et al. [3] present an O (1)-
approximation algorithms for achieving k-vertex connectivity among both terminal nodes and the added relay nodes using
minimum number of relays. Their analysis is for nodes distributed in a Euclidean plane. The approximation ratio they prove
is O (k4), which turns out to be 1152 for k = 2. Their algorithms use a similar approach as ours and their analysis for
the component that achieves the same objective as ours gives an approximation ratio of 48 for k = 2, while our analysis
proves the approximation ratio to be 10 for nodes distributed in a Euclidean plane. We analyze our algorithm for k = 2
for nodes distributed in Euclidean spaces of fixed dimension and prove a ratio of 2M , where M is the maximum node
degree in a minimum-degree Minimum Spanning Tree on nodes distributed in the Euclidean space. Note that M is five for
a Euclidean plane, and thus the analysis gives a ratio of 10 for Euclidean plane, which is the same as proven by the analysis
for the Euclidean plane in [15]. This is the first approximation bound for higher-dimensional Euclidean spaces for k > 1.
Hao et al. [13] consider the problem of placing the minimum number of backbone nodes (relays) among a set of candidate
locations such that each sensor node has paths to at least two backbone nodes, and the backbone nodes have at least two
vertex-disjoint paths between them. They provide an approximation algorithm having an O (D log n) approximation ratio,
where D depends on the diameter of the network and n is the number of sensor nodes in the network. Misra et al. [26]
provide O (1)-approximations for one and two-connectivity problems, where relay node placement is constrained to certain
candidate locations. Liu et al. [22] consider the problem of placing relays in a network of sensor nodes so that the network
is 2-connected. They provide a (6 + ε)-approximation algorithm for connectivity and two approximation algorithms for 2-
connectivity with ratios (24+ε) and (6/T +12+ε), where T is the ratio of relays needed for connectivity to the number of
sensor nodes. Their problem restricts the set of relays to be a dominating set among the sensor nodes, i.e., each sensor node
should be directly connected to at least one relay node. Srinivas et al. [30] consider a generalization of the same problem,
where relay nodes have a communication radius much larger than the sensor nodes. The problem is to use minimum relay
nodes such that they form a dominating set, and the graph on relay nodes is connected.

The problem of constructing a connected network on terminal nodes using a minimum number of relay nodes has been
considered in [4,21,25]. In [21], the problem is shown to be NP-Hard and an approximation algorithm for constructing a
tree using relay nodes is given, and the algorithm is shown to be a 5-approximation. The algorithm restricts the placement
of relay nodes on lines joining pairs of terminal nodes. It then assigns a weight function to each pair of terminal nodes
according to the number of relay nodes needed to connect them directly. They find a minimum spanning tree (MST) on
this graph. Proofs of 4-approximation ratio for the algorithm are provided in [25] and [4], and the bound is proved to be
tight. Mǎndoiu and Zelikovsky [25] prove the approximation ratio to be M − 1 for nodes distributed in higher dimension
metric spaces. Chen et al. [4] also provide a 3-approximation algorithm for the problem. Cheng et al. [5] provide a 2.5-
approximation randomized algorithm for placement of relay nodes to connect a given set of terminal nodes.

Authors in [7,12,23,31] consider the problems of one and two-connectivity where relay nodes have higher communica-
tion range (equal to R) than terminals (r), in Euclidean plane. They define one-tier problem where a path between each pair
of terminals can go through both terminals and relays, and two-tier problem where only relays can be used in each path
between terminals. Efrat et al. [7] provide a PTAS for the two-tier connectivity problem, and a 3.11-approximation for the
one-tier problem. They also prove that no PTAS exists for the one-tier problem. Zhang et al. [31] provide a 14-approximation

208 A. Kashyap et al. / Computational Geometry 44 (2011) 206–215
for the one-tier two-connectivity problem and (10 + ε)-approximation for the two-tier two-connectivity problem. Lloyd and
Xue [23] present a 7-approximation algorithm for the one-tier and a (5 + ε)-approximation algorithm for the two-tier
one-connectivity problem. Han et al. [12] study several versions of this problem, where sensor nodes have different com-
munication radii.

The contributions of this paper are as follows: (1) we provide algorithms for using relays to achieve k-(edge, vertex)
connectivity among terminals; (2) we prove the algorithms to be O(1)-approximation with respect to the optimal for k = 2,
for nodes distributed in a Euclidean space of fixed dimension; (3) we extend our algorithms to the generalization where the
relays cannot be placed in certain polygonal regions and show the same approximation ratios hold for this generalization as
well.

The paper is organized as follows: Section 2 gives the network model and problem statement. Section 3 describes the
proposed algorithm for achieving k-edge connectivity and gives the proof of approximation ratio for 2-edge connectivity.
Section 4 describes the k-vertex connectivity approximation algorithm, and proves the approximation ratio for k = 2. Sec-
tion 5 extends the algorithms to work with the same approximation ratio for the generalization where relays cannot be
placed in certain polygonal regions of the network. Section 6 concludes the paper.

2. Network model and problem statement

We model the network as a graph G = (V , E), where V is the set of sensor nodes, which we call terminal nodes, and
E is the set of links between them. We assume each node has a limited transmission range, which we normalize to one. It
is assumed that a node can connect to all nodes within its transmission range. The network can be in any d-dimensional
Euclidean space (with fixed d), i.e., the distance between two nodes is considered to be the Euclidean distance between
them. A link e = (x, y) belongs to E if nodes x and y are within unit distance of each other.

We assume we have relay nodes that are identical to the terminal nodes in terms of their transmission range and type
of links. We assume we have control over the location of relay nodes. Thus, we place the relay nodes in the network so that
the desired level of connectivity between terminal nodes is achieved. The problem can be formally stated as follows:

Given a graph G = (V , E), find the minimum number of relay nodes needed (and their locations) such that the set
of nodes V is k-edge (vertex) connected (k � 2) in the resulting graph G ′ = (V ′, E ′), V ⊆ V ′, E ⊆ E ′ . The objective is to
construct a graph such that ∀u, v ∈ V , λ(u, v) � k; where λ(u, v) is the number of edge-disjoint (or internally vertex-
disjoint) paths between u and v in G ′ .

3. Algorithm for k-edge connectivity

We follow the relay placement framework of the connectivity algorithm of [21]. To connect two terminal nodes outside
each other’s transmission range, the relay nodes are placed on the straight line connecting the two nodes. The algorithm for
achieving k-edge connectivity is described as follows. The algorithm proceeds by forming a multi-graph Gc on the terminal
nodes. There are k edges between each pair of terminal nodes in Gc . The weight function for the edges is defined as
ce = �|e|� − 1, where |e| is the length of an edge. The weight represents the number of relay nodes required to form an
edge. We do not allow the relay nodes to have edges other than the ones required to form the edge they are placed on.
Then it computes an approximate minimum cost spanning k-edge connected subgraph (G ′

c) of the multi-graph Gc .
The problem of finding the minimum cost spanning k-edge connected subgraph of a graph is NP-Hard [11]. Thus, we use

an approximation algorithm for the problem, proposed in [17]. The algorithm achieves an approximation ratio of 2 for the
problem, and takes O ((kn)2) time for a graph with n nodes. The algorithm uses the matroid intersection based algorithm
of [10], which finds k edge-disjoint spanning trees from a root vertex in a directed graph. It is worth noting that the weight
function �|e|� − 1 is not a metric as it does not satisfy triangle inequality. Thus, the approximation algorithm of [17] is
the best known for the problem. In the resulting subgraph from the approximation algorithm of [17], the relay nodes are
placed to form the links (of length greater than one) of the subgraph. In the next section, we prove that this algorithm
has an approximation ratio of 2M for 2-edge connectivity. The solution is then improved by removing some relays. The
relays are allowed to form edges with all nodes in their transmission range and sequentially removed if k-edge connectivity
is preserved. We call this step the sequential removal step, and it takes O (n′((n + n′)m)) time, where n′ is the number of
relays before the sequential removal step, and m is the number of edges in the network formed by the terminals and relays.
Thus, the first part of the algorithm takes O ((kn)2) time, while the complete algorithm takes O ((kn)2 + n′m(n + n′)) time.
Algorithm 1 describes the algorithm. For a network in a cuboid of length L, the maximum number of relays on any edge in
Gc is O (L), and the number of edges in the graph at the output of Step 3 of Algorithm 1 (G ′

c) is k(n − 1), thus, n′ = O (knL)

and m = O ((knL)2). Therefore, the algorithm takes O ((knL)4) time.
We briefly explain the algorithm for computing the approximate minimum-weight (cost) 2-edge connected subgraph [17]

of a multi-graph G: Create a directed graph D having anti-parallel directed edges for each undirected edge in G , each hav-
ing the same weight as the corresponding undirected edge. Pick any vertex as the root vertex. Run Gabow’s algorithm [10]
to get k edge-disjoint spanning trees. Construct a directed graph G ′

D = (V , E ′) containing the edges of all trees. Construct
an undirected graph G ′

c = (V , E ′′), where an edge (u, v) ∈ E ′′ if (u, v) ∈ E ′ and/or (v, u) ∈ E ′ . The algorithm outputs G ′
c .

For implementing Gabow’s matroid intersection [20] based algorithm, we use Frank’s weighted matroid intersection algo-
rithm [8] and Roskind and Tarjan’s algorithm for computing edge-disjoint spanning trees [29], which is based on greedy

A. Kashyap et al. / Computational Geometry 44 (2011) 206–215 209
Algorithm 1 Relay placement for k-edge connectivity

1: Make a multi-graph Gc = (V , Ec) by adding k edges between each pair of vertices of graph G .
2: Weight the edges of the graph as ce = �|e|� − 1. |e| represents the length of edge e.
3: Compute an approximate minimum cost spanning k-edge connected subgraph from this graph Gc using the approximation algorithm proposed in [17].

Let the resulting graph be G ′
c .

4: Place relay nodes (number equal to the weight of the edge) on the edges in G ′
c with link costs greater than zero.

5: For all pairs of nodes (including the relay nodes) in G ′
c within each other’s transmission range, form an edge.

6: For the relay nodes sorted arbitrarily, do the following (starting at i = 1):
• Remove node i (and all adjacent edges).
• Check for k-edge connectivity between the terminals.
• If the graph is k-edge connected, repeat for i = i + 1, else put back the node i and corresponding edges, and repeat for i = i + 1.
• Stop when all relay nodes have been considered.

7: Output the resulting graph.

matroid algorithm [20]. Due to the complexity of the algorithms, we do not describe them here. Details of these can be
found in [8,10] and [29].

3.1. Proof of approximation ratio for 2-edge connectivity

In this section, we consider the case of achieving 2-edge connectivity between terminal nodes. Let the terminal nodes
be placed in a Euclidean space of fixed dimension with MST number M [28]. MST number is defined as the maximum
node degree in a minimum-degree Minimum Spanning Tree (MST) spanning points from the space. The approximation ratio
for the MST based algorithm of [21] for connecting terminals using minimum relays has been shown to be M − 1 in [25].
The MST number for the Euclidean plane is 5 [27], three-dimensional Euclidean space is 12, and rectilinear plane (two-
dimensional space with metric defined by L1 norm) is 4. We analyze the worst-case performance of our algorithm and
prove a performance bound of the algorithm with respect to the optimal solution. We prove that the algorithm proposed
for 2-edge connectivity is a 2M-approximation.

We start with some notation. Let T be the set of terminals, and S be the set of optimally placed Steiner nodes (relay
nodes) needed to achieve 2-edge connectivity among the terminal nodes. Let s be the number of Steiner nodes needed
when we place them optimally, i.e., s = |S|. In the proof, we will call the relay nodes placed on straight lines between
terminals (as in our algorithm) beads and the optimally placed relay nodes Steiner nodes.

As a recap of our algorithm, it forms a 2-edge connected network among the terminal nodes by placing additional links
between them, and if two terminal nodes are more than unit distance apart, it adds beads (relay nodes) to form that link.
When we add such a link of length l, it consists of �l� − 1 beads. Theorem 3.1 states the main result of this section.

Theorem 3.1. If the optimal network uses s Steiner nodes so that terminals distributed in Euclidean space of MST number M are 2-edge
connected, Algorithm 1 forms a network with maximum of 2Ms beads and zero Steiner nodes, in which the terminal nodes are 2-edge
connected.

Proof. To prove Theorem 3.1, we prove the following lemma, and Theorem 3.1 follows directly.

Lemma 3.2. A 2-edge connected network on terminal nodes using minimum number of beads contains at most Ms beads, where s is
the minimum number of Steiner nodes needed.

Proof. Let G0 = (V 0, E0) be the optimal 2-edge connected network on terminals (having the minimum number of Steiner
nodes).

We follow the procedure of Algorithm 2 to construct a 2-edge connected network that has beads and no Steiner nodes.
We will prove that this network does not contain more than Ms beads.

Algorithm 2 starts by finding the connected components (SCi) of Steiner nodes in the graph constructed on the Steiner
nodes. It constructs a Breadth First Search (BFS) spanning tree on Steiner nodes for each connected component, starting with
any Steiner node in that component as the root. Let the trees be ST1, . . . , STm . The algorithm then removes Steiner nodes
of a connected component SC j from G j−1 and adds beads between the terminals connected to those Steiner nodes to get
G j which is also 2-edge connected between terminal nodes (Step 4). The process is repeated for all connected components,
and the resulting graph has zero Steiner nodes and is 2-edge connected on the terminals.

Let us now explain the procedure to construct G j from G j−1 by adding beads between the terminal nodes and removing
Steiner nodes. Consider the graph formed by the Steiner nodes in ST j and the terminal nodes within the transmission range
of these Steiner nodes. Call this graph H j . We add a cycle using beaded (and direct) links between the terminals contained
in H j in G j−1 and delete the Steiner nodes of ST j to get G j . Thus, all the terminals in H j are 2-edge connected to each
other. This procedure does not create a cut-edge and maintains 2-edge connectivity between the terminal nodes that were

210 A. Kashyap et al. / Computational Geometry 44 (2011) 206–215
Algorithm 2 Construction of 2-edge connected network with beads

1: Define a graph G S = (S, E S) on the Steiner nodes, where an edge (u, v) is in E S if it is an edge between the Steiner nodes u, v in G0.
2: Find all the connected components (SCi) in G S .
3: Construct a BFS spanning tree in each connected component, and call the trees ST1, . . . , STm .
4: (1) Repeat the following from j = 1 to m.

(2) Remove the Steiner nodes contained in ST j from G j−1 and add beads between terminals to get the graph G j , which is also 2-edge connected on
the terminals. The procedure for adding beads and removing Steiner nodes is explained in Algorithm 3.

5: Output the resulting graph Gm .

Fig. 2. Example for removal of Steiner nodes and addition of beads.

2-edge connected because of the Steiner nodes in ST j . As we do this for all trees ST1, . . . , STm ,1 and do not create any
cut-edge in any step, the resulting network is 2-edge connected on the terminals.2

Algorithm 3 describes the algorithm for construction of the cycle between terminal nodes connected to the Steiner nodes
of ST j . Fig. 2(a) shows an example, where A, B, . . . , F are Steiner nodes and 1,2, . . . ,11 are terminals. The algorithm works
as follows: Start at the root of ST j (call the root st1, dropping subscript j for simplicity), node A in the example. Connect
to st1 all terminal nodes within its transmission range, and mark them. Let the set of marked terminal nodes be {t1, . . . , tk},
nodes 1,2 in the example. Start a Depth First Search (DFS) traversal of the tree formed by ST j ∪ {t1, . . . , tk} (rooted at st1),
starting with any child of st1. The children of a node are traversed in the order of their distance from each other, i.e., the
next child to traverse is the one closest to the current child being traversed and the first to traverse is the one closest to the
parent node (in the example, traversal order is 1,2, B). Whenever a new Steiner node sti is encountered in the traversal,
all unmarked terminal nodes in its transmission range are connected to it, and added to the set of marked terminal nodes
(thus k increases at this step). In the example, the tree becomes ST j ∪ {1,2,3,4} when B is encountered. While doing the
DFS traversal, add required number of beads to form a link between each terminal with the next terminal encountered
in the DFS traversal. Complete the cycle by connecting the last added terminal to the first terminal encountered in the
DFS traversal.3 The edges longer than unit length are added using the required number of beads. Fig. 2(b) shows the cycle
created between the terminal nodes in the example. Finally, remove the Steiner nodes. Fig. 2(c) shows the final topology on
these terminals nodes.

We first state the bound on number of beads required in Algorithm 3, followed by proof of the bound. The number of
beads (b j) added while constructing G j from G j−1 is bounded as b j � Ms j , where s j is the number of Steiner nodes in ST j .
The total number of beads required (b) can then be bounded as b = ∑m

j=1 b j �
∑m

j=1 Ms j = Ms, which proves Lemma 3.2.
We now prove the bound on b j . We first prove a property of the nearest-neighbor traversal of neighbors around a node,

the property is stated in Lemma 3.3.

Lemma 3.3. Let there be an arbitrary set of points P = {x1, . . . , xl}, l > 0 distributed in a unit ball centered at a point x0 in d-
dimensional space. We form a cycle C consisting of the points in P : Add x1 to C . From the last point added to C , add an edge to the
closest point in P\C, add the new point to C , and repeat. Finally, add an edge to x1 when P = C. The maximum number of edges of
length greater than one is bounded by M, the MST number of the space.

1 If two terminal nodes are adjacent in multiple cycles formed while removing the Steiner components, we form maximum two beaded links between
them. This suffices for maintaining 2-edge connectivity as no cycle is broken.

2 We show in the next section that this procedure does not even create a cut-vertex if the Steiner network is 2-vertex connected on terminals.
3 Note that there will be at least two terminals connected to the Steiner nodes of ST j . If there were only one terminal node, the Steiner nodes of ST j

could be deleted from the optimal Steiner graph without affecting the connectivity. In case of two terminal nodes, the cycle formed has two edges between
the same pair of terminals.

A. Kashyap et al. / Computational Geometry 44 (2011) 206–215 211
Algorithm 3 Removal of Steiner nodes and addition of beads in ST j

1: Start at root st1 of ST j .
2: Connect to it all terminals within its transmission range, and mark them.
3: Construct a tree T j , with the vertex set as the Steiner nodes in ST j and a leaf vertex corresponding to each marked terminal vertex. The edges are the

edges of ST j and the edges between each Steiner node and the marked terminal vertices connected to it.
4: Do a Depth First Search (DFS) traversal of T j rooted at st1, starting with any child of st1. For each node, traverse its children according to their distance

from each other, i.e., the next child traversed is the child closest to the current child being traversed. The first child to be traversed at a Steiner node is
the one closest to the parent node.

5: Each time a new Steiner node sti is encountered, connect it to all unmarked terminal vertices in its range, and mark them. Update T j by adding these
terminal vertices, and continue DFS traversal around sti from the edge between sti and its parent.

6: Connect all the terminal vertices in order of their DFS traversal and complete the cycle between them.
7: Add beads to all added edges of length greater than one.
8: Add the newly added edges to G j−1, and remove the Steiner nodes of ST j and all incident edges from G j−1. The resulting graph is G j .

Fig. 3. Types of edge pairs charged to Steiner node sti .

Proof. Rename the points in P such that xi is the ith point being added to C . Start constructing C , and each time an edge
of length greater than one is encountered, mark its end-point that was already in C , call it yi (i = 1 for first such edge) and
increase i by one. Let the set of marked points be P ′ .

Remove the unmarked points of P (xi /∈ P ′) from the unit ball. The ball now contains x0 and the marked points yi ∈ P ′ .
When a point in P was added to P ′ , it was more than unit distance from all the points not in C , thus the distance of
yi, i � 1 is greater than one from all points y j, j > i. Thus, the distance of each yi is greater than one from all points in
P ′\{yi}. Thus, the only possible spanning tree on the set of points in P ′ ∪ x0 is a star with x0 directly connected to all
points yi ∈ P ′ . The degree of x0 in this MST is equal to the number of points in P ′ , which is equal to the number of edges
of length greater than one in C . As the degree of a minimum degree MST in the space is bounded by M , there cannot be
more than M edges of length greater than one in C . �

We now define our charging scheme, i.e., how we charge the beads to the Steiner nodes in ST j . We call the parent
Steiner node of a Steiner node as PS, the child Steiner nodes as CS, and terminal node as T. When a node in consideration
can be any one of CS or T, we refer to it as CS/T. We classify the ordered pairs of edges traversed around a Steiner node sti
during a DFS traversal of the tree into six types. Fig. 3 shows the types of ordered pair of edges, where the arrows represent
the order of traversal among the edges. We charge one bead to a Steiner node sti each time one of the six types of ordered
pair of edges is traversed. The six types of edge pairs of interest are listed below:

• Type I: PS-sti-CS/T (Fig. 3(a)). The distance between the parent Steiner node and the node at the other end is always
greater than one. If the node at the other end is a Steiner node, the distance is greater than one as the tree ST j is a
BFS tree (nodes two levels away in the tree cannot have distance less than one). If the other end is a terminal node, the
distance is greater than one due to the construction procedure of T j (if the distance were less than one, the terminal
would be a child of the PS node).

• Type II: CS/T-sti-PS (Fig. 3(b)). The distance between the parent Steiner node and the node at the other end is always
greater than one, reason being the same as explained for Type I edge pair.

• Type III: CS-sti-T (Fig. 3(c)), if the Euclidean distance between the end-nodes is more than one.
• Type IV: T-sti-CS (Fig. 3(d)), if the Euclidean distance between the end-nodes is more than one.
• Type V: T-sti-T (Fig. 3(e)), if the Euclidean distance between the end-nodes is more than one.
• Type VI: CS-sti-CS (Fig. 3(f)), if the Euclidean distance between the end-nodes is more than one.

212 A. Kashyap et al. / Computational Geometry 44 (2011) 206–215
Fig. 4. DFS paths of different lengths.

As all ordered pairs of edges are traversed once during the traversal, and the ones for which a bead is charged have the
end-points more than distance one apart, the maximum number of times a Steiner node is charged for a bead is M (by
Lemma 3.3).

We need to prove that this charging scheme charges the required number of beads in the construction of the cycle
among terminals. Every time we add an edge to connect two terminal nodes in T j , we claim that the number of beads
required (�|e|� − 1) can be charged to the Steiner nodes encountered in the DFS traversal between the two terminal nodes
using our charging scheme. Let two terminal vertices to be connected be tx and t y , and let there be l > 0 Steiner nodes on
the DFS path between them. Renumber the Steiner nodes on the DFS path to st1, . . . , stl . We consider the following cases
and prove that the charging scheme charges the required number of beads to the Steiner nodes:

• Case 1: l = 1: This case is depicted in Fig. 4(a). If both the terminals are connected to the same Steiner node st1, a bead
is needed only if they are more than distance one apart. In that case, the pair of edges tx − st1 − t y is of Type V and
thus the Steiner node st1 can be charged for the bead required.

• Case 2: l = 2: This case is depicted in Fig. 4(b). Let the two Steiner nodes in the DFS path be st1 and st2, with st1 being
the parent of st2 in the tree. Let tx be connected to st1 and t y to st2. Since st1 is the parent of st2, we connected all
unmarked neighboring terminal nodes to st1 first. Thus, t y is more than distance one apart from st1. If two beads are
needed between tx and t y , the distance between tx and st2 is more than one and between st1 and t y is more than one.
Thus both the pairs of edges, tx − st1 − st2 and st1 − st2 − t y are Type IV and I respectively for Steiner nodes st1 and
st2 respectively. Thus, one bead can be charged to each Steiner node. If we need one bead between tx and t y , that can
be charged to st2 as the pair of edges st1 − st2 − t y is always Type I for st2. The explanation for the case where st2 is
the parent of st1 is similar.

• Case 3: l > 2: This case is depicted in Fig. 4(c). The total number of beads required is upper bounded by the number of
Steiner nodes on any path between tx and t y . There are two cases to be considered:
1. The DFS path stays on one branch of the DFS tree. Let sti be the parent of sti+1 for i ∈ {1, . . . , l − 1}. One bead can be

charged to each of the nodes st2, . . . , stl as the pair of edges involving them in the path are of Type I. If the distance
between tx and st2 is less than one, the path can be modified by connecting tx directly to st2, and there is a path
with l − 1 Steiner nodes, and thus st1 can be removed. If it is greater than one, then a bead can be charged to st1 as
the pair of edges tx − st1 − st2 is of Type IV. Thus, there is a path of l −1 or l Steiner nodes between tx and t y (which
is the upper bound for the number of beads required), and there are enough Steiner nodes that can be charged once.
The case of going up a DFS branch, i.e., when sti is the parent of sti−1 for i ∈ {2, . . . , l} is similar.

2. The DFS path moves between two branches of the DFS tree. Let stk be the Steiner node at which the two branches
start. In this DFS path, sti is the parent node of sti−1, i ∈ {2, . . . ,k}, and sti is the parent node of sti+1, i ∈ {k, . . . , l−1}.
One bead can be charged to each of the nodes st1, . . . , stk−1 as the pair of edges involving them in the path are of
Type II. Similarly, one bead can be charged to each of the nodes stk+1, . . . , stl as the pair of edges involving them
in the path are of Type I. If the distance between stk−1 and stk+1 is less than one, the path can be modified by
connecting stk−1 directly to stk+1, and there is a path with l − 1 Steiner nodes, and thus stk can be removed. If it is
greater than one, then a bead can be charged to stk as the pair of edges stk−1 − stk − stk+1 is of Type VI. Thus, there
is a path of l − 1 or l Steiner nodes between tx and t y (which is the upper bound for the number of beads required),
and there are enough Steiner nodes that can be charged once.

We have shown that the charging scheme charges the required number of beads to the Steiner nodes, and each Steiner
node is charged maximum M times. Adding over all connected components of Steiner nodes in the network, the total

A. Kashyap et al. / Computational Geometry 44 (2011) 206–215 213
Fig. 5. Approximation ratio tightness example.

number of beads required is within M times the number of Steiner nodes. Thus, the bound b � Ms holds for the beaded
network we constructed. Hence, the relation holds for the optimal 2-edge connected beaded network as well. �

The algorithm of [17] is a 2-approximation for finding the minimum cost (cost of each edge being number of beads
required to form it) k-edge connected subgraph. Thus, the number of beads required is at most 2Ms. The last step of
Algorithm 1 (sequential removal step) removes beads from the network by allowing them to connect to all nodes within
the transmission range, so the resulting network after sequential removal also has maximum of 2Ms relay nodes. �

The bound of M for an optimal beaded network is tight for 2-edge connectivity. Let there be M pairs of nodes (placed
right next to each other) placed more than unit distance apart around a Steiner node in an optimal Steiner solution. The
optimal beaded network will connect them in a cycle using M beads in place of one Steiner node. Fig. 5(a) shows the
example for terminal nodes in a Euclidean plane. The circular nodes are terminal nodes, which are 2-edge connected using
a single Steiner node in the middle of the circle in the optimal Steiner node solution. If we remove the Steiner node, the
optimal network with beads will have a beaded link between every alternate pair of terminal nodes to have a cycle, and
that would require five beads (M = 5 for Euclidean plane). The resulting network is shown in Fig. 5(b).

4. Algorithm for k-vertex connectivity

We propose an algorithm for achieving k-vertex connectivity among terminal nodes using relays. We follow the same
framework as for edge-connectivity, i.e., add relays only on the line joining two terminal nodes. We construct a simple
complete graph on terminal nodes, rather than a multi-graph. The graph has an edge between each pair of terminal nodes,
with the same edge weight as defined before. We follow the same algorithm as Algorithm 1, with some components
changed. To find a minimum cost k-vertex connected spanning subgraph of a complete graph on terminal nodes, we use
the 2-approximation algorithm of [16] for k = 2, and the k-approximation algorithm of [18] for k > 2. The algorithm takes
O (k2n3m) time, where n is the number of terminals and m is the number of edges in the graph (which is n(n − 1) for a
complete graph, as in our case). For k � 7, we can use the improved approximation algorithms given in [2,6]. Also, in the
sequential relay removal step (last step of the algorithm), we check for k-vertex connectivity rather than k-edge connectivity.

We briefly explain the algorithm for computing the approximate minimum-weight 2-vertex connected subgraph [16] of
a graph G: Create a directed graph D having anti-parallel directed edges for each undirected edge in G , each having the
same weight as the corresponding undirected edge. Pick any two vertices x, y in D . Augment D by adding a new vertex r
and adding two new directed edges of weight 0 from r to x and y. Use the algorithm of [9] on this graph with r as the root
to find a minimum weight subgraph H with two openly disjoint paths between r and every vertex of D . The algorithm of
Frank and Tardos is based on submodular flows. Let S ⊆ E be the set of edges in G such that at least one of the copies of
each edge is in H . Since S was obtained from H , for any vertex v in G , there are two openly disjoint paths between v and
x, y in S . The algorithm returns S ∪ {e} as the solution, where e is the edge (x, y). If repeated on all possible pairs (x, y),
the algorithm is a 2-approximation of the optimal.

4.1. Proof of approximation ratio for 2-vertex connectivity

In this section, we prove that the vertex-connectivity algorithm is an O (1)-approximation for k = 2. Theorem 4.1 states
the desired result. We follow the same terminology as the last section.

Theorem 4.1. If the optimal network uses s Steiner nodes so that terminals are 2-vertex connected, our algorithm forms a network
with maximum of 2Ms beads and zero Steiner nodes, in which the terminal nodes are 2-vertex connected.

Proof. To prove Theorem 4.1, we prove the following lemma, and Theorem 4.1 follows directly as we use a 2-approximation
for finding the minimum-cost beaded network.

214 A. Kashyap et al. / Computational Geometry 44 (2011) 206–215
Lemma 4.2. A network that is 2-vertex connected on terminal nodes using the minimum number of beads contains at most Ms beads,
where s is the minimum number of Steiner nodes needed.

Proof. We follow similar constructions and proof as the proof for 2-edge connectivity. The only change in the construction of
the complete graph is that when we encounter a Steiner component in the optimal Steiner graph, that is connected to only
two terminals, we form a single edge between them rather than a cycle as for 2-edge connectivity. Also, if two terminals
are adjacent in multiple cycles formed while removing Steiner components, we keep only one of the edges between them.4

Thus, the maximum number of beads required is Ms, as for 2-edge connectivity. Therefore, we only need to prove that the
beaded graph constructed is 2-vertex connected on terminals.

We prove the 2-vertex connectivity of the network using induction. The proof is similar to the proof of 2-vertex con-
nectivity in [3]. Recall the notation: there are m Steiner components in the optimal solution, and the graph after removal
of component SC j from G j−1 is G j . Gm denotes the beaded graph with zero Steiner nodes. We need to prove that Gm is
2-vertex connected on terminals.

G0 is the optimal Steiner graph, that is 2-vertex connected between the terminals. Let Gi−1 be 2-vertex connected on
the terminals. Thus, removal of any vertex w does not disconnect the terminals in Gi−1. We prove by contradiction that
all terminals are connected in Gi − {w} as well. Let u and v be the two terminals which are disconnected in Gi − {w}. All
terminal pairs (u, v) have a path in Gi−1 − {w}. If the path does not use more than one terminal connected to component
SCi , u and v are connected in Gi − {w} as well. If the path uses at least two terminal vertices connected to SCi (u1, v1
being the first and last terminals connected to SCi on the path), that path exists as well if there are at least three terminals
connected to SCi , since we form a cycle (that is 2-vertex connected) between all terminals connected to SCi . If there are
just two terminals (which will be u1, v1), a direct edge exists between them and thus a path exists between u and v in
Gi − {w}. Thus, Gi is 2-vertex connected on terminals. Therefore, by induction, Gm is 2-vertex connected on terminals. �
5. Generalization to restricted relay placement

We extend our results for terminals distributed in a Euclidean plane to the scenario where relays cannot be placed in
certain polygonal regions of the network. We call these regions forbidden regions. We assume that two nodes can commu-
nicate if they are within each other’s transmission range even when there is a forbidden region between them. We modify
the edge and vertex connectivity algorithms to work with the same approximation guarantees for this generalization.

We follow the same algorithms as before for both edge connectivity and vertex connectivity. It may not be possible
to connect two terminals by placing relay nodes on the straight line between them due to the forbidden regions. Thus,
weight ce = �|e|� − 1, which represents the number of relays needed to connect two terminals by placing relays on the line
between them, cannot be used to weight the edges of the network formed on terminal nodes in our algorithms. Recently,
a polynomial time algorithm has been proposed for placing the minimum number of relay nodes needed to form a link
between two nodes with the presence of polygonal forbidden regions between them [1]. The problem is called the puddle-
jumper problem. We modify our edge weights by running the algorithm given in [1] on each pair of terminals in the
network to find the minimum number of relay nodes needed for each link, and using that as the weight of each edge. We
then run our edge connectivity and vertex connectivity algorithms on a network with these edge weights. Then, for the
selected links, we place the relays according to the algorithm given in [1].

5.1. Proof of approximation ratio

We now prove that the approximation ratio for the 2-edge and 2-vertex connectivity algorithms is 10 for terminals
distributed in the Euclidean plane. We follow the same construction as before, the only change being that beads (relay
nodes) are not placed on straight lines between terminal nodes now; instead they are placed optimally taking forbidden
regions into account. The only part of the proof that needs reconsideration to take forbidden regions into account is when
Steiner nodes on a tree (ST j) are removed from the optimal Steiner solution and beads are placed to make the cycle
between terminal nodes connected to tree ST j (see Algorithm 3). We argue that the number of relays needed to form a
beaded link between two terminals is still upper bounded by the number of Steiner nodes encountered in the depth first
traversal between the two terminals: Take any two terminals being connected using beads, and let a be the number of
Steiner nodes on the DFS path between them. Thus, there is a placement of Steiner nodes to connect the two terminal
nodes using a Steiner nodes. As even Steiner nodes could not be placed in forbidden regions, and we connect the terminals
using beads placed according to the optimal algorithm of [1], the number of beads required is upper bounded by a. Thus,
each bead can still be charged to a different Steiner node on the DFS path between the terminals. We showed in Section 3.1
that each Steiner node is charged at most 5 times (M = 5 for Euclidean plane), so the total number of beads required for
replacing the Steiner node tree ST j is still 5s j , s j being the number of Steiner nodes in ST j . Thus the total number of beads
required in the network is at most 5s for the beaded network using minimum number of beads, s being the number of
optimal Steiner nodes. As our algorithms use 2-approximations for finding the optimal beaded network, the algorithms are
10-approximations.

4 All the cycles still exist, thus it does not affect the 2-vertex connectivity requirements.

A. Kashyap et al. / Computational Geometry 44 (2011) 206–215 215
6. Conclusion

We consider the problem of constructing a fault-tolerant topology among static nodes distributed in a Euclidean space of
fixed dimension using additional relay nodes. We give O (1)-approximation algorithms for 2-edge and 2-vertex connectivity
in terms of the number of relay nodes required. The bound for 2-edge connectivity is proved to be tight. The algorithms also
work for achieving k-connectivity for higher values of k. We extend our algorithms to work with the same approximation
guarantees for the generalization where the relay nodes cannot be placed in certain polygonal regions of the network.

Acknowledgements

The authors would like to thank Amol Deshpande for useful discussions on sensor networks.

References

[1] E. Arkin, E. Demaine, J. Mitchell, The puddle-jumper problem, personal communication.
[2] V. Auletta, Y. Dinitz, Z. Nutov, D. Parente, A 2-approximation algorithm for finding an optimum 3-vertex-connected spanning subgraph, Journal of

Algorithms 32 (1999) 21–30.
[3] J.L. Bredin, E.D. Demaine, M. Hajiaghayi, D. Rus, Deploying sensor networks with guaranteed capacity and fault tolerance, ACM MobiHoc (2005) 309–

319.
[4] D. Chen, D.-Z. Du, X.-D. Hu, G.-H. Lin, L. Wang, G. Xue, Approximations for Steiner trees with minimum number of Steiner points, Theoretical Computer

Science 262 (2001) 83–99.
[5] X. Cheng, D.-Z. Du, L. Wang, B. Xu, Relay sensor placement in wireless sensor networks, Wireless Networks 14 (3) (2008) 347–355.
[6] Y. Dinitz, Z. Nutov, A 3-approximation algorithm for finding optimum 4,5-vertex connected spanning subgraphs, Journal of Algorithms 32 (1999) 31–40.
[7] A. Efrat, S.P. Fekete, P.R. Gaddehosur, J.S.B. Mitchell, V. Polishchuk, J. Suomela, Improved approximation algorithms for relay placement, in: ESA,

LNCS 5193 (2008) 356–367.
[8] A. Frank, A weighted matroid intersection algorithm, Journal of Algorithms 2 (1981) 328–336.
[9] A. Frank, E. Tardos, An application of submodular flows, Linear Algebra and its Applications 114/115 (1989) 329–348.

[10] H.N. Gabow, A matroid approach to finding edge connectivity and packing arborescences, Journal of Computer and System Sciences 50 (2) (1995)
259–273.

[11] M. Garey, D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman and Company, 1979.
[12] X. Han, X. Cao, E. Lloyd, C.-C. Shen, Fault-tolerant relay node placement in heterogeneous wireless sensor networks, IEEE INFOCOM (2007) 1667–1675.
[13] B. Hao, J. Tang, G. Xue, Fault-tolerant relay node placement in wireless sensor networks: Formulation and approximation, IEEE HPSR (2004) 246–250.
[14] A. Kashyap, Robust design of wireless networks, Ph.D. thesis, Electrical and Computer Engineering, University of Maryland, 2006.
[15] A. Kashyap, S. Khuller, M. Shayman, Relay placement for higher order connectivity in wireless sensor networks, IEEE INFOCOM (2006) 2229–2240.
[16] S. Khuller, B. Raghavachari, Improved approximation algorithms for uniform connectivity problems, Journal of Algorithms 21 (2) (1996) 434–450.
[17] S. Khuller, U. Vishkin, Biconnectivity approximations and graph carvings, Journal of the ACM 41 (2) (1994) 214–235.
[18] G. Kortsarz, Z. Nutov, Approximating node connectivity problems via set covers, Algorithmica 37 (2003) 75–92.
[19] B. Krishnamachari, Networking Wireless Sensors, Cambridge University Press, 2005.
[20] E.L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston, New York, 1976.
[21] G.-H. Lin, G.L. Xue, Steiner tree problem with minimum number of Steiner points and bounded edge-length, Information Processing Letters 69 (1999)

53–57.
[22] H. Liu, P.-J. Wan, X. Jia, Fault-tolerant relay node placement in wireless sensor networks, International Computing and Combinatorics Conference

(COCOON) (2005) 230–239.
[23] E.L. Lloyd, G. Xue, Relay node placement in wireless sensor networks, IEEE Transactions on Computer 56 (1) (2007) 134–138.
[24] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, J. Anderson, Wireless sensor networks for habitat monitoring, ACM WSNA (2002) 88–97.
[25] I. Mǎndoiu, A. Zelikovsky, A note on the MST heuristic for bounded edge-length Steiner trees with minimum number of Steiner points, Information

Processing Letters 75 (4) (2000) 165–167.
[26] S. Misra, D. Hong, G. Xue, J. Tang, Constrained relay node placement in wireless sensor networks to meet connectivity and survivability requirements,

IEEE INFOCOM (2008) 281–285.
[27] C. Monma, S. Suri, Transitions in geometric minimum spanning tree, Discrete and Computational Geometry 8 (1992) 265–293.
[28] G. Robins, J.S. Salowe, Low-degree minimum spanning trees, Discrete Computational Geometry 14 (1995) 151–165.
[29] J. Roskind, R.E. Tarjan, A note on finding minimum-cost edge-disjoint spanning trees, Mathematics of Operations Research 10 (4) (1985) 701–708.
[30] A. Srinivas, G. Zussman, E. Modiano, Mobile backbone networks – construction and maintenance, IEEE INFOCOM (2007) 1649–1657.
[31] W. Zhang, G. Xue, S. Misra, Fault-tolerant relay node placement in wireless sensor networks: Problems and algorithms, IEEE INFOCOM (2007) 1649–

1657.

	Relay placement for fault tolerance in wireless networks in higher dimensions
	Introduction
	Network model and problem statement
	Algorithm for k-edge connectivity
	Proof of approximation ratio for 2-edge connectivity

	Algorithm for k-vertex connectivity
	Proof of approximation ratio for 2-vertex connectivity

	Generalization to restricted relay placement
	Proof of approximation ratio

	Conclusion
	Acknowledgements
	References

