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Abstract Industrial robots are used for automatic drilling and riveting. The absolute position

accuracy of an industrial robot is one of the key performance indexes in aircraft assembly, and

can be improved through error compensation to meet aircraft assembly requirements. The achiev-

able accuracy and the difficulty of accuracy compensation implementation are closely related to the

choice of sampling points. Therefore, based on the error similarity error compensation method, a

method for choosing sampling points on a uniform grid is proposed. A simulation is conducted

to analyze the influence of the sample point locations on error compensation. In addition, the grid

steps of the sampling points are optimized using a statistical analysis method. The method is used to

generate grids and optimize the grid steps of a Kuka KR-210 robot. The experimental results show

that the method for planning sampling data can be used to effectively optimize the sampling grid.

After error compensation, the position accuracy of the robot meets the position accuracy require-

ments.
ª 2015 The Authors. Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The performance requirements for the new-generation aircraft
assembly are higher than ever before. With high productivity,
great flexibility, and low cost, articulated arm robots are used

to improve assembly quality and production efficiency.
Automatic drilling and riveting systems based on robots have
been gradually implemented in Airbus and Boeing aircraft

manufacturing systems.1–5 Aircraft assembly requires equip-
ment to have good absolute position accuracy (less than
0.5 mm). Therefore, it is necessary to improve the absolute

position accuracy of industrial robots.
For ease of implementation and cost, the calibration

method is more practical. Roth et al.6 summarizes that robot
calibration is an integrated process of modeling, measurement,

identification, and implementation of a new model. One of the
most difficult problems in robot calibration is choosing
measurement samples to minimize the absolute position error

based on an established error model. In fact, the sampling
point locations have a great impact on the robot error compen-
sation effect. Therefore, it is important to logically choose

sampling points.
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There are many methods for robot calibration. In order to
eliminate the singularity problem in the traditional D-H
model proposed by Stone and Sanderson7, several modeling

methods including the S-model8, the CPC (complete and
parametrically continuous) kinematic model9, and the modi-
fied D-H model10 have been developed and used widely. A

POE (product of exponentials) formula was used to calibrate
serial robots11, with which the singularity avoidance of the
POE-based model was proved. A laser tracker was used for

measurement and the robot parameter errors were identi-
fied.12 A feasible low-cost vision-based measurement system
using a single camera was developed for robot calibration
methods and systems.13 The Levenberg–Marquardt algorithm

was used to identify the 25 unknown parameter errors
described by the MD-H model.14 Neural networks were also
used to improve the poisoning accuracy of robot manipula-

tors.15 Park et al.16 employed a stationary camera and a
structured laser module (SLM) attached on a robot’s end
effector to measure the accurate position of the robot.16

Several observability indexes were promoted to measure the
goodness of a pose set based on analyzing the effects of noise
and variance of parameters.17

From existing literature, most research focuses on model
optimization, development of measuring equipment, and iden-
tification methods. Some methods use observability to judge
the effectiveness of sampling points but not planning. In this

study, a method is proposed for planning sampling points
based on the error similarity compensation method.18,19 In this
method, sampling points are optimized while the accuracy is

ensured. The number of sampling points is reduced to improve
the implementation efficiency.

2. Error compensation method based on error similarity

2.1. Analysis of kinematics model error

The transformation matrix Tn that relates the tool frame {T}
to the robot’s base frame {B} can be represented as:

Tn ¼ A1A2A3 . . .An ð1Þ

Ai ¼ RotðZ; hiÞ � Transð0; 0; diÞ � Transðai; 0; 0Þ �RotðX; aiÞ
ð2Þ

where Ai is the coordinate transformation matrix between joint

i � 1 and joint i, ai is the length of the connecting rod of the ith
joint, ai is the torsional angle of the connecting rod of the ith
joint, di is the joint deviation of the ith joint, and hi is the joint

rotation angle of the ith joint, X is the X-axis of the link frame,
Z is the Z-axis of the link frame.

According to Eq. (2), the description of Ai depends on its 4

parameters. For rotational freedom, hi is variable, and the
other 3 parameters are fixed. For a revolute joint, the joint
angle hi is the joint variable. According to the differential the-

ory, the differentiation of Eq. (2) is:

dAi ¼
oAi

oai
Dai þ

oAi

oai

Dai þ
oAi

odi
Ddi þ

oAi

ohi

Dhi

¼ AidAi

ð3Þ

where Dai is the micro offset of ai, Dai is the micro offset of ai,
Ddi is the micro offset of di, Dhi is the micro offset of hi . dAi is
the error matrix of Ai:
dAi ¼

0 �dzA
i �dyA

i �dxA
i

dzA
i 0 �dxA

i �dyA
i

dzA
i dxA

i 0 �dzA
i

0 0 0 0

2
6664

3
7775 ð4Þ

in which dxA
i , dy

A
i , dz

A
i are the position errors of frame {i}

with respect to frame {i � 1}. dxA
i , dy

A
i , dz

A
i are the orientation

errors of frame {i} with respect to frame {i � 1}.
With consideration of the error, the transformation model

between the robot coordinate system and the tool coordinate
system is established:

Tn þ dTn ¼ ðA1 þ dA1ÞðA1 þ dA1Þ . . . ðAn þ dAnÞ

¼
Yn
i¼1
ðAi þ dAiÞ

ð5Þ

If we ignore the differential higher-order term, we can obtain:

dTn ¼ Tn �
Xn
i¼1
ðU1

iþ1 � dAi �U1
iþ1Þ

¼ Tn � dTn

ð6Þ

where dTn is the error matrix of Tn, and U1
i ¼ A1A2 � � �An.

According to differential kinematics,

dTn ¼
Xn
i¼1
ðU�1iþ1 � dAi �Uiþ1Þ

¼

0 �dzn dyn dxn

dzn 0 �dxn dyn

�dyn dxn 0 dzn

0 0 0 0

2
6664

3
7775

ð7Þ

in which dxn, dyn, dzn are the position errors of frame {n} with
respect to frame {0}. dxn, dyn, dzn are the orientation errors of
frame {n} with respect to frame {0}.

The position and orientation errors vectors of the end effec-
tor are expressed as:

dn ¼ dxn; dyn; dzn½ �T ð8Þ

dn ¼ dxn; dyn; dzn½ �T ð9Þ
2.2. Robot position error similarity

Each component of the position error vector dn is described by

a series functions composed of the kinematic parameters:

dxn ¼ dxðh1; h2; . . . ; hnÞ
dyn ¼ dyðh1; h2; . . . ; hnÞ
dzn ¼ dzðh1; h2; . . . ; hnÞ

8><
>: ð10Þ

Each function is composed of algebraic functions and trigono-
metric functions. Therefore, there is a degree of similarity
between the pose errors when the joints configurations are

close. The similarity is related to the deviation of each joint
angle between configurations. Robot inverse kinematic analy-
sis has shown that the pose of a robot and its joint angles are

connected by a functional relation. Therefore, the pose errors
of a robot also exhibit similarity.

When a robot is in a specific pose, its position error dn can

be treated as a three-dimensional vector in the base coordinate
system. The concept of error similarity has been proposed by
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Zhou et al.18 The error similarity for error vectors of any two
poses is defined as:

x ¼
1 e1 ¼ e2

1=je1 � e2j e1 – e2

�
ð11Þ

where e1 and e2 are the position vectors, and x is the position
error similarity.

2.3. Error compensation model based on error similarity

In this study, inverse weighted interpolation is used to calcu-
late the position error. The method generates an evenly spaced

grid according to a particular step in the workspace of a robot
(see Fig. 1).

The grid vertex position errors are used to establish an error
model for the grid through the inverse distance weight method

(see Fig. 2). The error similarity between an arbitrary point P
and the vertex Piði ¼ 1; 2; . . . ; 8Þ is negatively correlated to the
distance. The correlated weight expression is as follows:
Fig. 1 Schematic of spatial grid generation.

Fig. 2 Inverse-distance weight interpolation model.

Table 1 Identified kinematic errors of a Kuka KR210 robot.

Link No. Da (mm) Dd (mm)

1 �0.32 �1.64
2 �1.40 2.5 · 10�5

3 0.78 3.59 · 10�

4 �0.18 �0.29
5 �2.89 · 10�2 �2.5 · 10

6 �3 · 10�5 9 · 10�2
qi ¼
ð1=siÞP8
j¼1ð1=sjÞ

ð12Þ

where qi is the weight of point P relative to the vertex Pi, and si
is the is the distance between point P and vertex point Pi.

The absolute position error vector for point P is predicted

as:

e ¼
X8
i¼1
ðqi � eiÞ ð13Þ

where e is the position error vector prediction of point P, and
ei is the position error vector of the grid vertex Pi.

The error of the target position e is predicted. To complete
the accuracy compensation, the coordinates of the target posi-
tion in the control program must be corrected. The corrected

coordinates are calculated as follows:

P0 ¼ Pþ e ð14Þ

where P0 is the theoretical position of point P after correction.

3. Analysis of the correlation between the error and the position

Depending on the method used for error compensation, sam-
pling points will affect the compensation. On one hand,

increasing the grid quantity increases the compensation accu-
racy. On the other hand, increasing the grid density also
increases the workload for measurements. To analyze the posi-

tion error distribution, an error identification model is used. A
Kuka KR-210 robot is used as the test robot. A robot calibra-
tion method proposed by Zhong et al.20 identified the 24 kine-

matics parameter errors. According to the method, the
geometric parameter errors of the test robot are identified. In
Table 1, Da is the length error of the connecting rod, Dd is

the offset error of the joint, Da is the torsional angle error of
the connecting rod, and Dh is the torsional angle error of the
joint.

Theoretically, the robot position error of any arbitrary

point can be calculated using the kinematics parameter errors
listed in Table 1. To view the correlation between the error and
the position distance, an error range simulation of TCP (tool

center point) is presented. There are 6 degrees of freedom at
the end of the robot. However, to simplify the problem, only
2 of those degrees are allowed to move the positions in the

X- and Y-directions. Table 2 lists the range of each degree of
freedom, X is position range in X-direction, Y is position range
in Y-direction, Z is position range in Z-direction, A is the angle

range of rotation about Z-direction, B is the angle range of
rotation about Y-direction, C the angle range of rotation
about X-direction.
Da (rad) Dh (rad)

2.62 · 10�5 �2.21 · 10�4

2.44 · 10�5 1.56 · 10�3

5 1.5 · 10�4 �7.36 · 10�4

�6.54 · 10�5 1.05 · 10�4

�6 �6.2 · 10�4 �6.14 · 10�4

5.58 · 10�4 �6.1 · 10�6



Table 2 Variation range of each degree of freedom.

Degree X (mm) Y (mm) Z (mm) A (�) B (�) C (�)

Arrange 1000–2000 �500–500 1800 0 90 0

Fig. 4 Method to get the robot’s A1 axis using a laser tracker.
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Fig. 3(a)–(c) are the results of error range simulation. In
which DX represents the position error in X-direction, DY rep-

resents the position error in Y-direction, DZ represents the
position error in Z-direction.

The simulation results show that the change of the posi-

tion error at the end of the robot is continuous with the
change of position, which is in agreement with the pose error
similarity described in Section 2.2. In addition, the error sur-

face is also spatially variable. For different compensation
spatial positions and sizes, the optimum error similarity plan-
ning methods for measurement of error compensation are
also different.

4. Experimental for sampling point planning

There are 24 error parameters for the error model. It is compli-

cated to process this model, and it is difficult to obtain the
optimum planning of measurement through analysis.
Therefore, a mathematical method based on statistics is used

to determine the optimum measurement that would be widely
suitable for use in the workspace of the robot. Because equal-
interval cubic grid points are used, the optimum grid step is the

primary parameter for the planning of sampling points.

4.1. Establishing the robot coordinate system

The robot coordinate system is located at the bottom of the
robot. It is the reference coordinate system of the robot’s
mechanical structure. Because of the robot installation method
and the restriction on the measuring range of the laser tracker

(FARO SI), the robot coordinate system often cannot be
directly measured in practice. The measurement software
included in the laser tracker system can be used to establish

the robot coordinate system by fitting as follows (see Fig. 4):

Step 1: The robot is maneuvered to the mechanical zero

position.
Step 2: The base plane is determined. The base plane is
located at the bottom of the robot. The SMR
(spherically-mounted reflector) is placed on the installation
Fig. 3 Error distributio
plane of the robot through spatial scanning. As many
points as possible are measured along the base of the robot
for plane fitting. The base plane is obtained by offset of the

fitted plane by the radius of the SMR.
Step 3: The origin and the Z-direction of the robot coordi-
nate system are determined. The SMR is fixed on the flange

at the end of the robot. The A1 axis is rotated, and as many
points as possible are measured to fit a circle, while keeping
the positions (joint angles) of the A2–A6 axis stationary.
The direction of the normal line of this circle is the

Z-direction of the robot coordinate system. The intersec-
tion point between the normal line and the base plane is
the origin of the robot coordinate system.

Step 4: The ZX-plane of the robot coordinate system is
determined. When the robot is at the mechanical zero posi-
tion, the SMR (B38.1 mm) is placed on the 6 holes

(B10 mm) on the flange for measurement. The 6 points
obtained from the measurement are used to fit a circle.
The center of this circle is the point on the ZX-plane of
the robot coordinate system (see Fig. 5).

Step 5: The robot coordinate system is established. The
robot coordinate system is established through the origin
of the coordinate system, the Z-direction, and the point

on the ZX-plane.

4.2. Experimental planning method

Analysis of the position errors in Section 2 shows that the error
surface of the robot is spatially variable. It may lead the error
ns of the robot TCP.



Fig. 5 Method to get the point on ZX-plane of the robot

coordinate system.

Fig. 7 Process of choosing the optimum grid size.
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compensations in different regions to respond differently to the

same change in different grids. Therefore, several representa-
tive areas in the region to be calibrated are selected to analyze
the variation of the compensation effect. Both a peripheral
area and a central area in the given region are tested. In addi-

tion, the points close to the central points of the marginal area
and the central area are used as the central points of the grids
(see Fig. 6). To test the error compensation method of different

grid sizes, several cubes with the same central point are chosen,
and their side lengths increase with a fixed value. Then, the
position errors of the grid vertex are obtained through mea-

surement at the selected sampling points for error compensa-
tion. To examine the actual accuracy after compensation, the
proposed error compensation method is used to correct the
errors of the test points in the region. The measured position

error is the actual compensation effect value when the grid side
length is selected. The maximum and standard deviation of the
position errors of different grid sizes after error compensation

are mathematically analyzed to meet the accuracy require-
ment, and then the optimum grid size is selected (see Fig. 7).

Step 1: According to the error distribution in the region,
experimental points within the given region are selected as
grid central points.

Step 2: For each grid central point, the cubes are selected in
different steps. The error similarity compensation method is
used to correct the position error.
Step 3: For each selected grid step, statistics are conducted

on the position accuracies of all the experimental points
after compensation.
Step 4: The optimum grid step is selected. If a step had a

relatively small standard deviation and a relatively long
Fig. 6 Selection of choosing grid center points.
grid step and its absolute position error meets the accuracy
requirements, then it is selected as the optimum grid step of
the given region.

4.3. Selection method for experimental points

According to industrial robots performance criteria and
related test methods up to China’s national standard and pro-
fessional standard (GB/T 12642––2001), 8 suitable positions

must be determined within the cube of the working region to
examine the pose accuracy of an industrial robot. As shown
in Fig. 5, Ciði ¼ 1; 2; . . . ; 8Þ are selected as the cubic vertices
(see Fig. 8).

There are 4 planes to be selected for a pose experiment
based on the standard requirement. In this case, the planes
are C1–C2–C7–C8, C2–C3–C8–C5, C3–C4–C5–C6, and

C4–C1–C6–C7. 5 points (P1, P2, P3, P4, and P5) that must be
measured are on the diagonals of the measuring planes in
the standard requirement. P1 is the center of the cube. The

positions of other point P2 to P5 are shown in Fig. 9. To
describe the errors within the entire grid space as much as pos-
sible, the points on the other two diagonals are added. 9 points

ðP1;P2; . . . ;P9Þ within each grid are selected as measurement
points. In Fig. 9, L represents the length of the diagonal.
Fig. 8 Cubic vertices within the workspace.



Fig. 9 Schematic for the selection of experimental points within

a grid.

Determination of optimal samples for robot calibration based on error similarity 951
4.4. Statistical and mathematical method

When the cube is small enough to be close to a point, the pre-

dictive accuracy of the error model is close to the point’s repeat
accuracy. With increasing of the grid size, the predictive ability
of the error model decreases. The maximum error and the
standard deviation of the measurements are used as the crite-

ria. The largest grid that meets the accuracy requirements is
selected as the optimum compensation grid step in the region.
The steps of the procedure are as follows:

Step 1: The maximum and minimum errors are determined
based on the selected step. The standard deviations of all

the error samples are also calculated based on the selected
step.
Step 2: The maximum errors in different steps are combined

with their corresponding steps to establish an error-step
curve using the cubic polynomial interpolation method.
Step 3: The thresholds of the grid steps that meet the accu-
racy requirements are determined based on the error varia-

tion curve from Step 2.
Step 4: The optimum grid step is selected. If a step has a rel-
atively small standard deviation and its maximum position

error meets the accuracy requirements, it is selected as the
optimum grid step of the given machining region.

5. Experimental

A KuKa KR210 industrial robot is used as the test robot. A

Faro SI laser tracker is used to measure the optimum grid step
in the experiment (see Fig. 10). During the experiment, the
Fig. 10 Calibration setup.
robot is under zero load and is operated in a working temper-
ature environment of 15–18 �C. The target orientation and the
operating speed of the robot are kept constant.

The common working region of the robot is selected. The
size of the region is 1000 mm · 1200 mm · 1000 mm (see
Fig. 11). The accuracy requirement of TCP is preset as

±0.3 mm in each degree of freedom.
The analysis of the absolute position error of the robot in

Section 2 shows that the error plane is spatially variable. The

accuracy compensation effects in different areas in any selected
region may be different. Therefore, based on the characteristics
of the workspace, 5 grid central points are selected (see
Table 3).

A growth step of 60 mm is selected. The grid’s central point
is selected as the start point and the step is gradually increased
from 20 mm to 500 mm to establish 9 cubic grids. To reduce

the effects of random errors during the measurements, 5 mea-
surements are taken in each point to calculate the average
value.

Table 4 shows the results of the test points’ poison errors
after calibration in different grid sizes. The statistical method
described in Section 3.4 is applied to the experimental data.

To improve the effectiveness of the data, the mean maxi-
mum and minimum values of 5 measurements are used as
the maximum and minimum values of the sample, respectively.

The maximum and minimum errors in the X-, Y-, and

Z-directions are used to establish error-step distribution maps
with cubic-polynomial interpolation, as shown in Fig. 12.

The analyses in Fig. 12 show that the errors in the X- and

Z-directions increase as the grid step increases. The error
compensation results in the X- and Z-directions decrease as
the grid step increases. According to the error limit

(±0.3 mm), the threshold of the step in the X-direction is
in the range of 200–250 mm. For all grid steps tested in the
Y-direction, up to and including 500 mm, the error is less
Fig. 11 Region for the error compensation experiment.

Table 3 Coordinate distribution of the measuring points.

Point X (mm) Y (mm) Z (mm) A (�) B (�) C (�)

D 1700 0 1500 0 90 0

E 2000 �350 1800 0 90 0

F 1400 350 1900 0 90 0

G 1400 �350 1400 0 90 0

H 2000 350 1400 0 90 0



Table 4 Position accuracy after error compensation in different steps.

Cube step (mm) Measurement(mm)

Maximum Minimum Standard deviation

X Y Z X Y Z X Y Z

20 0.165 0.059 0.167 �0.016 �0.098 �0.06 0.05 0.04 0.073

80 0.182 0.211 0.21 �0.027 �0.266 �0.132 0.055 0.108 0.081

140 0.228 0.204 0.226 �0.074 �0.248 �0.176 0.064 0.105 0.109

200 0.279 0.213 0.265 �0.107 �0.224 �0.228 0.084 0.109 0.121

260 0.283 0.195 0.278 �0.119 �0.245 �0.262 0.102 0.108 0.13

320 0.393 0.183 0.461 �0.181 �0.261 �0.393 0.127 0.117 0.177

380 0.406 0.182 0.464 �0.189 �0.233 �0.372 0.13 0.112 0.198

440 0.493 0.205 0.556 �0.226 �0.235 �0.471 0.153 0.123 0.22

500 0.45 0.227 0.648 �0.271 �0.251 �0.443 0.16 0.122 0.238

Fig. 12 Position error curves of the robot TCP after compensation from 20 mm to 500 mm.

Table 5 Verification test results of optimal samples.

Calibration Measurement(mm)

Max Minimum Standard deviation

X Y Z X Y Z X Y Z

Before 0.598 0.272 0.045 �0.282 �0.675 �1.068 0.193 0.150 0.252

After 0.167 0.270 0.240 �0.144 �0.217 �0.216 0.061 0.101 0.084
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than ±0.3 mm. The threshold of the step in the Z-direction
is in the range of 200–250 mm. The variation of the standard
deviation of the errors is relatively small in the range of
140–260 mm. Considering the statistical results and the

convenience of the region partition, 200 mm is selected as
the optimum grid step.

Following the above analysis, a 200-mm grid step is selected

to generate the grid for error compensation for the KuKa
KR210 robot. The error compensation algorithm is used to
measure the position errors of 200 random points in the

workspace after error compensation. The experimental
results (see Table 5) show that the maximum/minimum values
of the unidirectional position errors of the 200 points are
0.27/�0.22 mm, respectively. Therefore, this planning method

for sampling configurations effectively reduces the difficulty in
finding error compensation sampling configurations. The
experimental results show that the position accuracy of the

robot can be increased to the required accuracy using this
method.
6. Conclusions

(1) Based on the characteristics of the position errors of
robots, an error compensation model based on error
similarity is established. A simulation is performed to
analyze the distribution of the position errors of a

Kuka KR210 robot. It is discovered that the variation
of the position errors of the robot is continuous and
the error surface is spatially variable. The selected mea-

surement for error compensation is different in different
regions of sizes and positions in Cartesian space.

(2) A method for choosing robot error compensation sam-

pling configurations is proposed based on statistical
analysis. 5 topical areas in Cartesian space are selected
to test the error compensation method based on the

model of error similarity. The result of the test is used
to choose the optimal grid step based on a statistical
analysis. A test of the method is used on the Kuka
KR210 robot. The optimal grid step is 200 mm.
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(3) An experimental setup with the robot and a laser tracker

is constructed. The proposed mathematical planning
method for robot error compensation sampling configu-
rations is verified. According to the experimental results,

the optimal grid step that meets the accuracy require-
ment can be selected by statistical analysis. The number
of measurement configurations is effectively reduced.
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