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If C(r) denotes the minimum complexity of a normal basis for Fz,, we show that if m> 1, 

n > 1 are two relatively prime integers, then F& has a normal basis of complexity C(m)C(n). 

Such a normal basis leads to a Massey-Omura multiplier for Fp which uses C(m)C(n) XOR 
gates and C(m)C(n) + 1 AND gates per dimension. 

1. Introduction 

In recent years there has been an interest in developing algorithms for multiplying 
in finite fields whose structure is amenable to VLSI implementation. Typically, such 
an algorithm is given the multiplicands as r-tuple and must produce the r-tuple 
which represents their product. The first successful algorithm is that due to Massey 
and Omura [3,6] in which the basic idea is to represent the field elements with 
respect to a normal basis. However, the complexity of the Massey-Omura algorithm 
depends on which normal basis is used. The problem of finding normal bases of 
minimal complexity was studied by Mullin, Onyszchuk, Vanstone and Wilson [4]. 
In particular, they showed that the minimal complexity (the complexity of a normal 
basis corresponds to the number of XOR gates per dimension that a Massey-Omura 
multiplier requires) of a normal basis for Fpr is at least 2r- 1 and they gave suffi- 
cient (and apparently necessary) conditions for the existence of a normal basis of 
complexity 2r- 1. This problem was further studied by Ash, Blake and Vanstone 
[l] who gave specific constructions of low complexity normal bases. 

In this paper, we study multiplication in fields of the form Flmn, m> 1, n> 1 
and where gcd(m,n) = 1. These fields are, at the moment, of no great interest in 
cryptography because of the result of Pohlig and Hellman [5]. Nevertheless, they 
may certainly be of interest in coding theory and perhaps, in future cryptographic 
schemes which do not rely on exponentiation. Specifically, we show that normal 
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bases of Fzm and Fzn of respective complexities C and C’ can be combined to give 

a normal basis for F,,.” of complexity CC’. 

2. Massey-Omura multipier for Fzm. 

In this section, we show how to obtain a Massey-Omura multiplier for the field 

F,n,,, , m > 1, n > 1 and gcd(m, n) = 1. The key to this result is the following simple 

lemma: 

Lemma 1. Let m > 1, n> 1 be two relatively prime integers. Let B, = {a; ( 0 i i 5 
m - l} and B2 = { pj ) 0 5 j I n - l} be bases, respectively, for F2m and F2” over F2. 
ThenB={ai~j)O~i~m-1,O~j~n-1}isabasisforFZ~~overF~.Moreover, 
if B, and B, are normal bases, then so is B. 

Proof. Let A = { Ci Cj aijai/lj 1 aij E F2) , then A is a subring of FZmn, hence auto- 

matically a subfield, say F2k. Since Fzm C F2k and F,. c F2k, it follows that m 1 k and 

n 1 k, hence mn 1 k and so k = mn. Since the dimension of F& over F, is mn, the 

result follows. Next suppose ai=a2’, Osilm-1 and pj=P2’, Osj-rn-1, then 

(a/3)2k= a2k/32A where k in a2k may be reduced modulo m and k in PZk may be 

reduced modulo n. Hence, (ap)2r is of the form a2’P2’, O~ilrn-1, O<j<n-1. 

To complete the proof, we need only show that the smallest positive integer k for 

which (a/?)2k = ap is mn. If (ap)2’ = a/I, then aZk-’ = (/I-‘)2k-1 E F2 since Flrn n F2” = 
F2. Hence a2kP1 =/I’“-‘, ((p-‘)2K-’ = 1 implies that p2k-1 = l), and so if M is the 

order of a, then M / 2k - 1. But the smallest positive integer 1 such that A4 1 2’- 1 is 

m and so m 1 k. Similarly, we conclude that n ) k and so mn ( k and we are done. q 

Suppose y2’, 05 j 5 r - 1 is a normal basis for F2’ and that 

then the Hamming weight of the rxr matrix 

is independent of 1 (see Mullin et al. [4]) and is called the complexity of the normal 

basis generated by y and denoted C,.(y). We shall call the minimum of the C,(y) 

computed over all normal bases for F2,, the complexity of F2r and denote it C(r). 
It is known 141 that C(r)? 2r- 1 and if C(r) =2r- 1, then F2’ has an optimal nor- 
mal basis. 

If we represent the elements of F2r in the normal basis a2”, 0 5 j 5 r- 1, then the 

Massey-Omura multiplier uses CT(a) XOR gates and C,(a) + 1 AND gates [3,6]. 

The following corollary to Lemma 1 shows that C(mn) 5 C(m)C(n) if mn > 1 and 

gcd(m, n) = 1 (we set C(1) = 1). 
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Corollary. Let mn>l, gcd(m,n)=l, {a2’[ O_ci~m-1}, {j?2’IO~jln-l} nor- 
mal bases, respectively, for Fzm and F2”. Then a/3 generates a normal basis for Fzm. 
with complexity C,,,(o$) = C,,,(a)C,,(p). In particular, C(mn)< C(m)C(n). 

Proof. The only thing to prove is that Cm,((-xp) = C,,,((r)C,,(p). To this end, let 

cy2’a2’ = ; $‘a2”, $1~ F2, (1) 

P2rB2s = $ $;P”, r5F2, (2) 

and let /1,= (A!:)), r,= ($). Multiplying the left-hand sides of (1) and (2) and 
equating it to the product of the right-hand sides, we get 

(ap)2”(‘.“(,p)2”(“S’ 

(3) 

where in (3) (c$)~“(“‘)- -02’/12’ etc. Actually, we can give an explicit expression for 
u(i, r), u(j,s) etc. by invoking the Chinese remainder theorem; but such explicit 
knowledge is not required for our purposes. Looking at (3) it becomes apparent that 
C,,Jc@) is the number of l’s that occur in $~$ as i, r run over 0, 1, . . . , m - 1 and 
j, s run over 0, 1, . . . . n - 1. But this is clearly the product of the weights of the 
matrices /Ik and r,, hence C,,,,,(aP)=C,(a)C,,(/3). In fact, the elements ~~,~y~~~ 
define an mn x mn matrix, which if properly organized, is the usual tensor product 
of/lkandr,. 0 

We remark that sometimes C(mn) = C(m)C(n). Consulting the table of C(r) given 
in Mullin et al. [4], we find, for example, that C(15) = C(3)C(5), C(20) = C(4)C(5), 
C(21) = C(3)C(7), C(22) = C(2)C(ll) and C(24) = C(3)C(8). A slight extension of 
the above arguments shows that if n = nln2 -.. n,, gcd(ni, nj) = 1 for every i and j, if 
i#j, then 

C(n) I fi C(nJ. 
1 

When using afl to generate a normal basis for F2mn as described above, we may 
represent the elements of F2mn either as 

mn-I m-l n-l 

Jo ai(M2' or & j50 ai,.P2'P2'. 

This will not affect the complexity of the Massey-Omura multiplier; but cyclic shif- 
ting in the second of these representations takes the following form: 
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i.e., 

(ai,j>+(ai-l,j-l) 

instead of 

(a;) --) (% 1). 

We have therefore shown that we can construct a Massey-Omura multiplier for 
Fzm” which uses C(m)C(n) XOR gates per dimension and C(m)C(n) + 1 AND gates 
per dimension. If F$ and F2” have optimal normal bases, then these numbers 
become: 

and 
4mn - 2(m + n) + 1 XOR gates per dimension 

4mn - 2(m + n) + 2 AND gates per dimension. 

3. Conclusions 

In this paper we have shown that if m> 1, n> 1 are relatively prime, then Fzrnn 
has a normal basis of complexity C(m)C(n) where C(r) is the complexity of Fzr. 
In particular, C(mn) 5 C(m)C(n). This poses the interesting problem of determining 
the integers n for which C(n) = @= i C(n,) for some factorization n = nl n2”* nk of 
n with gcd(ni, nj) = 1 for every i,j, i#j. 
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