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I. INTRODUCTION 

An associative ring (respectively, a group) is said to be residually finite if 
for each nonzero (respectively, nonidentity) element x there is a two-sided 
ideal (respectively, normal subgroup) not containing x and such that ,the 
residue class ring (respectively, group) is finite. Residually finite groups and 
rings seem to have analogous properties. For example, it is known that free 
groups are residually finite ([5], p. 414) an correspondingly, that free rings d 
arc residually finite. (This result, communicated to us by J. Lewin, appears 
to be unpublished, and we have included a proof of it in Section 3.) In Section 
2 we prove that if A is a suitable ring (e.g., Z), then a finitely generated 
A-algebra is residually finite; the corresponding fact for groups is a conse- 
quence of the Fundamental Theorem for Abelian groups. 

In Section 4 we prove a sharpened version of J. Lewin’s theorem that 
a finitely generated residually finite ring is Hopfian (i.e., it admits no proper 
onto endomorphisms). It is shown that a finitely generated commutative 
A-algebra is Hopfian with respect to A-algebra maps, and using a similar 
technique, a new proof is constructed for a theorem of Vasconcelos. 

In Section 5 some criteria are noted which imply that a group algebra is 
Hopfian or co-Hopfian. 

2. r3-ALGEBRAS 

Unless specified, rings need not have a unity element I. ‘Vl’e first discuss the 
fact that for questions of residual finiteness, requiring the existence of 1 is not 
a serious restriction. 

Let A and R be rings, possibly without 1. If R is an A-module, and a(rs) = 
(ar)s = r(m) for all a in A and r, s in R, we will say that R is an A-algebra. 
R will be said to be A-residually finite if for each nonzero element r of R, 
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there is a two-sided ideal I of R not containing Y, and such that I is an A-sub- 
module of R having finite index in R. 

We note the following sharpened version of a result of J. Lewin ([4], 
Lemma l), correcting a minor error in the estimate given there. 

LEZIMA 1. Let A and R be sings, and let R be an z3-algebva. Let S be a 
sub-;il-a<gebra of R of$nite index in R (as a subgroup of the additiregroup of R). 
Then there exists an A-submodule I iu S, with I an ideal in R and of jkite index 
in R. In fart, if the index of S in R is m, then I may be chosen haviq index less 
than /II equal to mk, where k is (m ( I)*, q (m -; I)“. 

Proof. In [4] it is shown that if the requirement that 1 bc an .g-module is 
removed, then there is indeed an ideal 1’ of R contained in S and of stipulated 
index. Then I’ +~ AI’ may be chosen to be the required ideal 1. 

Taking A to be Z in the proposition below, WC see that a residually finite 
ring may be embedded in a residually finite ring having a unit. 

PROPOSITION I. Let il be a commutative ring with 1 which is residually 
finite. Let R be a unitary A-algebra, possibly without 1. Then R is A-residually 
finite if, and only if, Rcan be embedded as a sub-A-algebra of a unitary A-al,ebm, 
T, with 1, which is d-residually jkite. SpeciJically, 7’ may be chosen to be the 
A-module R x A. 

Proof. Suppose R is A-residually finite and let 7’ 7: R x A. The multiplica- 
tion in T is given by the familiar formula (Y, a)(r’, a’) = (YY’ -I- a’r $- ar’, aa’). 
The unit of T is (0, I); R is embedded in T as R x 0 and A is embedded in 
T as 0 x A. Let (P, a) be a nonzero element of T. If a is not zero, there is an 
ideal J in i3 such that J is of finite index in iz and such that a is not in J. 
R x J is then an ideal of 7’ which is an .4-submodule and does not contain 
(Y, a), and is of finite index in 7’. If, on the other hand, the given element of T 
is (Y, 0), then by hypothesis there is an :!I-submodule S of R which is also 
an ideal of R not containing Y, and is of finite index in R. Then S x A is a 
subring of 7’ which does not contain (Y, 0), which is an A-submodule of T, 
and which has finite index in 7’. By Lemma 1, S x A4 may be replaced by an 
ideal of T and, thus, T is A-residually finite. 

The converse statement is an immediate consequence of the following 
trivial lemma. which we state for future reference. 

LEMMA 2. Let A and R be rings ulith R an A-algebra. If R is A-residually 
finite, so is any A-subalgebra of R. In particular, any subring of a residually 
finite ring is residually Jinite. 

DEFINITION. Let A be a commutative ring with 1. A is said to be m-finite 
if every maximal ideal M of A is of finite index in A, i.e., A/M is a finite field. 
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It is an immediate consequence of the definition that if A is m-finite, so is 
every residue class ring A/I. 

DEFINITION. A commutative ring A with 1 will be called a Hilbevt ring 
if everr prime ideal of A is an intersection of maximal ideals. 

PROPOSITION 2. If A is m-j&e and a Hilbert ring, then the polynomial 
ring A[X] is m-jinite and a Hilbert ring. 

Proof. That A[X] is a Hilbert ring if A is a Hilbert ring is proved in [l]. 
It is also shown there that if M is a maximal ideal of A[X], then 111’ = M ~1 A 
is a maximal ideal of A. Then A/M’ is a finite field, and A[X]/M is a field 
extension of A/M’. But A[X] is not a field, so the image of X in A[X]/M 
satisfies any polynomial in M; so A[X]jM is a simple algebraic extension of 
a finite field, and is thus finite. 

Let -4[X, ,..., XJ denote the polynomial ring over A in the (commuting) 
variables X, ,..., X1, . By an induction argument and use of the remark 
above, we draw the following conclusion. 

COROLLARY. If A is m-jinite and a Hilbert ring, so is -J[X, ,..., X,]/I for 

any ideal I of the polynomial ring. 

LEMMA 3. Let A be a Noetherian commutatiz’e ring with 1, and let a be 
a nonzero element of A. Then there is a maximal ideal M of il and an integer n 
such that a is not in Mn. 

Proof. Let M be a maximal ideal containing the annihilator of a. Let A’ 
denote the localization of A at M, and let M’ denote the maximal ideal of A’. 
Since A is Koetherian, so is A’ ([8], Corollary 1, p. 224) so that the inter- 
section of the ideals IV’” is 0 ([S], Corollary 2, p. 217). Thus, if a is in M” 
for all n, a/l is 0 in A’, so that a is annihilated by an element not in M, 
a contradiction. 

TIIEOREhl 1. Let A be a commutatiw Gg with 1 which is m-jinite, Noeth- 
euian, and Hilbert. Suppose that R is a commutatke A-algebra, possibly 
Gthout 1, which is jinitely generated as an A-algebra. Then R i.y A-residually 
finite. In particular, any finitely generated commutative ring is residually jkite. 

Proof. Since R is a finitely generated A-algebra, so is R x A when given 
the ring structure defined in the proof of Proposition 1. By this proposition, 
we may then assume that R = A[X, ,..., XJI for some ideal I of the poly- 
nomial ring in n variables over A. Let Y be a nonzero element of R. By 
Lemma 3 there is a maximal ideal M of R and an integer n such that Y is not 
in M”. Now, R is m-finite by the corollary to Proposition 2, so R/M is a 
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finite field. Because li is Xoetherian, each quotient ;19i/:1/11 1’ is a finite 
dimensional, and therefore finite, vector space over K/M. So 11;18” is of finite 
index in R. 

\Ve first state a result which is basic to the proof of Theorem 3 below (as 
communicated by J. Lewin). 

THEOREM 2. Let d bp n residually jinite ring, and let G he a residuully 
jinite group. Then the group alp-ehru AC is A4--residuallyjinitP. 

Proof. Let .x algl -I- ... + u,,gII bc a nonzcro element of L4G, with the 
g,‘s distinct elements of G and the 0,‘s nonzero elements of A. Choose a 
normal subgroup II in G of finite index, and such that if g;lg, is not e (the 
identity of G), then it is not in II, for ;,j running from 1 to n. (H may be G 
if n =~ 1 and s1 e). Choose an ideal I of ,d with a, ,..., a,, not in I and 
A’ ~~ -3/I a finite ring. Since the g,‘s have distinct images in G/H, the image 
of .x in .J’(G/H) is nonzcro; the latter ring is a finite a4-algehra, and this 
completes the proof. 

Let 5’ bc an!; set, and let F denote the free group on S. It is well-known 
that F is residually finite ([5], p. 414). 1: or .4 an arbitrary ring, let 4[(S)] 
denote the free polynomial algebra over A with the elements of S as non- 
commuting indcterminates. (\Ve may wish to consider only polynomials of 
degree greater than 0, or all polynomials; the conclusion below is clearly 
unaffected by the interpretation.) Now, A[(S)] is an .4-subalgebra of the 
group algchra a44F, so from Lemma 2 and Theorem 2 WC conclude that the 
following result holds. 

THEOREM 3. Let d be a residually finite ring, and let S be any set. Then the 
free 9-algebra on S is A-residually Jinite. 

Let -4 be a commutative residually finite ring with 1. In view of Theorem 2, 
and of the fact that if G and H are residually finite groups so is their direct 
product G x H, it follows that for G and H residually finite groups, 
dG mA AH =_ d(G >: H) is A-residually finite. We then pose the following 
question: If R and S are A-residually finite, is R aA 5’ also ,3-residually 
finite ? 

4. THE HOPF PROPERTY 

Let C be a concrete category, i.e., the objects of C are sets and each mor- 
phism in C is a set map. An object X of C will he called C-HopJian if every 
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endomorphism of X onto itself is an isomorphism. As pointed out in (1141, 
Theorem 3), a finitely generated residually finite ring is ring-Hopfian. 
A somewhat sharper version of this result is proved in Theorem 4. First, we 
isolate a result which is used later several times. 

LEMMA 3. Let A be a ying and let R be an A-algebragenerated by x1 ,..., x, . 
Suppose f is an A-algebra endomorphism of R, and let Y be an element of R. 
Then there exists a finitely generated subring A’ of A such that if R’ is the .4’- 
subalgebra of R generated by x1 ,..,, x, , then (i) Y is in R’; (ii) f maps R’ into R’; 
(iii) (ffs is an onto map, f maps R’ onto R’. iI%veoaer, R’ is a finitely generated 
ring. 

Proof. For each i = 1, 2 ,,.., n choose zi in R as follows: if xi is in the 
image off, .f(zi) = xi; if not, zi = 0. Each of the elements f(xi),..., f (:qJ, 

y, 21 ,..., z,> can be expressed as a polynomial in the elements xi ,..., xn , 
with coefficients in A. Let A’ be the subring of A generated by the finite set 
of coefficients that arise in this way. It is clear that this A’ satisfies all the 
required conditions. R’ is a finitely generated ring, since it is finitely generated 
as an algebra over a finitely generated ring. 

THEORERI 4. Let A be a ring, and let R be a residually finite ying which 
is a fkitely generated A-algebra. Then R is A-algebra-Hopfian. 

Proof. Let f : R - R be an onto A-algebra map, and let T in R be in the 
kernel off. Choose A’ and R’ as in Lemma 3. Then R’ is a finitely generated 
(as a ring) sub-ring of R. By Lemma 2, R’ is residually finite. So by the result 
from [4] quoted above, R’ is ring-Hopfian. Thus, since f maps R’ onto R’, 
and I is in R’. Y must be zero. 

THEOREM 5. Let A be a commutative ring, and let R A4[(X71 ,..., XJ] 
be the free A-algebra of polynomials in n noncommuting indeterminates. Then R 
is A-algebra-Hopfian. 

Proof. Let f : R ---f R be an onto A-algebra map, and let r in R be in 
the kernel off. Let A’ be as in Lemma 3. Then R’ = A’[(XI ,..., X,J], and r 
is in R’. By Theorem 1, A’ is residually finite; so, by Theorem 3, R’ is 
A’-residually finite. In particular, R’ is a residually finite ring. Hence, since 
R’ is finitely generated it is ring-Hopfian. Since f(R’) = R’, we must have 
Y 0. 

THEOREM 6. Let rZ be a commutati7;e ying with 1, and let R be a finitely 
generated commutative A-algebra. Then R is ‘4-algebra-Hopfian. 

Proof. Let f : R --, R be an onto A-algebra map, and let Y be in R with 
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of = 0. Let il’ and R’ he as in Lemma 3. Since R’ is a finitely generated 
commutative ring, it is residually finite by Theorem 1 and, hence, ring- 
Hopfian. Sincef(R’) =: R’, we have that r 0. 

We note that if R has a unit, then a proof can be given without using 
residual finiteness. For the Hilbert Basis Theorem implies that =1’ is Noeth- 
crian and, thus, R’ is Noetherian as well. Thus, if f’ denotes the restriction 
off to R’, them is an integer n such that ker(f”l) =mm kcr( f’“+i). Now, Y == 
f’“(y) for some y in R’, andf(s) = 0 implies that r :- 0. 

The type of argument used above may be applied to proving the following 
result due to Yasconcelos ([6], Proposition 1.1). 

I'ROPOSITION 3. Let R be a commutative ring, and let M be a $tzitely 
generated R-module. If f is on R-module homomorphism of M onto M, then f 
is an isomorphism. 

Proof. Let xi ,..., s,, generate ,M as an R-module, and supposc that 
f‘( ~1) - 0. Let zi be such that f(.z?) m: s; for i == I,..., n and let f (2) 3’. 
Let S be the finite set of elements of R which arise as coefficients when zi , 
3, ~‘,.f(,v,) are expressed as R-linear combinations of x, ,..., x?, for i = I,..., n. 
Let R’ Z[S], the subring of R of all polynomials in the elements of S with 
integer coefficients. Let M’ be the R’-submodule of M generated by x1 ,..., X~ . 
Then j restricts to an R’-homomorphism f’ from AVZ’ onto n/r’. Since R’ is 
Noethcrian, so is M’ and, thus, for some integer n ker(f’“) ker(f’fl-l). 
This implies that ker( .f’) ~~~ 0 and, thus, y == 0 since y is in M’. 

It is clear that if a group G is not Hopfian, then the group algebra AG 
is not A-algebra-Hopfian. In a recent correspondence, \-c’. L. May has pointed 
out that one can construct an infinite Abelian group G which is Hopfian, 
but such that the group algebra CG over the complex numbers is not C-algc- 
bra-Hopfian. We treat only special cases of the question as to when AG is 
J-algebra-Hopfian, but we cannot even resolve the question as to whether 
ZG is a Hopfian ring when G is a Hopfian group. First, consider the case 
when G is Hopfian by virtue of being finitely generated and residually 
finite ([5], p. 415). 

PROPOSITION 3. Let II be a commutative ring, and let G be a jinitely 
,generated and residually jkite group. Then R =~ 4G is A-algebra-Hopjan. 

Proof. Assume f : R - R is an onto homomorphism of A-algebras, and 
let Y in R be such thatf(v) ~~ 0. Let iz’ be as in Lemma 3. Then R’ ~~ A’G. 
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By Theorems 1 and 2, R’ is A’-residually finite and, therefore, residually 
finite as a ring. Hence, since R’ is finitely generated, it is ring-Hopfian. Since 
f restricted to R’ is onto, we have r = 0. 

Following the terminology of [2], we shall say that a group G is locally 
indicable if every finitely generated subgroup of G admits a nontrivial homo- 
morphism to the group of integers Z. In [2] it is shown that if G is a locally 
indicable group, and A is a ring without any divisors of zero, then any unit 
of AG is of the form ag, where a is a unit in a4 and g is an element of G. 
It is then easy to show the result below. 

PKOPOSITION 4. Let G be a locally indicable and Hopfian group. Let A 
be a ring with 1. Then the group algebra AG is A-algebra-Hopjian in either of 

the cases: (i) A has no divisors of zero or (ii) iz is commutative and has no 
nilpotent elements. 

Proof. Let f be an A-algebra homomorphism of AG onto AG. Suppose 
that iI has no zero divisors. Then using the theorem of Higman quoted above, 
we have that for each g in G, f (g) = a(g) f ‘(g), where a(g) is a unit of A and 
f’(g) is an element of G. The mapping f’ determines a group homomorphism 
of G to G, and because f is A-linear and onto, it follows that f’ is an epi- 
morphism. Thus, f’ is an isomorphism since G is Hopfian, and it is clear then 
that f must be an isomorphism as well. 

If B is commutative, then for each prime ideal P of A we have that (R/P)G 
is R/P-algebra-Hopfian. If an element a,g, + ... + angn of AC is in the 
kernel of an endomorphism of AG to itself, it follows that each ai is in every 
prime ideal of R and is, therefore, nilpotent. This completes the proof. 

Remariz. It is clear that if AG has no units other than those of the form ag, 
then <ilG is A-algebra-Hopfian. 

1Ve turn to one example of a co-Hopfian algebra, i.e., an algebra that 
admits no proper one-one endomorphisms. 

PROPOSITION 6. Let R be a commutative ring with 1 and let G be a jinite 
abelian group of order n. Assume that n is a unit in R. Then RG is co-Hopjian 
as an R-algebra. 

Proof. It follows from [7], Theorem 1.1 that RG is a separable R-algebra, 
i.e., that RG is projective as an (RG, RG)-b’ imodule. If a separable R-algebra II 
has no proper idempotents and is a projective R-module of finite type, then 
it admits only finitely many R-algebra endomorphisms ([3], Lemma 1.3). 
A homomorphic image of a separable R-algebra is separable, so by decorn- 
posing RG into a finite direct sum of R-algebras each without proper idem- 
potents, we can show that RG admits only a finite set of R-algebra endomor- 
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phisms. It follows at once that such an endomorphism is one-one if, and 
only if, it is onto. 

Remark. The proof above can be used to show that for a cocycle f in 
the group cohomology group II” (G, Units (R)), the crossed product RG, is 
co-Hopfian. 

l\‘ote crdded ilz p~ooj. \Ve have recently become aware of a result of ‘I’revor Evans 

(1. Lmdon &i’~~th. Sot. (2), I (I 969), 399-403) which together with Theorem I implies 

that the word problem is solvable for finitely generated commutative rings. 
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