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Abstract The human body is now viewed as a complex ecosystem that on a cellular and gene level is
mainly prokaryotic. The mammalian liver synthesizes and secretes hydrophilic primary bile acids, some of
which enter the colon during the enterohepatic circulation, and are converted into numerous hydrophobic
metabolites which are capable of entering the portal circulation, returned to the liver, and in humans,
accumulating in the biliary pool. Bile acids are hormones that regulate their own synthesis, transport, in
addition to glucose and lipid homeostasis, and energy balance. The gut microbial community through their
capacity to produce bile acid metabolites distinct from the liver can be thought of as an “endocrine organ”
with potential to alter host physiology, perhaps to their own favor. We propose the term “sterolbiome” to
describe the genetic potential of the gut microbiome to produce endocrine molecules from endogenous
and exogenous steroids in the mammalian gut. The affinity of secondary bile acid metabolites to host
nuclear receptors is described, the potential of secondary bile acids to promote tumors, and the potential of
bile acids to serve as therapeutic agents are discussed.
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1. Introduction

The “omics” revolution and the systems biology approach are
fundamentally reshaping thought about the human body. Microbiome
specialists now regard the epithelial surfaces of body (skin, oral and
gastrointestinal, respiratory, and reproductive tract) as an intercon-
nected network of ecosystem harboring all three domains of life, the
eukarya, the prokarya, and the archaea. The gut microbiome is now
regarded as a virtual organ1. It is unique among organs as it is
composed of hundreds of species and thousands of strains of
prokaryotes and their viruses2. The Human Genome Project is only
part of the metagenome that comprises the human ecosystem. Indeed,
work on the “second human genome”3 has been undertaken by the
Human Microbiome Project (HMP) in the United States, and by
Metagenomics of the Human Intestinal Tract (MetaHIT) in Europe4,5.
A major goal of much of this research is to understand the structure
and function of the gut microbiome, and how diet, antibiotics, and
pharmaceuticals perturb it. These studies also aim to uncover
fundamental host-microbe interactions.

Research over the past several decades highlights the expanding role
of bile acids (BAs) as hormones regulating lipid, glucose, lipoprotein,
energy metabolism in addition to inflammatory responses6,7. BAs are
also known to fundamentally shape the gut microbiome and vice versa.
We will argue here that our gut microbiome should now be thought of
as an “endocrine organ”8,9 and we will focus on BAs, although this
concept applies to many other classes of molecules including
catecholamines9, short-chain fatty acids9, amino acids (GABA,
γ-aminobutyric acid)10 and steroid hormones11.
2. Prokaryote-eukaryote influences on BA pool

Host primary BAs are synthesized in the liver from cholesterol
and modified by prokaryotes in the gut12 (Fig. 1).
Figure 1 Pathway from cholesterol to lithocholic acid in the human ecosy
a series of oxidative steps. LCA is produced by members of the gut microb
is oxidative followed by a net 2 electron reduction.
In humans, there are two separate pathways forming two primary
BAs. The neutral pathway is thought to be the major pathway of
BA synthesis under healthy conditions in humans. The liver is the
only organ capable of producing the 14 enzymes which facilitate
de novo synthesis of the dihydroxy BA chenodeoxycholic acid
(CDCA; 3α, 7α), and the trihydroxy BA cholic acid (CA; 3α, 7α,
12α)13. The rate-limiting step of BA synthesis from cholesterol is
initiated by cholesterol 7α-hydroxylase (CYP7A1). The synthesis
of CA and the ratio of CA/CDCA are regulated by sterol 12α-
hydroxylase (CYP8B1)6. Both CYP7A1 and CYP8B1 are tightly
regulated by BAs through feedback repression mediated by farnesoid
X receptor (FXR)-dependent induction of fibroblast growth factor
15/19 (FGF15/19) in the intestines14. FGF15/19 binds to FGF receptor
4/β-Klotho complex in hepatocytes which in turn activates the JNK1/2
and ERK1/2 signaling cascades, down-regulating CYP7A1 mRNA
expression in the liver15–17.

The acidic pathway is initiated by mitochrondrial sterol-27-
hydroxylase (CYP27A1) in the inner mitochondrial membrane13.
CYP27A1 is expressed extra-hepatically in numerous tissues. The
acidic pathway is thought to be a minor pathway for BA synthesis
under the normal physiological state, but appears to predominate
in patients with cholestatic liver disease as CYP7A1 is down-
regulated by the inflammation produced as a consequence of small
bowel overgrowth in these patients18.

The BA pool of rodents, in addition to CA, converts a
significant quantity of CDCA to muricholic acids by 6β-hydro-
xylation. Rodents, unlike humans, are capable of making 7α-
hydroxylating secondary BAs return to the liver during entero-
hepatic circulation, thus maintaining a highly hydrophilic biliary
pool. By contrast, secondary BAs can predominate in some
humans approaching 60% of the biliary pool12.

As bile salts enter the terminal ileum and the proximal colon,
they are rapidly deconjugated by prokaryotic enzymes known as
bile salt hydrolases (BSH)12,19. BSH have different affinities for
stem. CDCA is synthesized in the liver via the neutral pathway through
iome through a multi-step biochemical pathway, the first half of which
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taurine or glycine conjugates20. BSH are widespread amongst
prokaryote taxa. Functional metagenomic screening demonstrated
that BSH located in the three major bacterial divisions Firmicutes
(30%), Bacteroidetes (14.4%) and Actinobacteria (8.9%)20.
Methanobrevibacter smithii and Methanosphaera stadmanae, the
only two archaeal species known to inhabit the human gut possess
BSH20. Bile salts, particularly glycine conjugates, have anti-
microbial properties. BSH functions largely as a detoxification
mechanism to reduce the levels of bile salts in the colonic
environment19.

The 3α, 7α, and 12α-hydroxy groups can be oxidized and
epimerized by microbial hydroxysteroid dehydrogenase (HSDH)
enzymes12. It is thus possible to generate 27 different oxo- and
hydroxyl-metabolites of CA. Bokkenheuser and Winter11 reflect
on the difficulty in understanding the benefit a bacterium would
incur through many steroid biotransformations, which they note do
not appear to enhance growth in vitro: “These observations make it
hard to understand why a bacterial species in the first place should
have taken the trouble to develop these highly unusual and
specialized enzymes.” In the same review article, they note the
peculiarity of producing oxo-derivatives through HSDH enzymes:
“What benefit obligate anaerobes derive from this oxidation
reaction is hard to understand”. It is difficult to understand because
in the anaerobic environment where gut bacteria inhabit, reactions
tend to be reductive in nature for energetic considerations. The
concept of gut microbiome as endocrine “organ” may make sense
of these observations. One hypothesis is that HSDH enzymes may
have evolved to generate signaling molecules that affect other
microbes (microbe-microbe interactions) or alter host physiology
in a way that benefits the organism which possess the sterolbiome
gene(s) (interkingdom signaling).

Indeed, conversion of CDCA to 7-oxo-LCA by microbial
7α-HSDH is reduced in the liver by human 11β-HSDH-1, an
enzyme whose function is primarily to convert cortisone to the
active glucocorticoid, cortisol21. Microbial derived 7-oxo-LCA
acts as a competitive inhibitor of 11β-HSDH-1, and thus may
influence the ratio of cortisone/cortisol. Perhaps alteration of the
cortisol/cortisone ratio induces physiological effects on the host
that translates into a more favorable environment to the bacterium
possessing 7α-HSDH. Determining the physiological significance
of oxo- and primary BA epimers on both the host and other
members of the microbiome may be an important, and as yet
largely untapped area of research.

The secondary BAs, deoxycholic acid (DCA; 3α, 12α) and
lithocholic acid (LCA; 3α) are produced solely by a few species of
anaerobic gut bacteria in the genus Clostridium (Fig. 1). Removal
of the 7α-hydroxy group requires multiple steps including ligation
to CoA (baiB gene), oxidation of the 3α-hydroxy (baiA gene),
oxidation of the C4–C5 (baiCD gene), 7α-dehydration (baiE gene),
followed by sequential NAD(P)H-dependent reductions at C6–C7,
C4–C5, 3-oxo, followed by export of the secondary BAs12. The
genes encoding enzymes in the reductive arm of this pathway have
yet to be identified. In addition, the BA 7α-dehydroxylation
pathway can generate secondary “allo” BAs22. Secondary
allo-BAs (5α-) are structural epimers of secondary BAs DCA
and LCA. The A/B rings of allo-bile acids are planar, similar to
steroid hormones, and more hydrophobic. Few studies have looked
at the physiological effects of secondary allo-bile acids. However,
there are a few reports of significant increases of fecal secondary
allo-BAs in colon cancer patients23.

Colonic BA composition has recently been shown to regulate
germination of Clostridium difficile, a microbe responsible for
billions of dollars in health costs yearly24. Primary BAs induce
germination, while secondary BAs, whose formation is often
inhibited by antibiotics, suppress C. difficile germination24. Indeed,
recent work has shown that Clostridium scindens, presumably
through the production of the secondary BA DCA also inhibits the
growth of C. difficile25. Thus, under certain circumstances, such as
antibiotic-associated diarrhea, secondary BA formation may be
protective to infection by C. difficile.

The gut microbiome is thus an organ capable of producing a
cocktail of BA hormones that affect the composition and function
of the gut microbiome, and interact with cells of the gastro-
intestinal tract during the enterohepatic circulation, in addition to
distant targets including heart, kidney and even adipose tissue26

(Fig. 2). Further elucidating the gut microbial genes involved in
BA and other steroid hormones introduced in the gut by both
endogenous and exogenous (diet and pharmaceuticals) is an
important research direction simply because by this capacity, the
gut microbiome is an endocrine organ. We propose the term
“sterolbiome” to describe the repertoire of human gut microbiome
genes involved in the uptake and metabolism of host, pharmaceu-
tical and diet derived steroids.
3. Sterolbiome genes and host nuclear receptors

BAs are activators of several mammalian nuclear receptors. The
sterolbiome interacts with these receptors by producing secondary
BAs with altered affinities to these receptors. BA affinities for
FXRα are as follows: CDCA4LCA¼DCA4CA6. FXRα plays
important roles in regulation of BA synthesis, regulation of the
enterohepatic circulation of BAs, in addition to regulation of
glucose, lipoprotein, lipid metabolism, inflammation, and tumor
suppression27. One of the most dramatic recent observations of the
effect of FXR activation by secondary BAs was the demonstration
in mice that the gut sterolbiome could control the size of the BA
pool by removing the potent FXR antagonist tauro-β-muricholic
acid28. FXR activation is also an indirect regulator of the structure
of the microbiome through the BA induced FXR-dependent
expression of anti-microbial peptides29. Thus the types of BAs
present, through their activation of FXR, have the potential to
modulate the BA pool size, the microbiome composition, and host
glucose and lipid metabolism. It may be speculated that members
of the microbiome gain a selective advantage by altering cellular
signaling via production of endocrine molecules in the form of
secondary BAs.

BA affinities for pregnane X receptor (PXR) LCA4
DCA4CA and vitamin D receptor (VDR) 3-oxo-LCA4
LCA4DCA4CA appear important in detoxification of toxic
LCA30. LCA has been shown to induce double-strand breaks in
DNA31. The mammalian host responds by metabolizing LCA,
mainly through sulfation, allowing for more efficient excretion and
reduced hydrophobicity. Chimpanzees fed CDCA which is thera-
peutic in humans die as a result of the inability to detoxify LCA.
These observations underscore the co-evolution among sterol-
biome, activation of host nuclear receptors PXR, and downstream
detoxification mechanisms in Homo sapien to cope with the
toxicity of secondary BAs.

BAs also activate G-protein coupled receptors (GPCR) such as
TGR5, sphingosine-1-phosphate receptor 2, and muscarinic recep-
tor M26. TGR5 expression is widespread in human tissues
including gallbladder, spleen, intestinal neuroendocrine cells,
macrophages, cholangiocytes, and brown adipose tissue32. Indeed,



Figure 2 Metabolism of CDCA by the gut microbiome. As bile salts enter the gut and are rapidly deconjugated by BSH enzymes expressed by a
diverse group of gut bacteria and archaea. Hydroxy groups at C3 (A ring) and C7 (B ring) can be epimerized through the concerted action of both
α- and β-hydroxysteroid dehydrogenase enzymes. Epimerization at the C7 position results in the 7β-hydroxy bile acid UDCA, a therapeutic
molecule used in treatment of GI disorders. Both CDCA and UDCA result in formation of a common 3-dehydro-4-LCA structure during the
oxidative arm of the bile acid 7α-dehydroxylating and 7β-dehydroxylating pathways, each of which overlaps in many enzymatic steps.
This 3-dehydro-4-LCA structure can be reduced at the C4 position yielding either LCA (5β-hydrogen) or allo-LCA (5α-hydrogen).
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BAs are suggested to play an important role in host energy
metabolism in brown adipose tissue through the activation of
TGR5, resulting in activating type-2 iodothyroxine deiodinase and
the stimulation of energy metabolism through increased levels of
thyroid hormone33. This suggests TGR5 plays an important role in
host glucose homeostasis, and may be a target for development of
therapies for type 2 diabetes and other metabolic diseases. The
order of activation of TGR5 by BAs LCA4DCA4CDCA4CA
indicates yet another BA receptor with higher affinity for BA
metabolites of the human gut sterolbiome.
4. Deoxycholic acid, a microbial co-carcinogen

In the United States, cancers of the colon and rectum were the
second leading cause of cancer death in 201034. In 2013, new
cases of colorectal cancer in the US were estimated to be
143,82035. Patients classified as high-risk for colon cancer includ-
ing those with familial adenomatous polyposis (FAP), hereditary
nonpolyposis or inflammatory bowel disease comprise only 5%�
15% of all colorectal cancer (CRC) incidence36. The majority of
CRC incidence is nonhereditary and thus sporadic, suggesting the
importance of environmental influences. Epidemiologically, CRC
incidence is significantly increased in nations consuming a
“Western” diet high in protein and fat37. Western diets result in
increased levels of secondary BA in both the colon and biliary
pool38. In this regard, individuals with high levels of secondary
BA in feces are shown in epidemiological studies to be at
significant risk for CRC39. Colon cancer patients and patients
with adenomas polyps have higher levels of DCA in blood and
bile as compared to control patients. DCA levels in sera of these
patients were significantly higher in men with colorectal adenomas
(1.7070.59 vs. 1.1670.39 μmol/L, Po0.0005) and in a com-
bined analysis of both men and women compared to age and sex-
matched controls (1.4770.78 vs. 1.0870.39 μmol/L, Po0.0025)40.
DCA is a logical candidate for promoting colon carcinogenesis for
the following reasons: (1) DCA is found in high levels
(4100 mmol/L) in fecal water; (2) it can cross biological
membranes via passive diffusion; (3) it activates mammalian cell
signaling pathways that are known to be involved in promoting
colon carcinogenesis41.

Mechanisms by which DCA and LCA promote colon carcino-
genesis have been largely elucidated. Mutations at the adenoma-
tous polyposis coli (APC) locus are a common and early somatic
event in polyp formation and colon cancer42. APC regulates
β-catenin levels in the cell, failure of which results in transcription
of proto-oncogenes and loss of cell-cell adhesion43,44. One
particular downstream target of β-catenin is cyclooxygenase-2
(COX-2). A large body of evidence suggests that non-steroidal
anti-inflammatory drugs (NSAIDs), which inhibit COX isozymes,
significantly reduce polyp formation and colon cancer risk, as well
as other cancers of the GI tract45. ApcΔ716(þ/� ) mice, a model of
human FAP, develop polyposis and CRC, however ApcΔ716(þ/� ),
Ptg2(þ/� ) mice, which contain only a single COX-2 gene de-
veloped significantly less frequent and smaller polyps46.

DCA induces expression of COX-2 through transactivation of
the epidermal growth factor receptor (EGFR)47. Qiao et al.48 first
reported that DCA can activate EGFR in primary hepatocytes.
This observation has been confirmed by several laboratories in
other intestinal epithelial cell types49,50. DCA has also been shown
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to induce the β-catenin signaling pathway resulting in colon cancer
cell proliferation and invasiveness51. β-catenin is also known to
stabilize COX-2 mRNA resulting in positive feedback52.

The detergent properties of DCA cause membrane perturbations
resulting in activation of protein kinase C (PKC) isoforms53 as
well as release of arachidonic acid which is the substrate for both
COX-2 and lipooxygenase (LOX), resulting in pro-inflammatory
and pro-angiogenic prostaglandins, and reactive oxygen species
which damage DNA and inhibit DNA repair enzymes54. In this
regard, DCA has been shown to activate proteosomal degradation
of the tumor suppressor p5355 selecting for cells resistant to
apoptosis in spite of DNA damage. Taken together, DCA at
physiological concentrations activates signaling pathways that lead
to selective resistance to apoptosis, angiogenesis (PGE2 through
VEGF), proliferation and oxidative stress41,54.

Recent evidence also suggested an important role of DCA in the
development of liver cancer56. While not sufficient, DCA was
necessary to cause tumors in a mouse model of obesity-associated
hepatocellular carcinoma by inducing the senescence-associated
secretory phenotype in hepatic stellate cells, which induced
expression of pro-inflammatory and tumor-promoting factors in
the liver56.
Figure 3 Targeted inhibition of bile acid 7β-dehydroxylating pathway
hypothesized to improve therapeutic potential of UDCA in prevention of
colon cancer development.
5. Metabolism of ursodeoxycholic acid (UDCA) by human
intestinal bacteria

Close to 1000 metric tons of UDCA is produced globally each
year for pharmaceutical use or in some countries as an over-the-
counter supplement57. UDCA, the 7β-hydroxy isomer of CDCA, is
used to treat a subset of cholesterol gallstone patients as well as a
number of other diseases of the liver and GI tract including:
primary biliary cirrhosis, primary sclerosing cholangitis (PSC), a
prophylaxis for colonic adenomas recurrence, and as a protective
agent in recurrent pancreatitis. It is generally recognized that
UDCA has potential in preventing the progression of adenoma to
adenocarcinoma; however, the results have varied58,59. A major
mechanism by which UDCA acts therapeutically is by increasing
the hydrophilicity of the biliary pool, and by diluting the
concentration of toxic secondary BAs DCA and LCA in the
biliary pool. Reduced secondary BA concentration modulates the
membrane and inflammatory effects of secondary BAs on the
colonic mucosa by the colonic BA milieu58. In part, UDCA acts
similarly NSAIDs by blocking COX-2, which is activated by DCA
and induces inflammation60. Problematic in these efforts is the
microbial conversion of UDCA to LCA.

In humans, UDCA can be introduced exogenously via therapies
(Ursodiol), or endogenously produced by epimerization of the
7α-hydroxy of CDCA by 7α-HSDH and 7β-HSDH found in single
species (Clostridium absonum) or two separate species expressing
one or the other HSDH61. In rodents, UDCA is synthesized in the
liver, and forms a small part of the biliary pool.

We hypothesize that improvement of UDCA therapy, particu-
larly when used in treatment of adenomatous polyps, will require
prevention of LCA formation from UDCA by gut bacteria (Fig. 3).
Gut bacteria capable of converting UDCA to LCA are found in
the genus Clostridium and also have BA 7α-dehydroxylating
activity against CA and CDCA12. It may be hypothesized that
7β-dehydroxylation proceeds through epimerization of UDCA
to CDCA followed by 7α-dehydroxylation in C. scindens and
related organisms. C. scindens encodes a constitutively expressed
7α-HSDH62; however, 7β-HSDH activity has not been observed in
7α-dehydroxylating strains. The BA 7α-dehydratase encoded by
the baiE gene has no activity against 7β-hydroxy BA substrates,
and indeed 7α-dehydratase and 7β-dehydratase activities separate
during gel filtration chromatography63. Interestingly, UDCA is a
poor inducer of BA 7β-dehydroxylating genes, but 7α-hydroxy
BAs are good inducers of this activity64. Thus a far more likely
scenario is the presence of a separate BA inducible 7β-dehydratase
that is co-expressed with the BA 7α-dehydroxylating pathway.

Previously, we provided evidence suggesting two homologous
NADþ-dependent flavin oxidoreductases introducing C4–C5 dou-
ble bonds in 7α-hydroxy and 7β-hydroxy BAs (baiCD and baiH,
respectively) are coexpressed on a CA-inducible baiBCDAEFGHI
operon65. The baiH thus represents the first BA 7β-dehydroxylat-
ing gene identified. Directly downstream of the baiH gene is the
yet uncharacterized baiI gene. The deduced amino acid sequence
of the baiI gene is similar in size to the baiE gene and both are
members of the SnoaL_4 superfamily of proteins (amino acid
similarity 40%, 20% identity). The BA 7α-dehydroxylation and
7β-dehydroxylation pathways seem to share common core
enzymes (BaiG, BaiB, BaiA, BaiF, reductive arm) but are
differentiated at the 3-dehydro-4-oxidoreducatase (BaiCD vs.
BaiH) and 7-dehydration step (BaiE vs. BaiI). Thus, the evolution
of the 7β-dehydroxylation pathway appears to be a function of two
gene-duplication events, duplication of the baiCD and baiE, and
subsequent divergence of gene sequence and function resulting in
formation of baiH and baiI. This adaptation would open up a new
niche, as 7β-BAs, once formed would persist as BA 7α-dehy-
droxylating bacteria would be unable to remove the 7β-hydroxy
group, and equilibrium constants favor formation of UDCA
by bacteria possessing 7β-HSDH enzymes or combinations of
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7α-HSDH and 7β-HSDH, likely owing to the reduced toxicity of
UDCA66. We speculate that targeting the BaiI pharmacologically
during UDCA treatment will lead to improved outcome in
adenomatous polyp therapy, and other GI disorders such as PSC.
6. Conclusions

The BA composition observed in mammals is the result of
equilibria between enzymes encoded in the mammalian genome,
and the gut sterolbiome. BAs are now viewed as hormones with
both hepatic and extra-hepatic effects ranging from inflammation
to glucose and lipid homeostasis. Given that microbial secondary
BAs activate the nuclear receptors that recognize host primary
BAs, the gut sterolbiome represents an important class of enzyme
encoding genes that give gut microbiome the ability to act as an
endocrine organ with far-reaching effects in the host. Perturbing
effects of the sterolbiome, such as diet, antibiotics, probiotics, and
so forth, have the potential to affect many physiological effects
that result from the composition of the BA pool. A major current
goal of BA-sterolbiome research is identifying members of the gut
microbiome that encode sterolbiome genes, and characterizing
microbial BA metabolizing gene products and the metabolites that
induce their expression. Future research will seek to build models
to predict the pattern of BAs when certain sterolbiome members
and metabolites are present in the gut, and the physiological effects
on the host. A significant potential exists with the current
therapeutic BA UDCA used for treating several disorders of the
liver and GI tract. Our hypothesis, consistent with the current
literature and opinions in the field is that by targeting the
microbiota capable of producing DCA, and inhibiting the micro-
bial conversion of UDCA to LCA, UDCA will be shown to be
a more effective therapy. Specific inhibitors against the BA
7α-dehydroxylating pathway, which eliminate secondary BA
productions, would provide further advances in understanding
how a shift in BA pool composition impacts both host physiology,
as well as microbiome structure-function.
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