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Abstract

The toughness of a graph G is defined as the largest real number ¢ such that deletion of any s points from G results in a graph which
is either connected or else has at most s /¢ components. Clearly, every hamiltonian graph is 1-tough. Conversely, we conjecture that
for some 7, every fy-tough graph is hamiltonian. Since a square of a k-connected graph is always k-tough, a proof of this conjecture
with 79 = 2 would imply Fleischner’s theorem (the square of a block is hamiltonian). We construct an infinite family of (3/2)-tough
nonhamiltonian graphs.
© 1973 Published by Elsevier B.V.

0. Introduction

In this paper, we introduce a new invariant for graphs. It measures in a simple way how tightly various pieces of a
graph hold together; therefore we call it toughness. Our central point is to indicate the importance of toughness for the
existence of hamiltonian circuits. Every hamiltonian graph is necessarily 1-tough. On the other hand, we conjecture
that every graph that is more than %-tough is necessarily hamiltonian. This conjecture, if true, would strengthen recent
results of Fleischner concerning hamiltonian properties of squares of blocks.

I am indebted to Professor Jack Edmonds and Professor C. St. J.A. Nash-Williams for stimulating discussions and
constant encouragement during my work on this paper.

We follow Harary’s notation and terminology [11] with minor modifications. First of all, by a subgraph we always
mean a spanning subgraph. Accordingly, G C H means that G is a spanning subgraph of H. As in [11], p(G) denotes
the number of points, k(G) the number of components, x(G) the point-connectivity, A(G) the line-connectivity and
po(G) the point-independence number of a graph G. By a point-cutset (resp. line-cutset) in G we mean a set S of
points (resp. a set X of lines) of G whose removal results in a disconnected graph, i.e., for which k(G — S) > 1 (resp.
k(G —-X)>1).

1. Toughness

Let G be a graph and 7 a real number such that the implication k(G — §) > 1 = |S| >t - k(G — S) holds for each set S
of points of G. Then G will be said to be #-tough. Obviously, a -tough graph is s-tough for all s < ¢. If G is not complete,
then there is a largest f such that G is #-tough; this ¢ will be called the foughness of G and denoted by #(G). On the other

DOI of original article: 10.1016/0012-365X(73)90138-6
The original article was published in Discrete Mathematics 5 (1973) 215-228

0012-365X/$ - see front matter © 1973 Published by Elsevier B.V.
doi:10.1016/j.disc.2006.03.011


https://core.ac.uk/display/82447383?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/disc

V. Chvdtal/ Discrete Mathematics 306 (2006) 910-917 911

hand, a complete graph contains no point-cutset and so it is z-tough for every ¢. Accordingly, we set 7 (K,) = 400 for
every n. Adopting the convention min J = +00, we can write

1 1(G) =min|[S|/k(G = 9),

where S ranges over all point-cutsets of G.
Using the obvious implication G C H = k(G) > k(H) and the definition of toughness we arrive at:

Proposition 1.1. G C H = 1(G)<t(H).

Thus toughness is a nondecreasing invariant whose values range from zero to infinity. A graph G is disconnected if
and only if #(G) = 0; G is complete if and only if 7 (G) = +o0.

For every point-cutset S of G, we have |S| > x(G) and k(G — S) < fy(G). Using (1), we readily obtain:

Proposition 1.2. 1 >«/f.

If G is not complete (i.e., k < p(G) — 2), then G has at least one point-cutset. Substituting the smallest point-cutset
S of G into the right-hand side of (1), we derive:

Proposition 1.3. If G is not complete, then t < %K.
Similarly, taking S to be the complement of a largest independent set of points of G, we deduce:
Proposition 1.4. If G is not complete, then t <(p — py)/Po-

If G = K, with m <n, then obviously k(G) =m, f,(G) =n and p(G) =m + n. Combining Propositions 1.2 and
1.4, we obtain:

Proposition 1.5. m<n = t (K n) =m/n.

Hence the equality in Propositions 1.2, 1.4 can be attained. In order to show that the equality in Proposition 1.3 can
be attained as well, we shall prove:

Theorem 1.6. 1(K,, x K,,) = 3(m +n) — 1 (m,n>2).

Proof. Let S be a point-cutset of G = K, X K, minimizing |S|/k(G — S); letus set k =k(G — S). Then S is necessarily
minimal with respect to the property k(G — S) =k. The point-set of G will be written as V x W with |V|=m, |W|=n.
From the minimality of S, we easily conclude that the point-set of the j component of G — § is VixW;withV; CV
and W; C W. Moreover, V; NV; =@ and W; N W; = whenever i # j. Thus, we have

k
@) IS|=mn =Y mn,
i=1
where m; = |V;| and n; = |W;| foreachi = 1,2, ..., k. The right-hand side of (2) is minimized by m; =my = ... =
mr_1=1,mp=m—k+1landn;=ny=...=nr_1=1,n, =n —k + 1. Hence

IS|Zmn—(k—1)—m—k+1)(n—k+1)
=k —1)(m+n—k),

and so
1(G)=ISI/k(G =)=k — D)(m+n—k)/k>%(m+n—2).

The opposite inequality follows from Proposition 1.3 as G is regular of degree m +n — 2.
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Fig. 1.

Propositions 1.2 and 1.3 indicate a relationship between toughness and connectivity. Another indication of this
relationship is given by:

Theorem 1.7. (G?) > «(G).

Proof. Let G be a graph with connectivity « and let S be a point-cutset in G2. Let Vi, Va, ..., V,, be the point-sets of
components of G> — S. For each point u € S and eachi = 1,2, ..., m, we set u € S; if and only if there is a point
v € V; adjacent to u in G. Obviously, each S; is a point-cutset of G (it separates V; from the rest of G). Hence

(3) |Si|zx foreachi=1,2,...,m.
Moreover, each u € S belongs to at most one §;. Otherwise there would be points v; € V; and v; € V; withi # j such
that u is adjacent in G to both v; and v;. Consequently, the points v; and v; would be adjacent in G?, contradicting the
fact that they belong to distinct components of G> — S. Thus we have
@ i#Fj=85NnS; =0
Combining (3) and (4) we have
m
1512 ) 1il > km = kk(G* — 5).
i=1
Since S was an arbitrary set with k(G*> — S) > 1, G? is k-tough, which is the desired result.

Corollary 1.8. If m is a positive integer and n = 2", then t (G") > %nK(G).

Proof. We shall proceed by induction on m. The case m = 1 is equivalent to Theorem 1.7. Next, if # (G") = 400, then
1(G*") = 400. If 1(G") < + 00, then by Theorem 1.7 and Proposition 1.3 we have

1(G™) = k(G") > 21(G"),

which is the induction step from m to m + 1.
Let us note that the inequality 7 (G™) > %n;c(G) does not hold in general. The graph G in Fig. 1 is 1-connected but
its cube G3 = K4 + K3 is not %-tough. Actually, ﬁO(G3) = 3; using Proposition 1.4, we conclude that 1 (G>) < %.

2. Toughness and hamiltonian graphs

It is easy to see that every cycle is 1-tough. This observation and Proposition 1.1 imply
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Fig. 2.

Fig. 3.

Proposition 2.1. Every hamiltonian graph is 1-tough.

Unfortunately, the converse of Proposition 2.1 holds for graphs with at most six points only. The nonhamiltonian
graph H in Fig. 2 is 1-tough. Let us note that H is a square of the graph G in Fig. 1; as k(G) = 1, Theorem 1.6 yields
t(H) > 1. Nevertheless, the graphs which are not 1-tough do play a special role among nonhamiltonian graphs. Let
us say that a graph G is degree-majorized by a graph H if there is a one-to-one correspondence f between the points
of G and those of H such that, for each point u of G, the degree of u in G does not exceed the degree of f(u) in H.
Recently, I proved that every nonhamiltonian graph is degree-majorized by a graph which is not 1-tough [5] (in fact,
by (Kn UK p—2m) + Ky with a suitable m < % p). This is a strengthening of previous results due to Dirac [7], Pésa
[14] and Bondy [1].

Now let us return to our Proposition 2.1. Even though its converse does not hold, one may wonder what additional
conditions placed upon a 1-tough graph G would imply the existence of a hamiltonian cycle in G. As in our next
conjecture, such conditions may have the flavour of Ramsey’s theorem.

Conjecture 2.2. If G is 1-tough, then either G is hamiltonian or its complement G contains the graph F in Fig. 3.

If this conjecture is true, then it is best possible in the sense that a replacement of F by any other graph F’ results
in a conjecture which is either weaker or false. To show this, it is sufficient to observe that the complement H of the
nonhamiltonian 1-tough graph H in Fig. 2 consists of the graph F with an added isolated point.

As every 1-tough graph is 2-connected (see Proposition 1.3), our Proposition 2.1 is a strengthening of the obvious
implication.

(5) G is hamiltonian = k(G) >2.
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Even a weakened converse of (5), i.e. the implication
k(G) > ko = G is hamiltonian,

does not hold. Indeed, the complete bipartite graphs K,,,, with m <n are m-connected but not 1-tough (and therefore
not hamiltonian) — see Proposition 1.5. However, it may well be that such a weakened converse of Proposition 2.1
holds.

Conjecture 2.3. There exists ty such that every ty-tough graph is hamiltonian.

It was conjectured independently by Nash—Williams [12] and Plummer [11, p. 69] that the square of every block
(i.e., 2-connected graph) is hamiltonian. This has been proved only recently by Fleischner [9].

Theorem 1.7 implies that the square of every block is 2-tough. Thus a proof of Conjecture 2.3 with #y = 2 would
yield a strengthening of Fleischner’s theorem. Actually, to strengthen Fleischner’s theorem, it would suffice to prove
the slightly weaker conjecture stated below. To formulate this one, we need the notion of a neighborhood-connected
graph. This is a graph G such that the neighborhood of each point of G induces a connected subgraph of G. It is easy
to see that the square of every graph is neighborhood-connected.

Conjecture 2.4. Every 2-tough neighborhood-connected graph is hamiltonian.

In Section 5, we shall construct %—tough nonhamiltonian graphs. The strongest form of Conjecture 2.3 for which I
do not know any counter-example is the following:

Conjecture 2.5. Every t-tough graph with t > % is hamiltonian.

This conjecture is certainly valid for planner graphs. Indeed, every ¢-tough graph with 7 > % is 4-connected (Propo-
sition 1.3) and by Tutte’s theorem [16], every 4-connected planar graph is hamiltonian. By the theorem of Watkins and
Mesner [17], every t-tough graph with ¢ > 1 is 3-cyclable (that is, every three points lie on a common cycle).

Recently, it has been proved that every graph with x > f3 is hamiltonian [6]. Propositions 2.1 and 1.2 show how to
relate this theorem to our concept of toughness. By Proposition 1.2, all graphs satisfy either k/f <t < lork/fy < 1<t
or 1 <x/fy<t. By Proposition 2.1, graphs of the first kind are nonhamiltonian and, by the result of [6], graphs of the
third kind are hamiltonian.

There may also be a relation between toughness and the concept of pancyclic graphs (i.e., graphs containing cycles
of every length /, 3 </ < p) introduced and studied in [2]. Actually, one can make

Conjecture 2.6. There exists ty such that every ty-tough graph is pancyclic.
3. Toughness and k-factors

Conjecture 3.1. Let G be a graph with p vertices and let k be a positive integer such that G is k-tough and kp is even.
Then G has a k-factor.

It follows from Tutte’s matching theorem [15] that Conjecture 3.1 is valid with k = 1.

If Conjecture 2.5 is true, then every graph that is more than %-tough has a 2-factor. Actually, I even do not know any
counterexample to the following:
Conjecture 3.2. Every %-tough graph has a 2-factor.

If this conjecture is true, then it is certainly the best possible as the following set of examples shows.

Theorem 3.3. Given anyt < %, there is a t-tough graph having no 2-factor.
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Proof. Lett < % be given. Then there is a positive integer n such that 3n/(2n + 1) > ¢. Take pairwise disjoint sets
S={s1,8,....,:}, T ={t1,t2, ..., ton+1}, R={r1, 72, ..., r2n+1}, join each s; to all the other points and each r; to
every other r; as well as to the point #; with the same subscript i. Call the resulting graph H. (If n = 1, we obtain the
graph H in Fig. 2.)

Let W be a point-cutset in H which minimizes |W|/k(H — W). Let k = k(H — W) and m = |W N R|. Obviously,
W is a minimal set whose removal from H results in a graph with k components. As W is a cutset, we have S C W and
m 2> 1. From the minimality of W we then easily conclude that T N W = ) and m <2n. Then we have |W|=n + m and
k(H — W)=m + 1. Hence

4 n-+m 3n

t((H)y=————= min ——= >1.
k(H — W) I<m<2nm—+1 2n + 1

It is straightforward to see that H has no 2-factor. Indeed, let us assume the contrary, i.e., let ¥ C H be regular of
degree 2. Let us denote be X the set of lines of F having at least one endpoint in 7. Since T is independent, we have
|X| = 2|T|. On the other hand, there are at most 2|S| lines in X having one endpoint in S and at most |R| lines in X
having one endpoint in R. Thus

4n +2=2|T| = |X|<2IS| + Rl =4dn + 1
which is a contradiction.
4. Line-toughness
Looking at our definition of toughness from a merely formal point of view, one could wonder why we did not define
a line-toughness t*(G) of G by
*(G) = min{|X|/ k(G — X)},

where X ranges over all the line-cutsets of G. The answer is given by the following theorem; line-toughness is exactly
one half of line-connectivity.

Theorem 4.1. t* = %L

Proof. Let G be a graph with line-connectivity 4. Then there is a line-cutset X of G with |Xo| = 4 and we have
1*(G)<|Xol/k(G — Xo) < .

On the other hand, let X be a line-cutset of G minimizing |X|/k(G — X). Let the components of G — X be
Hy, Hy, ..., Hi. Foreachi=1,2,...,k,letusdenote by X; the set of lines in X having an endpoint in H;. Obviously,
each X; is a line-cutset of G and so we have |X;|>Aforeachi =1,2,...,k.

Moreover, X is a minimal line-cutset of G whose removal results in a graph with k components. Hence no line in X
has both endpoints in the same H; and so we have

k
2AX| =) 1Xi| >k
i=1
or
t*(G) = X|/k= 12
5. Toughness of inflations

Let G be an arbitrary graph. By the inflation G* of G we mean the graph whose points are all ordered pairs (u, x),
where x is a line of G and u is an endpoint of x; two points of G* are adjacent if they differ in exactly one coordinate.

Theorem 5.1. Let G be an arbitrary graph without isolated points and G* its inflation. If G # K;, thent (G*) = %/”L(G)
and kK(G*) = L(G*) = A(G).
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Proof. Let S be a point-cutset of G* minimizing |S|/k(G* — §); set k = k(G* — §). Obviously, S is a minimal set
whose removal from G* yields a graph with at least k components. From this we easily conclude that for each line x of
G, S contains at most one point (#, x) of G*. Denoting by X the set of all the lines x of G with (u, x) € S for some u,
we then have |X| = |S|. If two points (u, x), (v, y) of G* belong to distinct components of G* — S, then necessarily
u # v and u, v belong to distinct components of G — X. Hence k(G — X) >k(G* — S) and Theorem 4.1 implies

6) 1(G*)=ISI/k(G* = $)=|X|/k(G — X) 21"(G) = 34(G).

Next, if G # K3, then G* is not complete and so, by Proposition 1.3, 1 (G*) < %K(G*). By Whitney’s inequality
[18], k(G*) < A(G™). Moreover, there is a natural one-to-one mapping f from the line-set of G into the line-set of G*.
If X is a cutset of G then f(X) is a cutset of G*. Hence A(G*) < A(G) and we have

(7 1(GM) < K(GH) <ZUGH) <3 4G).

Combining (6) and (7), we obtain the desired result.

It is quite easy to see that a hamiltonian circuit in G* induces a closed spanning trail in G and vice versa. Hence we
have:

Proposition 5.2. G* is hamiltonian if and only if G has an eulerian spanning subgraph.
This proposition and Theorem 5.1 yield:

Corollary 5.3. Let G be a cubic nonhamiltonian graph with A(G) = 3. Then its inflation G* is a cubic nonhamiltonian
graph with t (G*) = % and A(G*) = 3.

Indeed, the inflation of a regular graph of degree n is a regular graph of degree n. Moreover, an eulerian spanning
subgraph of a cubic graph is necessarily a hamiltonian cycle.

In particular, denoting by G the Petersen graph and setting G+ = G} we obtain an infinite family Gy, G2, ... of
cubic nonhamiltonian %-tough graphs. The Petersen graph G is not %-tough; one can show that 1 (Gg) = %. In the next
section, we will prove that the number of points of any %-tough cubic graph G with G # K4 is divisible by six.

6. Toughness of regular graphs

Let G be a regular graph of degree n with p points, where p > n + 1 (so that G is not complete). Then x(G) <n and,
by Proposition 1.3, 1 (G) < %n One may ask for which choice of n and p the equality 7 (G) = %n can be attained. If n is
even, then every p works. Indeed, it is easy to see that the graph CZ/ Zis %n—tough. Now, let n be odd and greater than
one; then the situation is different.

We already have two methods for constructing %n-tough regular graphs of degree n. Firstly, if p=rs withr +s—2=n,
then the graph K, x K with p points is regular of degree n and %n—tough (see Theorem 1.6). Secondly, if p = nk for
an even integer k >n + 1, then there is a regular graph H of degree n with k points and A(H) = n (the existence of H
follows from [8] or [4]). Its inflation H* has p points, is regular of degree n and %n—tough (see Theorem 5.1).

However, it seems likely that for p sufficiently large and not divisible by # there is no graph G with p points which
is regular of degree n and %n—tough. We will prove this for n = 3 and leave the cases n > 5 open.

Let us call a coloring of G balanced if all of its color classes have the same size; otherwise the coloring is unbalanced.

Theorem 6.1. No cubic %-tough graph admits an unbalanced 3-coloring.
Proof. Let G be a cubic %—tough graph and let the point-set of G be partitioned into color classes R, S, T with

®) [RISISISITI

Let |R| be as small as possible. Then each u € R is adjacent to some v € S (otherwise R* = R — {u}, $* =S U {u}
and T* = T would be color classes with | R*| < |R|) and similarly, each u € R is adjacent to some v € T. Hence there
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is a partition R = Rg U R7 such that each u € Ry is adjacent to exactly one point in S and each u € Ry is adjacent to
exactly one point in 7. Obviously, the subgraph of G induced by S U Rg has exactly | S| components. Thus,

k(G —(T'U Rr)) =S|,
and similarly
k(G — (SURy)) =|T]|.

We have |S|>2 (otherwise (8) implies |R U S| <2, which is impossible since each point in 7 is adjacent to three
points in R U S) and by (8) also |T'| >2. Since G is %—tough, we have

IT U Rr|>31S]
and
ISURs|=>3IT].

Adding these two inequalities we obtain |R| + |S| + |T| > %(|S| + |T|) or |R| > %(|S| + |T'|) which together with (8)
implies |R| = |S| = |T|.

Corollary 6.2. A necessary and sufficient condition for the existence of a cubic %—tough graph with p points is that
either p = 4 or p is divisible by six.

Indeed, K4 and K> x K3 are %—tough and we can construct cubic %—tough graphs with 6k points (k > 1) by inflations

as described above. On the other hand, let G be a cubic %-tough graph with more than four points. Obviously, the
number p of points of G must be even. By Brooks’ theorem [3], G admits a 3-coloring. By Theorem 5.4, this 3-coloring
must be balanced and therefore p divisible by 3.
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