
Vision Research 55 (2012) 41–46

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at SciVerse ScienceDirect

Vision Research

journal homepage: www.elsevier .com/locate /v isres
Predicting the psychophysical similarity of faces and non-face complex shapes
by image-based measures

Xiaomin Yue a,⇑, Irving Biederman b, Michael C. Mangini c, Christoph von der Malsburg d, Ori Amir b

a Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Suite 2301, Charlestown, MA 02129, United States
b Department of Psychology and Neuroscience Program, University of Southern California, 3641 Watt Way, Los Angeles, CA 90089, United States
c Psychology Department, Concordia College, 901 8th St S. Morehead, MN 56562, United States
d Frankfurt Institute of Advanced Studies, 60438 Frankfurt am Main, Germany

a r t i c l e i n f o a b s t r a c t
Article history:
Received 19 April 2011
Received in revised form 29 September 2011
Available online 5 January 2012

Keywords:
Scaling shape similarity
Face discrimination
Gabor filtering
Shape discriminability
0042-6989/$ - see front matter � 2012 Elsevier Ltd. A
doi:10.1016/j.visres.2011.12.012

⇑ Corresponding author.
E-mail address: xiaomin@nmr.mgh.harvard.edu (X
Shape representation is accomplished by a series of cortical stages in which cells in the first stage (V1)
have local receptive fields tuned to contrast at a particular scale and orientation, each well modeled as
a Gabor filter. In succeeding stages, the representation becomes largely invariant to Gabor coding
(Kobatake & Tanaka, 1994). Because of the non-Gabor tuning in these later stages, which must be
engaged for a behavioral response (Tong, 2003; Tong et al., 1998), a V1-based measure of shape similarity
based on Gabor filtering would not be expected to be highly correlated with human performance when
discriminating complex shapes (faces and teeth-like blobs) that differ metrically on a two-choice, match-
to-sample task. Here we show that human performance is highly correlated with Gabor-based image
measures (Gabor simple and complex cells), with values often in the mid 0.90s, even without discounting
the variability in the speed and accuracy of performance not associated with the similarity of the distrac-
tors. This high correlation is generally maintained through the stages of HMAX, a model that builds upon
the Gabor metric and develops units for complex features and larger receptive fields. This is the first
report of the psychophysical similarity of complex shapes being predictable from a biologically
motivated, physical measure of similarity. As accurate as these measures were for accounting for
metric variation, a simple demonstration showed that all were insensitive to viewpoint invariant
(nonaccidental) differences in shape.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The cortical pathway supporting object recognition is generally
held to consist of a series of stages, starting with V1, where cells
are tuned to a particular scale and orientation of a restricted region
of the visual field. Such tuning can be well characterized by a lattice
of Gabor filters (De Valois & De Valois, 1990). Cells in the last visual
stage, the inferotemporal cortex (IT) of the macaque, are mostly
tuned to ‘‘moderately complex features’’ (Kobatake & Tanaka, 1994).

Some shape variation can be characterized as metric, such as the
degree of non-zero curvature or the length of a contour, attributes
which vary continuously with orientation in depth. Other shape
variation is qualitative (or nonaccidental), such as whether a con-
tour is straight or curved, attributes which are invariant to orienta-
tion in depth (Biederman, 1987; Lowe, 1985). Gabor filter values
represent well the metric portion. Nonaccidental tuning is charac-
teristic of IT cells, which are also relatively invariant to position,
ll rights reserved.
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size, precise orientation in depth, local occlusion, and direction of
illumination (Kayaert, Biederman, & Vogels, 2003; Kobatake &
Tanaka, 1994; Kourtzi & Kanwisher, 2001; Vogels & Biederman,
2002), all variables that would affect Gabor activations. Both
humans and macaques readily exploit nonaccidental differences
in shape to achieve one-shot viewpoint invariance in depth
rotation (e.g., Biederman & Bar, 1999; Biederman & Gerhardstein,
1993; Logothetis et al., 1994).

The objective of the present study was to assess the extent to
which the psychophysical discrimination of complex shapes, of
varying metric similarity, could be predicted from a measure of
Gabor Euclidean distance between the stimuli (as well as other im-
age metrics). Poor predictability would suggest that metric aspects
of shape similarity that affect psychophysical performance arise at
later stages of visual processing. Conversely, high predictability
would raise a question as to the degree to which later stages of
visual processing play a role in defining the metric similarity of
shape underlying psychophysical discrimination.

We used two types of computer-generated stimuli; novel blobs
resembling teeth and faces (Fig. 1, see Section 2). Computer gener-
ation eliminated the presence of local nonaccidental features, such
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Fig. 1. Sample match-to-sample stimulus displays for blobs (left) and faces (right).
The sample and matching stimuli are identical for all three blob and face displays.
The only variation is with the dissimilarity of the distractor, which is at the 99th
percentile (as assessed by the Gabor-jet model) of dissimilarity (high dissimilarity)
in the top panel, at the 50th percentile (middle dissimilarity) in the middle panel
and at the 10th percentile (low dissimilarity) in the bottom panel. High dissim-
ilarity of the distractor to the matching stimulus would be associated with higher
accuracy. From top to bottom, the correct choices for the blobs are right, left, left
and for the faces, left, right, left.
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as a beauty mark on a face or a scratch or stain on an object,1 that
observers tend to employ when faced with difficult discriminations
(Biederman et al., 1999). The blobs were designed to allow metric var-
iation of the contouring of smooth surfaces and thus reflect the same
low level 3D shape variation as exists for faces. Given the non-Gabor
coding in the later stages—which must be engaged for response
selection (Sheinberg & Logothetis, 1997; Bar & Biederman, 1999;
Pasupathy & Connor, 1999; Tong, 2003; Tong et al., 1998)—it might
seem that predictability from a Gabor-based measure would be low.

Although prior work had established that the blobs are initially
more difficult to discriminate than the faces, extensive training
(>8000 trials) in discriminating the blobs renders their perfor-
mance approximately equivalent to that of discriminating faces
(Yue, Tjan, & Biederman, 2006). However, such training does not
produce heightened sensitivity in the fusiform face area (FFA)
(Kanwisher, McDermott, & Chun, 1997) to blobs nor does it notice-
ably affect the slope of the function relating performance to dis-
1 Close inspection of the stimuli did not reveal any artifactual local features that, if
present, could have affected discrimination performance, an observation confirmed
by the consistency of the ordering of accuracy across adjacent similarity values
determined by the underlying stimulus generating functions. The presence of
artifactual cues would have been expected to render adjacent similarity values more
discriminable than expected from these functions.
tractor similarity, although it does increase the BOLD response in
the lateral occipital complex (LOC) (Grill-Spector, Kourtzi, &
Kanwisher, 2001), an area sensitive to object (vs. texture) process-
ing. Whereas face matching is dramatically impaired by contrast
reversal, blob expertise training does not render the matching of
blobs sensitive to contrast reversal (Nederhouser et al., 2007).
The two types of stimuli thus provide a test bed for assessing the
predictability by physical measures of metric variation of two
major shape-based domains relevant to cognition.

For comparison measures, we studied the predictability of
discrimination performance of pixel energy and the C1, S2, and
C2 layers of HMAX. The HMAX model seeks to capture the coding
along the ventral visual pathway with the C2 layer corresponding
to IT (Riesenhuber & Poggio, 1999; Serre, Oliva, & Poggio, 2007).
2. Methods and procedure

2.1. Participants

The blob and face tasks were performed by 12 and 11 partici-
pants, all students at the University of Southern California, either
for $8/h or as part of lab activities. Each participant performed
2016 trials. All procedures were approved by the USC IRB.

2.2. Tasks

To assess the effects of metric variations in shape, subjects per-
formed a matched-to-sample task in which one of the two compar-
ison stimuli, either computer generated faces or asymmetrical
blobs, resembling teeth, was identical to the sample, which was
centered above the two comparison stimuli (Fig. 1). The diagonal
relationship between the sample and each of the comparison stim-
uli made it exceedingly difficult to pick out a local feature, e.g., a
pixel, that could have distinguished distractor from matching stim-
ulus, particularly given the limited amount of time to process the
displays and that eye movements would be required to distinguish
such local features.

2.3. Stimuli

Each image was 128 � 128 pixels. With the subject seated
approximately .7 m from the display, each face or blob subtended
a visual angle of 4.6�. The faces were generated by Facegen (Sinular
Inversion, Vancouver, Canada) from a core image of a frontal view
of a 20-year-old female Caucasian. Eight levels of two dimensions,
the distance between the eyes and the mouth and the height of the
cheekbones, yielded 64 faces. These dimensions were designed to
vary the identity of the faces without producing differential activa-
tion of standard face categories such as pose, sex, race, age, expres-
sion, or attractiveness. The dimensions were selected to minimize
the presence of nonaccidental differences among the faces such as
whether the eyebrows were straight or curved. The variation of the
two face dimensions, although subtle at first glance, allowed a full
range of discrimination performance, from chance to 100% accu-
racy following a scheme for generating 2D harmonics of a circle
devised by Shepard & Cermak (1973).

The blobs were parametrically defined combinations of spheri-
cal harmonics, generated by combining a sphere and the fourth
harmonic of that sphere with eight different orientations of the
second and third harmonics. This generated a toroidal space of
64 blobs following a scheme for generating 2D harmonics of a
circle devised by Shepard and Cermak (1973). The blobs were
designed to be non-face control stimuli for faces with preservation
of the approximate smooth sculpting, compactness, and
complexity of a face without appearing face like. Although these



Fig. 2. Illustration of the dissimilarity calculation of the simple cell Gabor-jet model. A jet of 80 filters (5 scales � 8 orientations � 2 phases [sine and cosine]) is centered at
each of the 10 � 10 nodes in the grid. M is the magnitude of activation of each filter. For the Gabor-jet measure, the dissimilarity of two images is the Euclidean distance
between their responses to 80 Gabor filters on a 10 � 10 grid (see Section 2). Here, we illustrate this process with photos of faces of two individuals.
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blobs did not have albedo variations that matched that of faces,
such variations can readily be applied to their surfaces as in
Nederhouser et al. (2007). The blobs are further described in Yue,
Tjan, and Biederman (2006) and can be downloaded from http://
geon.usc.edu/Create_blobs.m.

On each trial, three images were presented in a triangular array,
with one image on top and two below (Fig. 1). The top stimulus
was the sample and one of the two lower stimuli—the ‘‘matching’’
stimulus—was identical to the sample. A match-to-sample task has
an advantage over the frequently employed same-different task in
that the former eliminates decision criterion effects which can lead
to significant below chance responding for stimuli that are
different but highly similar in shape.

The exposure durations (300 ms for the faces, 1500 ms for the
blobs) were selected so as to allow a wide range of error rates as a
function of distractor dissimilarity from near chance to near error-
less performance. As noted previously, the longer exposure duration
for the blobs was necessary with observers who were not exten-
sively trained on them. Such training (>8000 trials) can bring the
accuracy of their matching to a level that is equivalent to that of faces
without producing face-like coding of the blobs or affecting the cor-
relation with the Gabor jet measure (Yue, Tjan, & Biederman, 2006).
2.3.1. Stimulus similarity scaling
The dissimilarity of the non-matching stimulus to the matching

stimulus was varied with values scaled according to three measures
of physical image similarity—Gabor-jet simple cells, pixel energy,
and the C2 stage of HMAX2 (the other three measures, Gabor-jet
complex cells, the C1, S2 stages of HMAX, were also calculated).
The similarity correlation matrix between those six measures are
available online (http://geon.usc.edu/scaling_paper_correlation.doc),
which allowed performance as a function of the similarity measures
of the non-matching to the matching stimulus to be assessed.

The Gabor-jet model (Lades et al., 1993 f ð~xÞ ¼ ~k2
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), illustrated in Fig. 2, tiles the visual field with columns
2 We also assessed the correlation of error rates with the S1 stage of HMAX.
However, since that stage is strongly and linearly correlated with the Gabor-jet
simple-cell model (Lades et al., 1993), .96 for blobs and .99 for faces, we elected to just
present results for the latter as it enjoys precedent and has been used in prior studies
(e.g., Nederhouser et al., 2007; Xu & Biederman, 2010).
(or ‘‘jets’’) of cells at multiple orientations and scales—correspond-
ing to a simplified V1 simple cell hypercolumn. The implementation
of the model that we adopted had five scales and eight orientations
at sine and cosine phases in each jet (for a total of 80 kernels) with a
jet centered at each node in a 10 � 10 grid centered over the stimu-
lus. (All the stimuli were generated from the same central position so
no repositioning of the grid was required.) A Matlab version of
the model can be downloaded at http://geon.usc.edu/GWTgrid_
simple.m.

For the simple cell Gabor-jet model, each jet was composed of 80
Gabor filters (or kernels) at eight equally spaced orientations (i.e.,
22.5� differences in angle) � 5 scales, each centered on their jet’s
grid point. The coefficients of the kernels (the magnitude corre-
sponding to an activation value for a simple cell) within each jet
were then concatenated to an 8000-element (100 jets � 80 kernels)
vector G: [g1,g2, . . .,g8000]. For any pair of pictures with correspond-
ing jet coefficient vectors G and F, the dissimilarity of that pair was
calculated by the Euclidean distance ||G–F||, the square root of the
sum of the squared differences of the coefficients of the sine and co-
sine simple cells (corresponding to activation values). The Euclidean
distances of all image pairs were then sorted in ascending order, and
then grouped into 11 levels (10 levels for the Gabor complex cells
and HMAX C2) with equal distances between each level. With equal
distances, each level had different numbers of trials, because the
similarity distribution was not uniform.

Correlations with the data were also computed for the C1, S2,
and C2 stages of HMAX (Mutch & Lowe, 2008; Serre, Oliva, & Pog-
gio, 2007; http://www.mit.edu/~jmutch/fhlib/(v8)). HMAX is a
widely cited model of ventral pathway cell tuning in which first
stage, S1 (similar to the Gabor simple cell model), cell activations
are combined in an operation that selects the highest (maximum)
activation to form complex cells, C1, across scales. Such cells thus
create larger receptive fields. By combining S2 units, the C2 stage of
HMAX computes units with still larger receptive fields and more
complex feature combinations (such as vertices).

The model was trained on a database (http://www.vision.cal-
tech.edu/html-files/archive.html) of photographs of faces of 18
people, with 18 exemplars of each individual. All were frontal
views, with variation in background, degree of lighting, and
expression. When tested on additional exemplars of those individ-
uals that were not included in the training set, the model was cor-
rect on 76% trials. We also trained the model on the Caltech 101
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Table 1
Correlations among the three measures of (a) blob similarity and (b) face similarity.

Gabor simple Pixels HMAX_C2

(a)
Gabor simple 1 0.9190 0.8980
Pixels 0.9190 1 0.9065
HMAX_C2 0.8980 0.9065 1

(b)
Gabor simple 1 0.9928 0.9060
Pixels 0.9928 1 0.9318
HMAX_C2 0.9060 0.9318 1
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database of objects. However, since the dissimilarity measures for
both faces and blobs were nearly identical with the two training sets
(r > .95) we present here only the measures produced by the model
trained on faces. Two additional measures were the pixel-wise
Euclidean distance and the Gabor-jet complex cell. All measures
and the data are available from http://geon.usc.edu/Art_FacePairs_
Euclidean_Gabor80_Pix_HMAXC2.xls for faces, and http://geon.
usc.edu/BlobPairs_Euclidean_Gabor80_Pix_HMAXC2.xls for blobs.

Table 1 shows the intercorrelations among the three image
measures for the present stimuli. These correlations are all moder-
ately to strongly positive so it would be expected that if one of
these measures would be a good predictor of performance, the oth-
ers would be good predictors as well.

3. Results

For each measure, 11 bins provided a compromise between
having a sufficiently large number of observations within each
bin so that there were no equally spaced bins with missing or very
few values3 and enough bins so that a psychophysical function could
be well defined (Figs. 3 and 4). Within each bin, the error rate was
calculated as the number of incorrect responses divided by the total
number of trials for that bin. Overall, it is readily apparent that, for
both blobs and faces, Figs. 3 and 4, respectively, the correlations be-
tween error rates and the stimulus dissimilarity values are impres-
sively high for all three measures of image dissimilarity, especially
considering that there is some inherent variability in the perfor-
mance of the subjects not associated with the similarity of the dis-
tractors. For blobs, the correlation of the simple cell measure was
significantly higher than that for the pixel measure, t(11) = �3.01,
p < 0.05, but there were no reliable differences between simple cell
vs. HMAX C2, and pixel vs. HMAX C2 measures. For faces, none of
the differences in correlations were significant.

4. Discussion

The high correlations of the Gabor measures with performance
suggest that despite the necessity to pass through later stages of
the ventral pathway, as well as response selection stages in frontal
cortex, discrimination performance of metrically varying complex
stimuli is well predicted by a Gabor-based measure of similarity.
It also may not be necessary to posit explicit face units, such as
those assumed by Jiang et al. (2006), nor norm-based encoding,
such as that assumed by Leopold, Bondar, and Giese (2006), to ac-
count for psychophysical similarity mediating metric discrimina-
bility although other processes, such as adaptation, may reflect
these other forms of representation.

Our interest was in the representation of metric shape, rather
than in testing various schemes for achieving invariance, such as
3 There were only 10 bins for the Gabor complex cells and HMAX C2 because with
11 bins the bin with the most dissimilar values had less than 10 trials, rendering those
data points unreliable. The plots for all six measures can be download from http://
geon.usc.edu/scaling_paper_six_plot.pdf.
‘‘spotlight’’ models of attention, so we did not test translation
and scale invariance for our stimuli, which in the absence of a
capacity for achieving such invariance would have been low for
all measures but C2 of HMAX. That the C2 level of HMAX had
approximately equivalent correlations with the Gabor simple cell
measurement for faces suggests that the additional levels in HMAX
(i.e., C1, S2, and C2) do not provide an enhanced representation of
these metrically-varying stimuli. Instead, all their effect here might
be in achieving scale and translation invariance. To the extent that
they produce complex features that might facilitate classification
into basic and superordinate level categories (Serre, Oliva, & Pog-
gio, 2007), such features were not differentially present in our
stimuli over the different similarity levels.

What are the likely limits to the extent to which Gabor type
coding can represent the similarity of differences between shapes
of visual entities? That the pixel measures showed a reasonably
high correlation with error rates is likely a function of these stimuli
lacking significant protuberances differing in orientation (see
Fig. 5). (A frontal view of a face with an elongated part sticking
out of its side would not be a face.) The pixel measure, which makes
neither orientation nor scale of a shape feature explicit, would not
be able to reflect that a large difference in orientation or position of
a part should produce a higher dissimilarity value than a small
difference in orientation or position, given that the changes in both
cases had no pixels in common with the original stimulus. These ef-
fects are illustrated with the line drawings in Fig. 5 where the mea-
sure of pixel similarity has A&B equivalent to A&C whereas the
latter would be much easier to discriminate. The Gabor-jet measure
does, indeed, have A&B more similar than A&C. Hummel (2000) has
provided a number of instances where pixel template models fail to
capture such readily recognizable differences among stimuli.
Where all the measures considered in the current work come up
short is in their lack of sensitivity to nonaccidental differences.
The Gabor-jet simple cell measure has AB equivalent to AD. Some-
what surprising, the HMAX C2 measure, whether trained on faces or
objects, has the orientation difference of AB more dissimilar than
the nonaccidental difference of AD (raw Euclidean, face training,
AB = .54, AD = .43; object training, AB = .91; AD = .59) yet for hu-
mans the discrimination of A&D would likely be much easier and
faster than A&B. This is not a ‘‘one-off’’ result. A systematic study
(Amir, Biederman, & Hayworth, 2011, unpublished) compared the
discriminability of nonaccidental vs. metric differences among a
set of geons where the differences were equated according to the
Gabor-jet model (Lades et al., 1993). The HMAX C2 stage (current
version of the that model) also failed to produce greater Euclidean
distances for the nonaccidental differences despite their markedly
greater discriminability in terms of human performance (e.g.,
Biederman & Bar, 1999).

To our knowledge, this is the first time that the psychophysical
similarity of complex shapes has been predicted on the basis of a
biologically-based physical measure of the stimuli. This high pre-
dictability from image-based dissimilarity measures of discrimina-
tion performance for the two classes of stimuli means that it is
possible to achieve an ‘‘apples and oranges’’ scaling so that a given
distance between a pair of faces, for example, can be matched to a
given distance between pairs of blobs, as illustrated in Fig. 6.

The high correlation between first stage cortical dissimilarity
and psychophysical performance should not be interpreted to
mean that pairs of stimuli from different classes, say faces and
blobs, at equal levels of scaled dissimilarity, would yield equivalent
performance levels. As noted previously, other factors, say famil-
iarity or inherent dedicated mechanisms for processing a particular
class or stimuli, could affect performance. In fact, this was likely
the case with the faces and blobs in that, as noted in the Introduc-
tion, extensive training on the blobs renders their overall perfor-
mance levels equivalent to that of faces, and produces a larger
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Fig. 3. Blob match-to-sample error rates as a function of the dissimilarity of the distractor to the matching stimulus for the three measures of shape dissimilarity. The error
bars are the standard error of the means with between subjects variance removed. The functions for Gabor complex cell, HMAX C1, and S2 are available at the link given
previously.

Fig. 4. Face match-to-sample error rates as a function of the dissimilarity of the distractor to the matching stimulus for the three measures of shape similarity. The error bars
are the standard errors of the mean with between subjects variance removed. The functions for Gabor complex cell, HMAX C1 and S2 are available at the link given previously.

Fig. 5. Four simple stimuli illustrating the pixel measure’s insensitivity to
orientation differences and the insensitivity of the Gabor jet and HMAX models
to nonaccidental differences. The pixel similarity measure has A&B and A&C
equivalent, reflecting that measure’s insensitivity to non-overlapping orientation
differences, in contradiction to their discrimination difficulty. Similarly, the
Gabor simple cell similarity measure has A&B equivalent to A&D, reflecting the
insensitivity of that measure to nonaccidental differences. HMAX C2 scales A&B
to be more dissimilar than A&D in clear contradiction to their likely discrimi-
nation difficulty.

Fig. 6. Illustration of scaling equivalences for faces and blobs at different Gabor-jet
simple cell dissimilarity values. The face and blob at the same horizontal location
are at equal distances (dissimilarities) from the leftmost stimulus.
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BOLD response in LOC (Yue, Tjan, & Biederman, 2006). However,
this reduction in error rates was on the intercept, not on the slope
relating the performance measures to Gabor similarity.

We hypothesize that when the Gabor dissimilarity measure is
not predictive of performance for equally practiced sets of stimuli
then cells sensitive to nonaccidental properties are being differen-
tially activated by the stimuli. Such cells presumably are
to be found in later stages of the ventral pathway (e.g., Kayaert,
Biederman, & Vogels, 2003; Kobatake & Tanaka, 1994), Without a
scaling of V1 dissimilarity, one would not know whether any ob-
served behavioral differences in discriminating different classes
of stimuli was a reflection of early vs. later stages of processing
(Yue et al., 2011).

In the main, our results show that an image-based similarity
measure derived from V1-like simple-cell tuning, i.e., Gabor filter-
ing, predicts the psychophysical similarity of metric variation of
complex shapes almost perfectly.

Acknowledgments

This work was supported by the National Science Foundation
Grant numbers 0531177 and 0617699 to I.B. We thank Bosco Tjan
for helpful discussions.



46 X. Yue et al. / Vision Research 55 (2012) 41–46
References

Amir, O., Biederman, I., & Hayworth, K. J. (2011). Sensitivity to nonaccidental vs.
metric shape differences. Unpublished ms., University of Southern California.

Bar, M., & Biederman, I. (1999). Localizing the cortical region mediating visual
awareness of object identity. Proceedings of the National Academy of Sciences, 96,
1790–1793.

Biederman, I. (1987). Recognition-by-components: A theory of human image
understanding. Psychological Review, 94, 115–147.

Biederman, I., & Bar, M. (1999). One-shot viewpoint invariance in matching novel
objects. Vision Research, 39, 2885–2899.

Biederman, I., & Gerhardstein, P. C. (1993). Recognizing depth-rotated objects:
Evidence for 3D viewpoint invariance. Journal of Experimental Psychology:
Human Perception and Performance, 19, 1162–1182.

Biederman, I., Subramaniam, S., Bar, M., Kalocsai, P., & Fiser, J. (1999). Subordinate-
level object classification reexamined. Psychological Research, 62, 131–153.

De Valois, R. L., & De Valois, K. K. (1990). Spatial vision. New York: Oxford.
Grill-Spector, K., Kourtzi, Z., & Kanwisher, N. (2001). The lateral occipital complex

and its role in object recognition. Vision Research, 41, 1409–1422.
Hummel, J. E. (2000). Where view-based theories break down: The role of structure

in shape perception and object recognition. In E. Dietrich & A. Markman (Eds.),
Cognitive dynamics: Conceptual change in humans and machines (pp. 157–185).
Hillsdale, NJ: Erlbaum.

Jiang, X., Rosen, E., Zeffiro, T., VanMeter, J., Blanz, V., & Riesenhuber, M. (2006).
Evaluation of a shape-based model of human face discrimination using FMRI
and behavioral techniques. Neuron, 50(1), 159–172.

Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A
module in human extrastriate cortex specialized for face perception. Journal of
Neuroscience, 17, 4302–4311.

Kayaert, G., Biederman, I., & Vogels, R. (2003). Shape tuning in macaque inferior
temporal cortex. Journal of Neuroscience, 23, 3016–3027.

Kobatake, E., & Tanaka, K. (1994). Neuronal selectivities to complex object features
in the ventral visual pathway of the macaque cerebral cortex. Journal of
Neurophysiology, 71, 856–867.

Kourtzi, Z., & Kanwisher, N. (2001). Representation of perceived object shape by the
human lateral occipital cortex. Science, 293, 1506–1509.

Lades, M., Vorbruggen, J. C., Buhmann, J., Lange, J., von der Malsburg, C., Wurtz, R. P.,
et al. (1993). Distortion invariant object recognition in the dynamic link
architecture. IEEE Transactions on Computers, 42, 300–311.
Leopold, D. A., Bondar, I. V., & Giese, M. A. (2006). Norm-based face encoding by
single neurons in the monkey inferotemporal cortex. Nature, 442(7102),
572–575.

Logothetis, N. K., Pauls, J., Bülthoff, H. H., & Poggio, T. (1994). View-dependent object
recognition by monkeys. Current Biology, 4, 401–414.

Lowe, D. (1985). Perceptual organization and visual recognition. Boston: Kluwer.
Mutch, J., & Lowe, D. G. (2008). Object class recognition and localization using

sparse features with limited receptive fields. International Journal of Computer
Vision, 80(1), 45–57.

Nederhouser, M., Yue, X., Mangini, M. C., & Biederman, I. (2007). The deleterious
effect of contrast reversal on recognition is unique to faces, not objects. Vision
Research, 47, 2134–2142.

Pasupathy, A., & Connor, C. E. (1999). Responses to contour features in macaque
area V4. Journal of Neurophysiology, 82, 2490–2502.

Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in
cortex. Nature Neuroscience, 2, 1019–1025.

Serre, T., Oliva, A., & Poggio, T. (2007). A feedforward architecture accounts for rapid
categorization. Proceedings of the National Academy of Sciences, 104, 6424–6429.

Sheinberg, D. L., & Logothetis, N. K. (1997). The role of temporal cortical areas in
perceptual organization. Proceedings of the National Academy of Sciences, 94,
3408–3413.

Shepard, R. N., & Cermak, G. W. (1973). Perceptual-cognitive explorations of a
toroidal set of free-form stimuli. Cognitive Psychology, 4, 351–377.

Tong, F. (2003). Primary visual cortex and visual awareness. Nature Reviews
Neuroscience, 4, 219–229.

Tong, F., Nakayama, K., Vaughan, J. T., & Kanwisher, N. (1998). Binocular rivalry and
visual awareness in human extrastriate cortex. Neuron, 21, 753–759.

Vogels, R., & Biederman, I. (2002). Effects of illumination intensity and direction on
object coding in macaque inferior temporal cortex. Cerebral Cortex, 12, 756–766.

Xu, X., & Biederman, I. (2010). Loci of the release from fMRI adaptation for changes
in facial expression, identity, and viewpoint. Journal of Vision, 10, 1–13.

Yue, X., Cassidy, B. S., Devaney, K. J., Holt, D. J., & Tootell, R. B. H. (2011). Lower-level
stimulus features strongly influence responses in the fusiform face area.
Cerebral Cortex, 21, 35–47.

Yue, X., Tjan, B., & Biederman, I. (2006). What makes faces special? Vision Research,
46, 3802–3811.


	Predicting the psychophysical similarity of faces and non-face complex shapes  by image-based measures
	1 Introduction
	2 Methods and procedure
	2.1 Participants
	2.2 Tasks
	2.3 Stimuli
	2.3.1 Stimulus similarity scaling


	3 Results
	4 Discussion
	Acknowledgments
	References


