Homogenization in Open Sets with Holes

Doina Croranescu and Jeannine Saint Jean Paulin
Laboratoire Analyse Numérique, Université Pierre et Marie Curie, 4 place Jussieu, 75230 Paris Cedex 05, France

Submitted by J. L. Lions

Let Q^{r} be a cylindrical bar with r cylindrical cavities having generators parallel to those of Q^{r}. Let Ω be the cross-section of the bar, Ω^{*} the cross-section of the domain occupied by the material and $\Omega^{i}(i=1, \ldots, r)$ the cross- sections of the cavities:

$$
\Omega^{i} \subset \Omega ; \Omega^{i} \cap \bar{\Omega}^{k}=\phi, i \neq k
$$

The study of the elastic torsion of this bar leads to the following problem [see Lanchon ('Thèse, Paris, 1972; J. Mécanique 13 (1974), 267-320)]:

$$
\begin{align*}
& \Delta f_{r}+2 \mu \alpha=0 \text { in } \Omega^{*} \\
& f_{r \mid \partial \Omega}=0 \tag{1}\\
& f_{r}=\text { constant on } \partial \Omega^{i} ; \quad i=1, \ldots, r
\end{align*}
$$

where μ is the shear modulus of the material, α is the angle of twist and f_{r} represents the stress function. In this paper the problem (1) with an increasing number of holes which are distributed periodically is considered. One would like to know if f_{r} has a limit f_{∞} as $r \rightarrow+\infty$, and if so, the equation satisfied by this limit. This is an "homogenization" problem - the heterogeneous bar Q^{r} is replaced by a homogeneous one, the response of which under torsion approximates as closely as possible that of Q^{r}. A more general problem will be studied and the case of elastic torsion will be obtained as an application. The proof uses the energy method [see Lions (Collège de France, 1975-1977), Tartar (Collège de France, 1977)] and extension theorems. A related problem is the homogenization of a perforated plate [cf. Duvaut (to appear)].

1. Notations. Variational Formulation

Let Y be the representative cell in \mathbb{R}^{2}

$$
Y=\left[0, l_{1}\left[\times\left[0, l_{2}[.\right.\right.\right.
$$

Let $\tau_{i}(i=1, \ldots, M)$ be two-dimensional connected open sets whose boundaries are smooth, assumed to lie locally on one side of their boundary.

The τ_{i} are used to construct the holes.

The part of Y occupied by the material is denoted by Y^{*} :

$$
Y^{*}=Y-\bigcup_{i=1}^{M}\left(\bar{\tau}_{i} \cap Y\right) ; \theta=\frac{\operatorname{meas} Y^{*}}{\text { meas } Y}=\frac{\left|Y^{*}\right|}{|Y|}
$$

Let $\tilde{\chi}$ be the characteristic function of Y^{*} (this function is defined at every point of Y, and not merely almost everywhere in Y):

$$
\begin{aligned}
\tilde{\chi}(y) & =1 & \text { if } & & y \in Y^{*} & \\
& =0 & & \text { if } & & y \in \bar{\tau}_{i} \cap Y,
\end{aligned} \quad i=1, \ldots, M .
$$

'The function $\tilde{\chi}$ is extended periodically in \mathbb{R}^{2} and let χ be this extension. The "holes" $T_{\epsilon}^{j}(j=-1,2, \ldots)$ in \mathbb{R}^{2} are defined as the (closed) connected components of the set

$$
\left\{x \left\lvert\, \chi\left(\frac{x}{\epsilon}\right)=0\right.\right\} \quad(\epsilon>0)
$$

This means \mathbb{R}^{2} is covered periodically by cells homothetic to the representative cell Y, the ratio being $\epsilon: 1$.

Let Ω be a bounded connected two-dimensional open set whose boundary is not necessarily smooth.

Let Ω_{ϵ}^{*} denote the open subset of Ω representing the part of Ω occupied by the material.

We make the following assumptions:
(i) Ω_{e}^{*} is a connected set.
(ii) the $T_{\epsilon}{ }^{j}$ have a smooth boundary and they are locally on one side of their boundary.

We denote by $\Omega_{\epsilon}{ }^{j}$ an "interior hole", i.e. a $T_{\epsilon}{ }^{j}$ which is included in Ω and does not intersect $\partial \Omega$. There is a finite number N_{ϵ} of such closed sets $\Omega_{\epsilon}{ }^{j}$. Let:

$$
\Omega_{\epsilon}^{* *}=\bigcup_{j . \cdot 1}^{N_{\epsilon}} \Omega_{\epsilon}^{j}=\bigcup_{j=1}^{N_{\epsilon}}\left\{T_{\epsilon}^{j} \mid T_{\epsilon}^{j} \subset \Omega ; T_{\epsilon}^{j} \cap \partial \Omega=\phi\right\}
$$

Remark. One does not have

$$
\Omega_{\epsilon}^{*}=\Omega-\Omega_{\epsilon}^{* *}
$$

Let $\ddot{c}_{\text {ext }} \Omega_{\epsilon}^{*}$ be the exterior boundary of Ω_{ϵ}^{*}

$$
\partial_{\mathrm{ext}} \Omega_{\epsilon}^{*}=\partial \Omega_{\epsilon}^{*}-\hat{o} \Omega_{\epsilon}^{* *}
$$

This exterior boundary is not necessarily smooth: it may have angles and Ω_{ε}^{*} may not be locally on one side of $\partial_{\text {ext }} \Omega_{\epsilon}^{*}$.

Consider the problem (Problem 1):

$$
\begin{aligned}
& \mathbf{A}_{\epsilon} u_{\epsilon}--\operatorname{div}\left(A\left(\frac{x}{\epsilon}\right) \operatorname{grad} u_{\epsilon}\right) \cdot f \quad \text { in } Q_{\epsilon}^{*}
\end{aligned}
$$

$$
\begin{align*}
& \left.u_{\epsilon}\right|_{c \Omega_{\epsilon}} \quad \text { const. } \quad i=1, \ldots, N_{c} \tag{2}\\
& \int_{\dot{C \Omega_{\varepsilon}}{ }^{i} d v_{A_{\epsilon}}} \frac{\delta u_{\epsilon}}{} d s-\int_{\Omega_{\epsilon}} f d x
\end{align*}
$$

(the normal is directed towards the exterior of Ω_{ε}^{*}). Here $A\left(x_{1}^{\prime} \epsilon\right)$ is the value of the matrix $\left(a_{i j}(x)\right)_{i, j-1,2}$ calculated at the point x / ϵ.

We introduce the vector space

$$
E_{c}=\left\{\tau \in H^{1}\left(\Omega_{\varepsilon}^{*}\right), \tau=\text { const. on } \partial \Omega_{\epsilon}^{i}\left(i=1, \ldots, V_{\epsilon}\right),\left.v\right|_{\hat{\epsilon}_{\mathrm{ext}} O_{\epsilon}^{*}} \quad 0_{i}^{\}}\right.
$$

with the norm

$$
\left|\boldsymbol{v}_{E_{\epsilon}}--\dot{ }, \operatorname{grad} \mathfrak{v}\right|_{\left[L^{2}\left(\Omega_{\epsilon}^{*}\right)\right]^{2}}
$$

The variational formulation of (2) is:

$$
\begin{gather*}
\int_{Q_{\epsilon}} A\left(\frac{x}{\epsilon}\right) \operatorname{grad} u_{\epsilon} \operatorname{grad} v_{\epsilon} d x=\int_{\Omega_{\epsilon}} f v_{\epsilon} d x \\
\forall r_{\epsilon} \in E_{\epsilon} . \tag{3}
\end{gather*}
$$

We make the following assumptions:
A.1. $f \in L^{2}(\Omega)$
A.2. The coefficients $a_{i j} \in L^{\infty}\left(\mathbb{R}^{2}\right), i, j=1,2$.
A.3. There is a positive number β such that

$$
\sum_{i, j} a_{i j}(y) \zeta_{i} \zeta_{j} \geqslant \beta \zeta_{i} \zeta_{i} \quad \text { for any } \zeta=\left(\zeta_{k}\right)_{k-1,2} \in \mathbb{R}^{2}
$$

Under these assumptions, classical theorems show that (3) has a unique solution $u_{\epsilon} \in E_{\epsilon}$.

Now let $\epsilon \rightarrow 0$, hence $N_{\epsilon} \rightarrow+\infty$ (cf. the definitions of $\Omega_{\epsilon}^{*}, \Omega_{\epsilon}{ }^{i}$ and N_{ϵ}).
The bchavior of u_{ϵ} as $\epsilon>0$ will now be studied.

2. Extension Lemmas

Lemma 1. There exists an extension operator

$$
P_{\epsilon} \in \mathscr{L}\left(E_{\varepsilon}, H_{0}^{1}(\Omega)\right)
$$

such that

$$
\left|\operatorname{grad} P_{\epsilon} v\right|_{\left[L^{2}(\Omega)\right]^{2}} \leqslant\left. C!\operatorname{grad} v\right|_{\left[L^{v}\left(\Omega_{\epsilon}^{*}\right)\right]^{2}}, \quad \forall r \in E_{\epsilon} .
$$

where the constant C does not depend on ϵ.
Proof. Let $v \in E_{\epsilon}$, it is extended into each hole contained in Ω by its value on the boundary of the hole; if a hole ω_{ϵ} cuts the boundary $\hat{c} \Omega, v$ is extended by 0 in $\Omega \cap \omega_{\mathrm{E}}$.

Lemma 2. Let $\Phi \in\left[L^{2}\left(Y^{*}\right)\right]^{2}$ be a solution of

$$
-\operatorname{div} \Phi=F \quad \text { in } \quad Y^{*}
$$

with

$$
\begin{equation*}
\int_{\partial\left(\tau_{i} \cap Y\right)} \Phi \cdot n d s=\int_{\tau_{i} \cap Y} F d x \quad i:=1, \ldots, M \tag{4}
\end{equation*}
$$

where $F \in L^{2}(Y)$ and n is the normal directed towards the exterior of Y^{*}.
Then there exists $\widetilde{\Phi} \in\left[L^{2}\left(\cup_{i=1}^{M}\left(\tau_{i} \cap Y\right)\right)\right]^{2}$ such that:

$$
\begin{aligned}
-\operatorname{div} \widetilde{\Phi} & \ldots F \quad \text { in } \quad \bigcup_{i-1}^{M}\left(\tau_{i} \cap Y\right) \\
\left.\widetilde{\Phi} \cdot n\right|_{\partial\left(\tau_{i} \cap Y\right)} & =\left.\Phi \cdot n\right|_{\partial\left(\tau_{i} \cap Y\right)}
\end{aligned}
$$

Moreover,

$$
\begin{equation*}
|\tilde{\Phi}|_{\left[L^{2}\left(U_{i=1}^{M}\left(\tau_{t} \cap Y\right)\right]^{2}\right.} \leqslant C_{1}|F|_{L^{2}(Y)}+C_{2}|\Phi|_{\left[L^{2}\left(Y^{*}\right)\right]^{2}} \tag{5}
\end{equation*}
$$

where C_{1} and C_{2} are constants.
Proof. We seek $\widetilde{\Phi}$ under the form $\operatorname{grad} \varphi$ which leads to the solution of the following problem:

$$
\begin{gathered}
-\Delta \varphi=F \quad \text { in } \quad \bigcup_{i=1}^{M}\left(\tau_{i} \cap Y\right) \\
\left.\frac{\partial \varphi}{\hat{\partial n}}\right|_{\partial\left(\tau_{i} \cap Y\right)}=\Phi \cdot n_{\partial\left(\tau_{i} \cap Y\right)} \quad(i=1, \ldots, M)
\end{gathered}
$$

where $\Phi \cdot n$ verifies (4).
This is a classical Neumann problem which has a solution φ in $H^{\prime}\left(\bigcup_{i=1}^{M}\left(\tau_{i} \cap Y\right)\right.$), unique up to an additive constant. Moreover:

$$
\begin{equation*}
\left.\varphi\right|_{H^{1}\left(\cup_{i=1}^{M}\left(\tau_{i} \cap Y\right)\right)} \leqslant C_{1}^{\prime}|F|_{L^{2}\left(\cup_{i=1}^{M}\left(\tau_{i} \cap Y\right)\right)}+C_{2}^{\prime}|\Phi \cdot n|_{H^{-1 / 2}\left(\cup_{i=1}^{M}\left(\tau_{i} \cap Y\right)\right)} \tag{6}
\end{equation*}
$$

(C_{1}^{\prime} and C_{2}^{\prime} are constants).

Notice now that the application

$$
v \mapsto v \cdot n
$$

from $V \equiv\left\{v \mid v \in\left[L^{2}\left(Y^{*}\right)\right]^{2}, \operatorname{div} v \in L^{2}\left(Y^{*}\right)\right\}$ to $H^{-1 / 2}\left(\mathrm{U}_{i=1}^{M} \partial\left(\tau_{i} \cap Y\right)\right)$ is continuous (see Lions-Magenes [1] for example).

It follows that

$$
\begin{equation*}
\left.|\Phi \cdot n|_{H^{-1 / 2}\left(U_{i=1}^{n} \hat{\Delta}\left(\tau_{T} \cap Y\right)\right.}\right) \leqslant k_{1}|\Phi|_{\left[L^{2}\left(X^{*}\right)\right]^{2}}+k_{2}|\operatorname{div} \Phi|_{L^{2}\left(Y^{*}\right)} . \tag{7}
\end{equation*}
$$

Thus the inequality (5) is deduced from estimations (6) and (7) (recall that $\left.-\operatorname{div} \Phi=F \operatorname{in} Y^{*}\right)$.

3. The Elastic Torsion Problem

We add the following assumption:
A.4. The coefficients $a_{i j}(y)$ are Y-periodic.

Theorem 1. Under the assumptions A. 1 to A. 4 there is an extension $P_{\epsilon} u_{\epsilon}$ of u_{ϵ} such that

$$
P_{\epsilon} u_{\mathrm{\varepsilon}} \rightharpoonup u^{\times} \quad \text { in } \quad H_{0}{ }^{1}(\Omega) \text { weakly }
$$

where u^{*} is the solution of

$$
\mathscr{A} u^{*}=-\operatorname{div}\left(\mathscr{A} \operatorname{grad} u^{*}\right)=: f \quad \text { in } \quad \Omega .
$$

The constant matrix \mathscr{A} will be defined later.
Proof. (i) A priori estimates. Using the assumptions and (2), it follows easily that

$$
\begin{equation*}
\|\left. u_{\epsilon}\right|_{H_{0}^{1}\left(\Omega_{\epsilon}^{+}\right)} \leqslant \text {constant } \quad \text { (independently of } \epsilon \text {). } \tag{8}
\end{equation*}
$$

Lemma 1 can be applied, u_{ϵ} is extended by $P_{\epsilon} u_{\epsilon}$; we get:

$$
\left\|P_{\epsilon} u_{\epsilon}\right\|_{H_{0}^{1}(\Omega)} \leqslant \text { constant } \quad \text { (independently of } \epsilon \text {). }
$$

Hence we can extract a subsequence still denoted by $P_{\varepsilon} u_{\varepsilon}$ such that

$$
P_{\epsilon} u_{\mathrm{t}} \rightharpoonup u^{*} \quad \text { in } \quad H_{0}^{1}(\Omega) \text { weakly. }
$$

We now look for the equation satisfied by u_{ϵ}.
Let

$$
\xi_{c}=A\left(\frac{x}{\epsilon}\right) \operatorname{grad} u_{\epsilon} \quad \text { in } \quad \Omega_{\epsilon}^{*} .
$$

Using the assumptions and (8) we get:

$$
\begin{equation*}
\left|\xi_{\epsilon}\right|_{\left[L^{2}\left(\Omega_{\epsilon}^{*}\right)\right]^{2}} \leqslant \text { constant } \quad \text { (independently of } \epsilon \text {). } \tag{9}
\end{equation*}
$$

Moreover ξ_{ϵ} verifies:

$$
\begin{equation*}
-\operatorname{div} \xi_{\epsilon}==f \quad \text { in } \quad \Omega_{\epsilon}^{*} \tag{10}
\end{equation*}
$$

and

$$
\int_{c \Omega_{\epsilon}^{i}} \xi_{\epsilon} \cdot n d s=\int_{\Omega_{\epsilon}^{i}} f d x .
$$

In order to pass to the limit, it is necessary to obtain equations and estimates in Ω, or at least in any relatively compact open subset of Ω.

Let Ω^{\prime} be such a subset. We seek an extension $Q_{\varepsilon} \xi_{\varepsilon}$ of ξ_{ϵ} preserving the equation (10) in Ω^{\prime} and such that

$$
\left|Q_{\epsilon} \xi_{\epsilon}\right|_{\left[L^{2}\left(\Omega^{\prime}\right)\right]^{2}} \leqslant \text { constant } \quad \text { (independently of } \epsilon \text {). }
$$

Let $y=x / \epsilon$ and $\Phi(y)=\xi_{\epsilon}(\epsilon y)$. It will be noticed that:

$$
\begin{aligned}
-\operatorname{div} \Phi & =F \quad \text { in } \quad Y^{*} \\
\int_{\partial\left(T_{i} \cap Y\right)} \Phi \cdot n d s & =\int_{\tau_{i} \cap Y} F d y \quad i=1, \ldots, M
\end{aligned}
$$

with $F \in J^{2}\left(Y^{*}\right)$ and hence Lemma 2 can be applied. Let Q denote the extension operator given by this lemma ($Q \Phi=\Phi$ in $Y^{*}, Q \Phi=\widetilde{\Phi}$ in $\bigcup_{i=1}^{M}\left(\tau_{i} \cap Y\right)$ and define now:

$$
\left(Q_{\epsilon} \xi_{\epsilon}\right)(\epsilon y)=(Q \Phi)(y) .
$$

It follows that

$$
\begin{aligned}
&-\operatorname{div} Q_{\epsilon} \xi_{\epsilon}=f \quad \text { in } \quad \epsilon Y \\
&\left|Q_{\epsilon} \xi_{\epsilon}\right|_{\left[L^{2}(\epsilon Y)\right]^{2}} \leqslant\left. C_{1}^{\prime}\left|f_{L^{2}(\epsilon Y)} \div C_{2}^{\prime}\right| \xi_{\epsilon}\right|_{\left[L^{2}\left(\epsilon Y^{*}\right)\right]^{2}}
\end{aligned}
$$

If ϵY is extended periodically to \mathbb{R}^{2} we obtain

$$
\begin{gather*}
-\operatorname{div} Q_{\epsilon} \xi_{\epsilon}=f \quad \text { in } \quad \Omega_{\epsilon}=\Omega_{\epsilon}^{*} \cup\left(\bigcup_{i=1}^{N_{\epsilon}} \Omega_{\epsilon}^{i}\right) \\
\left|Q_{\epsilon} \xi_{\varepsilon}\right|_{\left[L^{2}\left(\Omega_{\epsilon}\right)\right]^{2}} \leqslant C_{1}|f|_{L^{2}(\Omega)}+C_{2}\left|\xi_{\varepsilon}\right|_{\left[L^{2}\left(\Omega_{\epsilon}^{*}\right)\right]^{2}} \tag{11}
\end{gather*}
$$

where C_{1} and C_{2} are constants independent of ϵ.
Since Ω^{\prime} is a relatively compact subset of Ω, if ϵ is small enough, $\partial \Omega^{\prime}$ does not meet the holes cutting the boundary $\partial \Omega$ (the distance between Ω^{\prime} and $\partial \Omega$ is positive).

Recalling (11) and the a priori estimate (9) we conclude that

$$
\begin{equation*}
-\operatorname{div} Q_{\epsilon} \xi_{\epsilon}=\int \quad \text { in } \quad \Omega^{\prime} \tag{12}
\end{equation*}
$$

and

$$
\left|Q_{\epsilon} \xi_{\epsilon}\right|_{\left[L^{2}\left(s^{2}\right)\right]^{2}} \leqslant \text { constant } \quad \text { (independently of } \epsilon \text {). }
$$

Consequently we can extract a subsequence, still denoted by $Q_{\epsilon} \xi_{\varepsilon}$, such that

$$
Q_{\epsilon} \xi_{\epsilon} \underset{\epsilon \rightarrow 0}{ } \xi^{*} \quad \text { in } \quad\left[L^{2}\left(\Omega^{\prime}\right)\right]^{2} \text { weakly }
$$

with ξ^{*} verifying the limit equation

$$
\begin{equation*}
-\operatorname{div} \xi^{\times}=f \quad \text { in } \quad \Omega^{\prime} \tag{13}
\end{equation*}
$$

obtained from (12).
(ii) Definition of the homogenized operator. The purpose is to establish a relation between $\xi^{\dot{\star}}$ and u^{*}. 'The argument uses energy method.

For each $\lambda \in \mathbb{R}^{2}$ define $w_{\lambda}(y)$ by

$$
\begin{gathered}
-\operatorname{div}\left(A^{*}(y) \operatorname{grad} w_{\lambda}(y)\right)=0 \quad \text { in } \quad Y^{*} \\
\left(w_{\lambda}-\lambda \cdot y\right) \text { periodic } \quad \text { in } \quad Y^{*} \\
\int_{\partial\left(\tau_{i} \cap Y\right)} \frac{\partial w_{A}}{\partial v_{A+}} d s=0, \quad i=1, \ldots, M \\
w_{\lambda}=\text { constant } \quad \text { on } \quad \dot{c}\left(\tau_{i} \cap Y\right) .
\end{gathered}
$$

Let $\tilde{P} w_{\lambda}$ be the extension of w_{λ} inside the hole τ_{i} by its value on the boundary of $\tau_{i}(i=1, \ldots, M)$.

Set

$$
\eta_{\lambda}=A^{*} \operatorname{grad} w_{\lambda}
$$

and notice that $\Phi=\eta_{\lambda}$ verifies the assumptions of Lemma 2 with $F=0$. Let $Q \eta_{\lambda}$ be the extension of η_{λ} to Y given by this lemma, We have:

$$
\left(\tilde{P} w_{\lambda}-\lambda \cdot y\right) \text { periodic } \quad \text { in } \quad Y
$$

and

$$
-\operatorname{div}\left(Q \eta_{\lambda}\right)=0 \quad \text { in } \quad \Gamma
$$

Moreover

$$
\mathfrak{M}\left(\operatorname{grad} \tilde{P} \mathfrak{w}_{\lambda}\right)=\lambda
$$

(\mathfrak{M} is the average in $\left.Y: \mathfrak{M i g}-=(1 / Y) \int_{Y} g d x\right)$.
Obscrving that w_{λ} is lincar in λ and that Q is a lincar operator we can define a matrix \mathscr{A} by

$$
\begin{gather*}
\forall \lambda \in \mathbb{R}^{2} \\
\mathscr{A} \lambda=\mathfrak{M}\left(Q A^{*}(y) \operatorname{grad} w_{\lambda}(y)\right) . \tag{14}
\end{gather*}
$$

Definition. 'The matrix \mathscr{A} given by (14) defines an operator \mathscr{A} called homogenized operator associated with problem 1.
(iii) The homogenized equation. From the results obtained in the first two steps, we get:

$$
\begin{array}{lll}
P_{\epsilon} u_{\epsilon} \xrightarrow[\epsilon \rightarrow 0]{ } u^{*} & \text { in } & H_{0}^{1}(\Omega) \text { weakly } \\
Q_{\epsilon} \xi_{\epsilon \rightarrow \rightarrow 0} \xi^{*} & \text { in } & {\left[L^{2}\left(\Omega^{\prime}\right)\right]^{2} \text { weakly }} \tag{15}
\end{array}
$$

and

$$
-\operatorname{div} \xi^{*}=f \quad \text { in } \quad \Omega^{\prime}
$$

Next let

$$
\begin{aligned}
& w_{\epsilon}(x)=\epsilon \bar{P} w_{\lambda}\left(\frac{x}{\epsilon}\right) \\
& \eta_{\lambda \epsilon}(x)=\eta_{\lambda}\left(\frac{x}{\epsilon}\right)
\end{aligned}
$$

The gradient of w_{ϵ} is periodic by construction. To extend $\eta_{\lambda \epsilon}$ we use the same technique as the one used to extend ξ_{ϵ} and we define

$$
\left(Q_{\epsilon} \eta_{\lambda \epsilon}\right)(x)=\left(Q_{\eta_{\lambda}}\right)\left(\frac{x}{\epsilon}\right)
$$

From the step (ii) and the preceeding remarks, it follows that

$$
\begin{array}{rrl}
& -\operatorname{div} Q_{\epsilon} \eta_{\lambda c}-0 \\
w_{\epsilon} \rightarrow 0 \\
\operatorname{grad} w_{\epsilon \rightarrow 0} w^{*} & \text { in } & H^{1}(\Omega) \text { weakly } \tag{17}\\
& \text { in } & {\left[L^{2}(\Omega)\right]^{2} \text { weakly }}
\end{array}
$$

and

$$
\begin{equation*}
Q_{\epsilon} \eta_{\lambda \epsilon} \xrightarrow[\epsilon \rightarrow 0]{\longrightarrow} \mathbb{M}\left(Q_{\epsilon} \eta_{\lambda \epsilon}\right)=\mathscr{A} \lambda \quad \text { in } \quad\left[L^{2}(\Omega)\right]^{2} \text { weakly. } \tag{18}
\end{equation*}
$$

Moreover

$$
\operatorname{grad} w^{*}-\lambda .
$$

Fix $\varphi \in \mathcal{D}(\Omega)$ and choose a relatively compact open subset Ω^{\prime} of Ω such that

$$
\operatorname{supp} \varphi \subset \Omega^{\prime} \Subset \Omega .
$$

Multiplying (12) by $\varphi \cdot w_{\epsilon}$ and (16) by $\varphi \cdot P_{\epsilon} u_{\epsilon}$, subtracting one from the other it follows that:

$$
\begin{align*}
& \int_{\Omega^{\prime}} Q_{\epsilon} \xi_{\epsilon} \cdot \nabla \varphi \cdot w_{\epsilon} d x+\int_{\Omega^{\prime}} Q_{\epsilon} \xi_{\epsilon} \cdot \varphi \cdot \nabla w_{\epsilon} d x \\
&-\int_{\Omega^{\prime}} Q_{\epsilon} \eta_{\lambda \epsilon} \cdot \nabla \varphi \cdot P_{\epsilon} u_{\epsilon} d x-\int_{\Omega^{\prime}} Q_{\epsilon} \eta_{\epsilon} \cdot \varphi \cdot \nabla\left(P_{\epsilon} u_{\epsilon}\right) d x \tag{19}\\
&= \int_{\Omega^{\prime}} f \cdot \varphi \cdot w_{\epsilon} d x
\end{align*}
$$

We use the definitions of the extension operators to compute the following expression in (19):

$$
\begin{align*}
& \int_{\Omega^{\prime}} Q_{\epsilon} \xi_{\epsilon} \cdot \varphi \cdot \nabla w_{\epsilon} d x--\int_{s^{2}} Q_{\epsilon} \eta_{\lambda \epsilon} \cdot \varphi \cdot \nabla\left(P_{\epsilon} u_{\epsilon}\right) d x \\
&= \int_{\Omega_{\epsilon}^{*} \cap \Omega^{\prime}}\left(A\left(\frac{x}{\epsilon}\right) \nabla u_{\epsilon} \cdot \nabla w_{\epsilon}-A^{*}\left(\frac{x}{\epsilon}\right) \cdot \nabla w_{\epsilon} \cdot \nabla u_{\epsilon}\right) \varphi d x \tag{20}\\
& \quad+\int_{\left(\cup_{i-1}^{N} \Omega_{\epsilon} \Omega_{\epsilon}\right) \cap \Omega^{\prime}}\left[Q_{\epsilon} \xi_{\epsilon} \cdot \nabla w_{\epsilon}-Q_{\epsilon} \eta_{\lambda \epsilon} \cdot \nabla\left(P_{\epsilon} u_{\epsilon}\right)\right] \varphi d x .
\end{align*}
$$

'This expression is equal to zero. Indeed the first term in the right hand side of (20) is zero since A^{*} is the adjoint of A, and the second term is also zero by the definitions of $P_{\epsilon} u_{\epsilon}$ and of w_{ϵ}.

Using this remark in (18), it follows that

$$
\int_{\Omega^{\prime}} Q_{\epsilon} \xi_{\epsilon} \cdot \nabla_{\varphi} \cdot w_{\epsilon} d x-\int_{\Omega^{\prime}} Q_{\epsilon} \eta_{\lambda \epsilon} \cdot \nabla_{\varphi} \cdot P_{\epsilon} u_{\epsilon} d x=\int_{\Omega^{\prime}} f \cdot \varphi \cdot w_{\epsilon} d x
$$

and we can pass to the limit in this expression when $\epsilon \rightarrow 0$ because of the convergences (15), (17) and (18).

We thus deduce:

$$
\int_{\Omega^{\prime}} \xi^{*} \cdot \Gamma_{\varphi} \cdot w^{*} d x-\int_{\Omega^{\prime}} \mathscr{A} \lambda \cdot \Gamma \varphi \cdot u^{*} d x \quad \int_{\Omega^{\prime}} f \cdot \varphi \cdot w^{*} d x
$$

Recalling (13) and the fact that $\operatorname{supp} \varphi \subset \Omega^{\prime}$, we get:

$$
-\int_{\Omega} \xi^{*} \cdot \lambda \cdot \varphi d x \cdot+\cdot \int_{\Omega} \mathscr{A} \lambda \cdot \varphi \cdot \nabla u^{\times} d x=0
$$

'This is true for any $\lambda \in \mathbb{R}^{2}$ and any $\varphi \in \mathfrak{D}(\Omega)$. Hence

$$
\xi^{*} \cdot \mathscr{A} \nabla u^{*}
$$

which implies

$$
\begin{equation*}
-\operatorname{div}\left(\mathscr{A} \nabla u^{*}\right)=f \quad \text { in } \quad \Omega . \tag{21}
\end{equation*}
$$

We call (21) the homogenized equation associated with problem 1.
Remarks. 1. We have constructed independent extensions for u_{ϵ} and $A(x / \epsilon) \operatorname{grad} u_{\epsilon}$. Indeed

$$
A\left(\frac{x}{\epsilon}\right) \operatorname{grad} P_{\epsilon} u_{\epsilon} \not \mathcal{F}^{\prime} Q_{\epsilon}\left(A\left(\frac{x}{\epsilon}\right) \operatorname{grad} u_{c}\right) .
$$

In $\Omega_{\varepsilon}{ }^{i}, \xi_{\xi}$ cannot be extended by 0 (which is the value assumed by $A(x / \epsilon) \operatorname{grad} P_{\epsilon} u_{\epsilon}$ there) because we want to preserve the equation $-\operatorname{div} \xi_{\epsilon}=f$, while $\xi_{\epsilon} \cdot n \neq 0$ on $\hat{c} \Omega_{\epsilon}{ }^{i}$.
2. The "local" character of the proof in step (iii) should be noticed. In order to obtain equation (21), we multiply the equations verified by $Q_{\epsilon} \xi_{\mathrm{E}}$ and $Q_{\varepsilon} \eta_{\lambda \epsilon}$ by functions φ with compact support. This is the reason why an extension of ξ_{ε} is needed only in Ω^{\prime} and not in Ω, though an extension of u_{ϵ} in Ω was used.
'Theorem 2. The homogenized operator \mathscr{A} and the limit function u^{*} do not depend on the extension operators $P_{\epsilon}, Q_{\epsilon}$ and \tilde{P}.

Proof. Notations

$$
\begin{aligned}
a_{Y^{*}}^{*}(\varphi, \psi) & =\int_{Y^{*}} A^{*}(y) \operatorname{grad} \varphi \operatorname{grad} \psi d y \\
& =\int_{Y^{*}} a_{i j}(y) \frac{\partial \varphi}{\partial y_{i}} \frac{\partial \psi}{\partial y_{j}} d y
\end{aligned}
$$

$$
\begin{aligned}
&-\chi^{i}=w_{\lambda_{i}}-y_{i} \text { where } \lambda_{1}=(1,0) \text { and } \lambda_{2}=(0,1) \\
& \mathscr{A}=\left(q_{i j}\right)_{i, j-1,2} \\
& Q \eta_{\lambda}=\left(\left(Q \eta_{\lambda}\right)_{1},\left(Q \eta_{\lambda}\right)_{2}\right) .
\end{aligned}
$$

From the definition of the homogenized operator, it follows

$$
\mathscr{A} \lambda=\frac{1}{|Y|}\left(\int_{Y^{*}} A^{*}(y) \operatorname{grad} w_{\lambda}(y) d y+\int_{U_{i=1}^{M}\left(\tau_{i} \cap Y\right)} Q \eta_{\lambda} d y\right) .
$$

Csing the definition of $Q \eta_{\lambda}$ and integrating by parts, we get:

$$
\begin{aligned}
q_{i j}= & \frac{1}{|Y|}\left[\int_{Y^{*}} a_{l k}(y) \frac{\partial w_{\lambda_{i}}}{\partial y_{k}} \frac{\partial y_{j}}{\partial y_{l}} d y+\int_{\mathrm{U}_{i=1}^{M}\left(\tau_{i} \cap Y\right)}\left(Q \eta_{\lambda_{i}}\right)_{l} \frac{\partial y_{i}}{\partial y_{l}} d y\right] \\
= & \frac{1}{|Y|}\left[a_{Y^{*}}^{*}\left(\chi^{i}-y_{i},-y_{j}\right)+\int_{\mathrm{U}_{i=1}^{M}\left(\tau_{i} \cap \mathrm{Y}\right)}\left(-\operatorname{div} Q \eta_{\lambda_{i}}\right) y_{j} d y\right. \\
& \left.+\int_{\mathrm{U}_{i=1}^{M} \partial\left(\tau_{i} \cap Y\right)}\left(Q \eta_{\lambda_{i}} \cdot n_{1}\right) y_{j} d s\right]
\end{aligned}
$$

(n_{1} is the normal directed towards the exterior of τ_{i}).
Since

$$
-\operatorname{div} Q \eta_{\lambda_{i}}=0 \quad \text { in } \quad \bigcup_{i=1}^{M}\left(\tau_{i} \cap Y\right)
$$

by construction, and

$$
\begin{aligned}
\int_{U_{i=1}^{M} \bar{\varepsilon}\left(\tau_{i} \cap Y\right)}\left(Q \eta_{\lambda_{2}} \cdot n_{1}\right) y_{i} d s- & -\int_{\mathrm{U}_{i-1}^{M} \hat{\varepsilon}\left(\tau_{i} \cap Y\right)}\left(\eta_{\lambda_{i}} \cdot n\right) y_{j} d s \\
& -\int_{\mathrm{U}_{i-1}^{M} \hat{\delta}\left(\tau_{i} \cap Y\right)} \frac{\hat{c} w_{\lambda_{i}}}{\bar{c} \nu_{A^{*}}} y_{j} d s
\end{aligned}
$$

it follows:

$$
\begin{equation*}
q_{i j}=-\frac{1}{Y}\left[a_{Y^{*}}^{*}\left(\chi^{i}-y_{i},-y_{j}\right)-\int_{\mathrm{U}_{i=1}^{M}\left(\left\langle\tau_{i} \cap Y\right)\right.} \underline{\partial\left(\chi^{i}-y_{1}\right)} y_{j} d s\right] . \tag{22}
\end{equation*}
$$

'Ihe functions χ^{j} are periodic in Y^{*} (i.e. they take equal values on opposite sides of Y). Multiplying the equation

$$
-\operatorname{div}\left(A^{*}(y) \operatorname{grad} w_{\lambda_{i}}\right)=0 \quad \text { in } \quad Y^{*}
$$

by x^{j} and integrating by parts we get

$$
a_{Y^{*}}^{*}\left(w_{\lambda_{i}}, \chi^{j}\right)=\int_{\mathbf{U}_{i-1}^{M} \hat{\partial}\left(\tau_{i} \cap \gamma\right)} \frac{\hat{\partial} w_{\lambda_{i}}}{\hat{\hat{c} \nu_{A^{*}}}} \chi^{\prime} d s
$$

Using this result in (22) it follows:

$$
q_{i j}=\frac{1}{|\mathrm{Y}|} a_{Y}^{*} \cdot\left(\chi^{i} \cdots y_{i}, \chi^{j}-y_{i}\right)
$$

since

$$
\int_{U_{i=1}^{M} \dot{\alpha}(\tau, \cap)} \frac{\partial\left(\chi^{2}-y_{i}\right)}{\hat{r}_{A} *}\left(\chi^{j}-y_{j}\right) d s:=0
$$

by the definition of $w_{\lambda_{i}}$.
This formula gives $q_{i j}$ independently of any extension used in the proof of Theorem 1. The assertion that u^{*} is also independent of these extensions is a trivial consequence of the unicity of the solution of

$$
\begin{gathered}
-\operatorname{div}\left(\mathscr{Q} \operatorname{grad} u^{*}\right)=f \\
u^{*} \subset H_{0}^{1}(\Omega)
\end{gathered}
$$

4. The Dirichiet and Necmann Problems. Homogenization ' 'heorems

(i) Make the assumptions A.1, A.2, A. 3 and consider the Dirichlet problem (Problem 2):

$$
\begin{align*}
\mathbf{A}_{\epsilon} u_{\epsilon}=-\operatorname{div}\left(A\left(\frac{x}{\epsilon}\right) \operatorname{grad} u_{\epsilon}\right) & =f \quad \text { in } \quad \Omega_{\epsilon}^{*} \\
u_{\epsilon} \partial_{\mathrm{exx}} \iota_{\epsilon} \iota_{\epsilon}^{*} & =0 \tag{23}\\
u_{\epsilon}!_{\partial \Omega_{\epsilon}^{\prime}} & =0 \quad i=1, \ldots, N_{\epsilon}
\end{align*}
$$

Theorem 3. There exists an extension $P_{\epsilon} u_{\epsilon}$ of u_{ϵ} such that $P_{\epsilon} u_{\epsilon} \in H_{0}^{1}(\Omega)$, and

$$
P_{\epsilon} u_{\epsilon} \xrightarrow[\epsilon \rightarrow 0]{ } 0 \quad \text { in } \quad H_{0}^{1}(\Omega) \text { weakly. }
$$

Proof. By assumptions A.1 to A.3, the system (23) has a unique solution $u_{\epsilon} \in H_{0}{ }^{1}\left(\Omega_{\epsilon}^{*}\right)$. Moreover

$$
\begin{equation*}
\left|u_{\epsilon \cdot}\right|_{H_{0}{ }^{1}\left(\Omega_{\epsilon}^{*}\right)} \leqslant \text { constant } \quad \text { (independently of } \epsilon \text {). } \tag{24}
\end{equation*}
$$

Let $P_{\epsilon} u_{\epsilon}$ be the extension of u_{ϵ} by 0 in $\Omega \backslash \Omega_{\epsilon}^{*}$. From (24) it follows

$$
\because P_{\epsilon} u_{\epsilon} \ddot{i}_{H_{0}^{1}(\Omega)} \leqslant \text { constant } \quad \text { (independently of } \epsilon \text {) }
$$

consequently, there exists a weakly convergent subsequence $P_{\epsilon} u_{\epsilon}$ with limit, say u^{*}, i.e.

$$
P_{\epsilon} u_{\epsilon} \underset{\epsilon \rightarrow 0}{ } u^{*} \quad \text { in } \quad H_{0}^{1}(\Omega) \text { weakly }
$$

and hence in $L^{2}(\Omega)$ strongly.
Next

$$
\begin{equation*}
\chi_{U_{i=1}^{N} \varepsilon_{1} \Omega_{\epsilon}^{2}} \cdot P_{\epsilon} u_{\epsilon}=0 \quad \forall \epsilon \tag{25}
\end{equation*}
$$

(χ_{A} is the characteristic function of the set A).
Since

$$
\chi_{U_{i=1}^{N} \Omega_{e} \Omega_{\epsilon} \underset{\epsilon \rightarrow 0}{ }} 1-\theta \quad \text { in } \quad L^{2}(\Omega) \text { weakly }
$$

passing to the limit in (25), it follows

$$
(1-\theta) u^{*}-0
$$

hence

$$
u^{*}==0 .
$$

Corollary (Problem 3). Suppose that the representative cell Y has M hotes ($M>1$) and that the boundary conditions are: a Dirichlet condition on at least one hole and a Neumann condition on all the other holes. Then

$$
u^{*}=0
$$

The proof is similar to that of Theorem 3.
(ii) We now prove a homogenization result for the Neumann problem with an extension technique similar to the one used in the proof of Theorem 1 (see Tartar [5]).

The following assumption is added:
A.5. The holes do not meet the boundary $\partial \Omega$.

This assumption restricts the geometry of the open set Ω. (Example: Ω is a finite union of rectangles homothetic to the representative cell).

Consider the Neumann problem (Problem 4)

$$
\begin{aligned}
\mathbf{A}_{\epsilon} u_{\epsilon} \equiv-\operatorname{div}\left(A\left(\frac{x}{\epsilon}\right) \operatorname{grad} u_{\epsilon}\right) & =f \quad \text { in } \quad \Omega_{\epsilon}^{*} \\
u_{\epsilon} \hat{\text { ioss }} & =0 \\
\left.\frac{\hat{\partial} u_{\epsilon}}{\hat{\partial} \nu_{A_{c}}}\right|_{\partial \Omega_{\epsilon}} & =0 \quad i=1, \ldots, N_{\epsilon} .
\end{aligned}
$$

Theorem 4. Under the assumptions A. 1 to A.5, there exists an extension $\tilde{P}_{\epsilon} u_{\epsilon} \in H_{0}^{1}(\Omega)$ such that:

$$
\tilde{P}_{f} u_{\epsilon} \overrightarrow{\epsilon \rightarrow 0} u^{*} \quad \text { in } \quad H_{0}^{1}(\Omega) \text { weakly }
$$

where u^{*} is the solution of the equation

$$
\tilde{\mathscr{A}} u=-\operatorname{div}\left(\tilde{\mathscr{A}} \operatorname{grad} u^{*}\right)=\theta f \quad \text { in } \quad \Omega .
$$

The matrix $\tilde{\mathcal{A}}$ has constant coefficients and will be defined later.
Proof. The idea is the same as in Theorem 1.
In Ω_{ϵ}^{*} we have the following estimates:
and the equation:

$$
-\operatorname{div} \xi_{\varepsilon}=f_{\mathrm{G}}=\left.f\right|_{s_{2}} \quad \text { in } \quad \Omega_{e}^{*}
$$

with

$$
\begin{equation*}
\xi_{\epsilon} \cdot n=0 \quad \text { on } \quad \partial \Omega_{\epsilon}^{i} ; \quad i=1, \ldots, N_{\epsilon} . \tag{2}
\end{equation*}
$$

We want to construct extensions $\widetilde{Q}_{\epsilon} \xi_{\epsilon} \in\left[L^{2}(\Omega)\right]^{2}$ and $R_{\epsilon} f_{\epsilon} \in L^{2}(\Omega)$ such that

$$
\begin{align*}
& \left.\left.\left|\widetilde{Q}_{\epsilon} \xi_{E}\right|_{\left[L^{2}(\Omega)\right]^{2}} \leqslant C_{1}\left(\left|\xi_{\varepsilon}\right|_{\left[L^{2}(\Omega)\right.}{ }^{*}\right)\right]^{2}+|f|_{L^{2}(\Omega)}\right) . \tag{27}\\
& \left|R_{\mathrm{f}} f_{\mathrm{E}}\right|_{\mathcal{L}^{2}(\Omega)} \leqslant C_{2}\left|f_{\mathrm{E}}\right|_{\left.\mathcal{L}^{2}(\Omega)_{\mathrm{E}}^{*}\right)} \tag{28}
\end{align*}
$$

and

$$
\begin{equation*}
-\operatorname{div} \tilde{Q}_{\epsilon} \xi_{\epsilon}=R_{\varepsilon} f_{\epsilon} \quad \text { in } \quad \Omega . \tag{29}
\end{equation*}
$$

with constants C_{1} and C_{2} independent of ϵ.

By the boundary condition (26), we extend ξ_{ϵ} and f_{ϵ} by 0 in $\Omega_{\epsilon}{ }^{i}$. Let $\tilde{Q}_{\epsilon} \xi_{\epsilon}$ and $R_{\epsilon} f_{\varepsilon}$ denote these extensions. Notice that

$$
R_{\epsilon} f_{\epsilon}=\chi_{\Omega_{\epsilon}^{7}} f
$$

Then the estimates (27), (8) and the equation (29) follow easily.
Hence, we can extract subsequences, still denoted by $\left\{\tilde{Q}_{\epsilon} \xi_{\epsilon}\right\}$ and $\left\{R_{\epsilon} f_{\epsilon}\right\}$, such that

$$
\begin{array}{lll}
\widetilde{Q}_{\epsilon} \xi_{\epsilon} \stackrel{\rightharpoonup}{\epsilon \rightarrow 0} \\
\xi_{\epsilon}^{*} & \text { in } & {\left[L^{2}(\Omega)\right]^{2} \text { weakly }} \\
R_{\epsilon} f_{\epsilon \rightarrow 0} \theta f & \text { in } & L^{2}(\Omega) \text { weakly }
\end{array}
$$

and

$$
-\operatorname{div} \xi^{*}=\theta f
$$

We now seek an extension $\tilde{P}_{\epsilon} u_{\epsilon} \in H_{0}{ }^{1}(\Omega)$ such that:

$$
\begin{equation*}
\left|\operatorname{grad} \tilde{P}_{\epsilon} u_{\epsilon}\right|_{\left[L^{2}(\Omega)\right]^{2}} \leqslant C_{3}\left|\operatorname{grad} u_{\epsilon}\right|_{\left.\left[L^{2} \Omega_{\epsilon}^{*}\right)\right]^{2}} \tag{30}
\end{equation*}
$$

It is possible to use the Lemma of Bramble-Hilbert which gives the existence of such an extension, but is not constructive. Another possibility is to construct actually an extension verifying the inequality (30 ; see Tartar [5]).

We first construct extensions on the representative cell Y and then we derive extensions on Ω by the same method as in the proof of Theorem 1 .

Lemma 3. There exists on extension operator

$$
\tilde{P} \in \mathscr{L}\left(H^{1}\left(Y^{*}\right), H^{1}(Y)\right)
$$

such that

$$
|\operatorname{grad} \tilde{P} \varphi|_{\left[L^{2}(Y)\right]^{2}} \leqslant C_{4}|\operatorname{grad} \varphi|_{\left[L^{2}\left(Y^{*}\right)\right]^{2}}, \quad \forall \varphi \in H^{1}\left(Y^{*}\right)
$$

Proof. Let $\varphi \in H^{1}\left(Y^{*}\right)$. We may write φ in the form:

$$
\varphi=\mathfrak{M}_{\gamma^{*}}(\varphi)+\psi \quad \text { where } \quad \mathfrak{M}_{\gamma_{*}(\psi)=0}
$$

Let $S \in \mathscr{L}\left(H^{1}\left(Y^{*}\right), H^{1}(Y)\right.$) be any extension operator (such an operator exists since the boundaries of the holes are smooth enough). Then:

$$
\|S \psi\|_{\boldsymbol{H}^{1}(Y)} \leqslant C \|\left._{1}^{1} \psi\right|_{H^{1}\left(Y^{*}\right)}
$$

Since the average of ψ in Y^{*} is zero, we have

$$
\|\psi\|_{H^{1}\left(Y^{*}\right)} \leqslant C^{\prime}|\operatorname{grad} \psi|_{\left[L^{2}\left(Y^{*}\right)\right]^{2}}=C^{\prime}|\operatorname{grad} \varphi|_{\left[L^{2}\left(Y^{*}\right)\right]^{2}}
$$

Hence

$$
\begin{equation*}
\left.\left|S \psi \dot{i}_{H^{1}(Y)} \because C^{\prime}\right| \operatorname{grad} \varphi\right|_{\left[L^{2}\left(Y^{*}\right)\right]^{2}} \tag{31}
\end{equation*}
$$

Set

$$
\tilde{P} \varphi==\mathfrak{M}_{\gamma *}(\varphi)+S \psi .
$$

By (31) this extension has the required properties.
The extension given by Lemma 3 can now be used to extend u_{ϵ}.
Let $y=x / \epsilon$ and define the function \tilde{u}_{ϵ} by

$$
\begin{equation*}
\tilde{u}_{\epsilon}(y)=-\frac{1}{\epsilon} u_{\epsilon}(\epsilon y) . \tag{32}
\end{equation*}
$$

This function is defined on Y since u_{ϵ} is defined in $\Omega_{\epsilon}^{*}=\epsilon Y^{*}$. Notice that

$$
\tilde{u}_{\epsilon} \in H^{1}\left(Y^{*}\right)
$$

By Lemma 3 we have:

$$
\tilde{P} \tilde{u}_{\epsilon}=\mathfrak{M}_{\gamma *}\left(\tilde{u}_{\epsilon}\right)+S v_{\boldsymbol{\epsilon}}
$$

where

$$
v_{\epsilon}=\tilde{u}_{\epsilon}-\mathfrak{P} \ell_{\Psi *}\left(\tilde{u}_{\epsilon}\right)
$$

The function $\tilde{P} \tilde{u}_{\epsilon}$ is defined on Y; define $\tilde{P}_{\epsilon} u_{\epsilon}$ on $\Omega=\epsilon Y$ by:

$$
\left(\tilde{P} u_{\epsilon}\right)(x)=\epsilon\left(\tilde{P} \tilde{u}_{\epsilon}\right)\left(\frac{x}{\epsilon}\right) \quad x \in \epsilon Y .
$$

It remains to show that this extension satisfies inequality (30).
Since

$$
\left(\nabla\left(\tilde{P}_{\epsilon} u_{\epsilon}\right)\right)(x)=\frac{1}{\epsilon}\left(\nabla\left(\tilde{P}_{\epsilon} u\right)\right)\left(\frac{x}{\epsilon}\right)
$$

it follows that:

$$
\begin{aligned}
\int_{\Omega}\left|\nabla\left(\tilde{P}_{\epsilon} u_{\epsilon}\right)\right|^{2} d x & =\int_{\Omega}\left|\frac{1}{\epsilon}\left(\nabla\left(\tilde{P}_{\epsilon} u_{\epsilon}\right)\right)\left(\frac{x}{\epsilon}\right)\right|^{2} d x \\
& =\epsilon^{2} \int_{\Omega ; \epsilon} \mid\left(\left.\nabla\left(\tilde{P} \tilde{u}_{\epsilon}\right)(y)\right|^{2} d y\right.
\end{aligned}
$$

The domain Ω / ϵ is covered by cells Y (with sides l_{1} and l_{2}) and the number of such cells is of order of $\left(1 / \epsilon^{2}\right)$ (meas $\Omega /$ meas Y);

$$
\epsilon^{2} \int_{\Omega / \epsilon}\left|\left(\nabla\left(\tilde{P} \tilde{u_{\epsilon}}\right)\right)(y)\right|^{2} d y
$$

is of the same order as

$$
\begin{equation*}
\epsilon^{2} \sum_{p, q} \int_{p l_{1}}^{(y+1) l_{1}} \int_{a l_{2}}^{(a+1) l_{2}} \mid\left(\left.\nabla\left(\tilde{P} \tilde{u}_{\mathrm{\varepsilon}}\right)(y)\right|^{2} d y\right. \tag{33}
\end{equation*}
$$

(the number of terms in the above sum is of the order of $\left(1 / \epsilon^{2}\right)$ (meas $\Omega /$ meas Y)). We shall now estimate this sum; each term has the form

$$
\int_{Y_{k}}\left|\left(\nabla\left(\tilde{P} \tilde{u}_{\epsilon}\right)\right)(y)\right|^{2} d y
$$

(Y_{k} is a translate of the cell Y).
By Lemma 3, it follows that:

$$
\int_{Y_{k}}\left|\left(\nabla\left(\tilde{P} \tilde{u}_{\epsilon}\right)\right)(y)\right|^{2} d y \leqslant C \int_{Y_{\tilde{k}}^{*}} \mid\left(\nabla \tilde{u}_{\epsilon}\right)(y)_{i}^{\prime 2} d y .
$$

By definition (32), we have

$$
\left(\nabla \tilde{u}_{\epsilon}\right)(y)=\left(\nabla u_{\epsilon}\right)(\epsilon y) \quad y \in Y^{*}
$$

and hence

$$
\int_{Y_{k}}\left|\left(\nabla\left(\tilde{P} \tilde{u}_{\epsilon}\right)\right)(y)\right|^{2} d y \leqslant C \int_{C_{Y_{k}^{\prime}}} \frac{1}{\epsilon^{2}}\left|\left(\nabla u_{f}\right)(x)\right|^{2} d x
$$

Therefore, the sum (33) is bounded by

$$
\epsilon^{2} \sum_{k=1}^{\left(1 / \epsilon^{2}\right)(\text { meas } \Omega / \text { meas } Y)} \int_{\epsilon Y_{k}^{*}}\left|\left(\nabla u_{\epsilon}\right)(x)\right|^{2} d x
$$

which is of the same order as $\int_{\Omega_{\epsilon}^{*}}:\left.\nabla u_{\epsilon}\right|^{2} d x$. This completes the proof of (30) (the cells ϵY_{k}^{*} cover Ω_{ϵ}^{*}).

By inequality (30), we can extract a subsequence (denoted by $\tilde{P}_{\epsilon} u_{\epsilon}$) such that

$$
\tilde{P}_{\varepsilon} u_{\epsilon} \underset{\epsilon \rightarrow 0}{ } u^{*} \quad \text { in } \quad H_{0}^{1}(\Omega) \text { weakly }
$$

In order to find the equation satisfied by u^{*}, we proceed as in the proof of Theorem 1.

Now w_{λ} depends on the new boundary conditions. For any $\lambda \in \mathbb{R}^{2}$ define \check{w}_{λ} by

$$
\begin{gathered}
-\operatorname{div}\left(A^{*}(y) \operatorname{grad} \tilde{w}_{\lambda}(y)\right)=0 \quad \text { in } \quad Y^{*} \\
\quad\left(\tilde{w}_{\lambda}-\lambda \cdot y\right) \text { periodic in } \quad Y^{*} \\
\frac{\partial \tilde{w}_{\lambda}}{\partial \nu_{A^{*}}}=0 \quad \text { on } \quad \partial\left(\tau_{i} \cap Y\right), \quad i=1, \ldots, M .
\end{gathered}
$$

The function $\tilde{\eta}_{\lambda}=A^{*} \operatorname{grad} \tilde{w}_{\lambda}$ is extended by 0 inside $\tau_{i}(i=1, \ldots, M)$. Let $\bar{Q}_{\tilde{\eta}}^{\lambda}$ denote this extension.

The matrix \mathscr{A} is defined by

$$
\tilde{A} \tilde{A} \lambda=\mathfrak{M}\left(\tilde{Q}_{\tilde{\eta}}\right) \quad \text { for any } \lambda \in \mathbb{R}^{2}
$$

and we introduce the functions:

$$
\begin{aligned}
\widetilde{w}_{\epsilon}(x) & =\epsilon\left(\tilde{P}_{w_{1}}\right)\left(\frac{x}{\epsilon}\right) \\
\tilde{\eta}_{\lambda \epsilon} & =\tilde{\eta}_{\lambda}\left(\frac{x}{\epsilon}\right)
\end{aligned}
$$

and

$$
\left(\tilde{Q}_{\epsilon} \tilde{\eta}_{\lambda \epsilon}\right)(x)=\left(\tilde{Q}_{\tilde{\eta}}\right)\left(\frac{x}{\epsilon}\right) .
$$

We have

$$
\begin{equation*}
-\operatorname{div} \tilde{Q}_{\varepsilon} \tilde{\eta}_{\lambda \epsilon}=0 \quad \text { in } \quad \Omega_{\epsilon}^{*} \tag{34}
\end{equation*}
$$

By the definitions of \tilde{w}_{λ} and $\tilde{\eta}_{\lambda}$ we can now extract subsequences $\left\{w_{c}\right\}$ and $\left\{\tilde{Q}_{\left., \tilde{\eta}_{\lambda \epsilon}\right\}}\right.$ such that

$$
\begin{array}{ccc}
\tilde{w}_{\epsilon \leftrightarrow \rightarrow 0} \tilde{w}^{*} & \text { in } & H^{1}(\Omega) \text { weakly } \\
\operatorname{grad} \tilde{w}_{\epsilon \leftrightarrow \rightarrow 0} \lambda & \text { in } & {\left[L^{2}(\Omega)\right]^{2} \text { weakly }} \\
\tilde{Q}_{\epsilon} \tilde{\eta}_{\lambda \epsilon \leftrightarrow} \underset{\epsilon \rightarrow 0}{ } \tilde{\Omega} \lambda & \text { in } & {\left[L^{2}(\Omega)\right]^{2} \text { weakly }}
\end{array}
$$

and

$$
\operatorname{grad} \tilde{w}^{*}=\lambda
$$

Let $\varphi \in \mathfrak{D}(\Omega)$. Multiplying (29) by $\varphi \tilde{w}_{\epsilon}$ and (34) by $\varphi \cdot \tilde{P}_{\epsilon} u_{\epsilon}$ we get:

$$
\begin{aligned}
\int_{\Omega} \tilde{Q}_{\epsilon} \xi_{\epsilon} \cdot & \nabla \varphi \cdot \tilde{w}_{\epsilon} d x+\int_{\Omega} \tilde{Q}_{\epsilon} \xi_{\epsilon} \cdot \varphi \cdot \nabla \tilde{w}_{\epsilon} d x \\
& -\int_{\Omega} \tilde{Q}_{\epsilon} \tilde{\eta}_{\lambda_{\epsilon}} \cdot \nabla \varphi \cdot \tilde{P}_{\epsilon} u_{\epsilon} d x-\int_{\Omega} \tilde{Q}_{\epsilon} \tilde{\eta}_{\lambda_{\epsilon}} \cdot \varphi \cdot \nabla\left(\tilde{P}_{\epsilon} u_{\epsilon}\right) d x \\
= & \int_{\Omega} R_{\epsilon} f_{\epsilon} \cdot \varphi \cdot \tilde{w}_{\epsilon} d x .
\end{aligned}
$$

Therefore

$$
\int_{\Omega} \xi^{*} \cdot \nabla \varphi \cdot \tilde{w}^{*} d x-\int_{\Omega} \mathscr{A} \lambda \cdot \nabla \varphi \cdot u^{*} d x=\int_{\Omega} \theta f \cdot \varphi \cdot \tilde{w}^{*} d x
$$

which completes the proof.

Remarks. 1. A computation similar to the one used in the proof of Theorem 2 gives the coefficients $\tilde{q}_{i j}$ of the matrix \mathscr{A} :

$$
\tilde{q}_{i j}=\frac{1}{|Y|} a_{Y^{*} *}^{*}\left(\tilde{\chi}^{i}-y_{i}, \tilde{\chi}^{j}-y_{j}\right)
$$

where

$$
\tilde{\chi}^{i}=-\left(\tilde{w}_{\lambda_{i}}-y_{i}\right) ; \quad \lambda_{1}=(1,0) \quad \text { and } \quad \lambda_{2}=(0,1) .
$$

Consequently, the homogenized matrix $\tilde{\mathscr{A}}$ and the limit function u do not depend on the extensions used in the proof.
2. Assumption A. 5 is necessary to overcome the difficulties of extending u_{c} in the holes intersecting the boundary $\partial \Omega$. However, we can always extend u_{ε} in any relatively compact open subset Ω^{\prime} of Ω. In Ω^{\prime} we extend u_{ϵ} by $P_{\epsilon}^{\prime} u_{\epsilon}$ and we get

$$
P_{\epsilon}^{\prime} u_{\epsilon} \overrightarrow{\epsilon \rightarrow 0}, ~ u^{*} \quad \text { in } \quad H^{1}\left(\Omega^{\prime}\right) \text { weakly }
$$

where u^{*} is a solution of

$$
\tilde{\mathscr{A}} u=-\operatorname{div}\left(\tilde{A} \nabla u^{*}\right)=\theta f
$$

but we know nothing about the value of u^{*} on $\partial \Omega$. The homogenization of the Neumann problem without the assumption A. 5 is still an open problem.
3. In the case of Problems 2, 3 and 4, the method of asymptotic expansions (cf. Lions [4]) gives precise results regarding the order of convergence.

References

J. J. L. Lions and E. Magenes, "Non-Homogeneous Boundary Value Problems and Applications," Vols. 1 and 2, Springer-Verlag, New York/Heidelberg/Berlin, 1972.
2. H. Lanchon, Thèse, Paris, 1972.
3. H. Lanchon, Torsion élastoplastique d'un arbre cylindrique de section simplement ou multiplement connexe, J. Mécanique 13 (1974), 267-320.
4. J. L. Lions, Cours d'homogénéisation, Collège de France, 1975, 1976, 1977.
5. L. Tartar, Problèmes d'homogénéisation dans les équations aux dérivées partielles, Cours Peccot, Collège de France, 1977.
6. G. Duvaut, Comportement microscopique d'une plaque perforée périodiquement, to appear.

