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Let O be a cylindrical bar with 7 cylindrical cavities having generators
parallel to those of Q. Let £2 be the cross-section of the bar, 2* the cross-section
of the domain occupied by the material and Q%7 = 1,..., ) the cross- sections
of the cavities:

FiCO B AT =i~k

The study of the elastic torsion of this bar leads to the following problem [see
Lanchon (These, Paris, 1972; J. Mécanique 13 (1974), 267-320)]:

Af, + 2ua = 0in Q%
Sripn =0 m
f+ = constant on 882%; i = 1,...,7r

where p is the shear modulus of the material, « is the angle of twist and f,
represents the stress function. In this paper the problem (1) with an increasing
number of holes which are distributed periodically is considered. One would
like to know if £, has a limit fo as r — + 00, and if so, the equation satisfied
by this limit. This is an ‘“homogenization” problem — the heterogeneous bar
Q" is replaced by a homogeneous one, the response of which under torsion
approximates as closely as possible that of Q". A more general problem will be
studied and the case of elastic torsion will be obtained as an application. The
proof uses the energy method [see Lions (Collége de France, 1975-1977), Tartar
(Collége de France, 1977)] and extension theorems. A related problem is the
homogenization of a perforated plate [cf. Duvaut (to appear)].

1. NOoTATIONS. VARIATIONAL FORMULATION

Let Y be the representative cell in R?
Y =[0,4[ x [0, 4f.

Let 7; (i = 1,..., M) be two-dimensional connected open sets whose bounda-
ries are smooth, assumed to lie locally on one side of their boundary.
The r; are used to construct the holes.
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HOMOGENIZATION IN OPEN SETS WITH HOLES 591
The part of Y occupied by the material is denoted by Y*:

oM meas Y*  |Y*|
Y*:i_U(TinY);ezmeasY=|Y|

i=1

Let % be the characteristic function of Y* (this function is defined at every
point of ¥, and not merely almost everywhere in Y):

F)=1 i yev*
=0 if yernY, i=1,. M
The function ¥ is extended periodically in R? and let x be this extension. The

“holes’”” TJ (j =: 1, 2,...) in R? are defined as the (closed) connected components
of the set

xlx(%)=0£ (e > 0).

This means R? is covered periodically by cells homothetic to the representative
cell Y, the ratio being e: |.

Let £2 be a bounded connected two-dimensional open set whose boundary is
not necessarily smooth.

Let 2* denote the open subset of 2 representing the part of 2 occupied by
the material. .

We make the following assumptions:

(i) £2F is a connected set.

(ii) the T,/ have a smooth boundary and they are locally on one side of
their boundary.

We denote by 2.4 an “interior hole”, i.e. a T,/ which is included in £2 and does
not intersect df2. There is a finite number N, of such closed sets 27, Let:

Ne Ne
Q= (JQi= T/ TiC TIn a0 =4,
i1 i=1
Remark. One does not have
Q¥ == Q — QF*,
Let cext £2F be the exterior boundary of Q*
Oextf2F = Q¥ — 6QX*.

This exterior boundary is not necessarily smooth: it may have angles and 2*
may not be locally on one side of fext 2F. ||
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Consider the problem (Problem 1):

u i?f“\_\.‘szg -0
ug ié:_Q K const. I. — l,”" ‘,.\7( (2)

cu roo
, —ds = | Jfdx
“eo g (VA Mo
(the normal is directed towards the exterior of 2¥). Here A(x!e) is the value of
the matrix (a;;(x)); ;1 » calculated at the point x/e.
We introduce the vector space

E, - {ze HY(2F), v = const. on a2 (G =1, N, v 0 O
with the norm
|z g - grade by -
The variational formulation of (2) is:
Jm A (%) grad u, grad ¢ dx = [: \ Jo, dx
| Ve c E.. ®

We make the following assumptions:
Al felX)
A.2. The coefficients a;; e L%(R?), 1,j = 1, 2.

A.3. There is a positive number 8 such that
Z a(y) §L; = BLLs forany { = ({i)r_q.0€ R%
i
Under these assumptions, classical theorems show that (3) has a unique solu-
tion u.c E,. ||

Now let ¢ — 0, hence N, > -+ oG (cf. the definitions of ¥, 2. and N,).
The behavior of u, as ¢ — 0 will now be studied.

2. EXTENsSION LEMMAS

Lemma 1. There exists an extension operator

Ps € ’S’p(Es ’ H01(Q))
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such that

| grad Pw |lL2(!?)]2 <L Cigrado |[L2(!2§)12 , Yeek .

where the constant C does not depend on e.

Proof. Let veE,, it is extended into each hole contained in £2 by its value
on the boundary of the hole; if a hole w, cuts the boundary €8, ¢ is extended by
Oin 2N o, .

LemmMa 2. Let @ € [LH(Y*))? be a solution of
—div®d =F in Y+
with

[ @omds—] Fax i1l (4)
(r;NY) ,nY

where F e LY) and n is the normal directed towards the exterior of Y*.
Then there exists @ € [L2(UZ -1 (1: 0 Y))? such that:

M
—div@=F in |J(@NnY)
1

D #lotriary = D 1 loriny)
Moreover,

| ][LZ(U’,‘-il(f,rm)]2 SCUF pyy T Col @ Ly )

where C, and C, are constants.

Proof. We seek @ under the form grad ¢ which leads to the solution of the
following problem:

M
—d¢=F in  J(@NnY)
i-1

op
on 5(‘1’,‘(’\ Y)

— @1 pary (= e M)

where @ - n verifies (4).
ThlS is a classical Neumann problem which has a solution ¢ in
H“(U, 1 (7: " Y)), unique up to an additive constant. Moreover:

‘P|H1(U Ny S <G |F]L2(U (TN Y) +G |2 ”]11—1/=<U, LN YD) (6)

(C1 and C, are constants).



594 CIORANESCU AND PAULIN

Notice now that the application
TV

from V= {v|ve [LA(Y*)? dive e LA (Y*)} to H'1/2(U::1 (r; NY)) is conti-
nuous (see Lions—Magenes [1] for example).
It follows that

|®-n gn—‘*’z(U?_lau,nYn Sk O ][L2(Y*)]2 F Ry i div Dy - ™)

Thus the inequality (5) is deduced from estimations (6) and (7) (recall that
—divgp =F in Y*).

3. THE ELastic TorsioN PROBLEM

We add the following assumption:
A 4. The coefficients a,,(y) are Y-periodic.

THEOREM 1. Under the assumptions A.1 to A.4 there is an extension Pu, of u,

such that
Pu — ux n Hy\(2) weakly

where u* is the solution of
u* — —div(e/ gradu*) =:f in L.
The constant matrix -of will be defined later.

Proof. (i) A priori estimates. Using the assumptions and (2), it follows
easily that
| %, |} 1,04 << constant (independently of ¢). 8)
0 €

Lemma 1 can be applied, #, is extended by P.u,; we get:
| Puli HA@ < constant (independently of ).
Hence we can extract a subsequence still denoted by P, such that
Pu, — u* in H}(82) weakly.

We now look for the equation satisfied by #, .
Let

& =—A (—f—) grad u, in QF
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Using the assumptions and (8) we get:

L€ Lxanp S constant (independently of €). )
Moreover £, verifies:

—divé, =f in (10)
and

f §E-nds:f [ dx.
Qei

Yoot

In order to pass to the limit, it is necessary to obtain equations and estimates
in ©Q, or at least in any relatively compact open subset of Q.

Let £’ be such a subset. We seek an extension Q.f, of & preserving the
equation (10) in £’ and such that

|Q.£. 1 [ L2any2 < constant (independently of ¢).

Let y = x/e and D(y) == £(ey). It will be noticed that:
—div®=F in Y*

f & nds — ’ i=1,.,M
alr;nY)

vYTi r\Y

with F € L% Y*) and hence Lemma 2 can be applied. Let Q denote the extension
operator given by this lemma (Q® = @ in Y*, Q¢ = & in Ul=1 (r;NY) and
define now:

(Qcfe) (29) = (QP) (9)-

It follows that
—divQ.é. =f in Y

IQefe ][Lf(e}')]2 < C] lfi!Lﬁ(c}') - C; ’ §s |[L2(eY‘)] 2

If €Y is extended periodically to R? we obtain

—divQ£L =f in = Q*U (UQ)

vi=1

. 11
ings ‘[Lz(.Qe)]? < Cl IfiLz(Q) - Cz | §e I[Lz(.Q:)F ( )
where C; and C, are constants independent of e.

Since $2' is a relatively compact subset of £, if € is small enough, 02" does not
meet the holes cutting the boundary ¢ (the distance between £’ and & is
positive).
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Recalling (11) and the a priori estimate (9) we conclude that

—divQt =/ in & (12)
and
1Q.£. | 12y < constant (independently of €).

Consequently we can extract a subscquence, still denoted by 0., , such that
Q. 3 & in  [L¥Q)]? weakly

with £* verifying the limit equation

—divé<.=f  in @ (13)
obtained from (12).
(i) Definition of the homogenized operator. 'The purpose is to establish a

relation between £* and u*. The argument uses energy method.
For each A € R? define w,(y) by

—div(A*(y) grad wy(y)) =0 in  ¥*
(=) — A - ¥) periodic in 1

f:?.t‘L ds = 0’ { = l,..., M

Yolr,ny) CFan

@, = constant on (N Y).

Let Puw, be the extension of w, inside the hole r; by its value on the boundary
of r, (i = 1,..., M).
Set
7,7 = A% grad w,

and notice that @ - = %, verifies the assumptions of Lemma 2 with F =: 0. T.et
On, be the extension of 7, to 1 given by this lemma. We have:

(Pw, — X - y) periodic in Y
and
—div(Qn,) =0 in Y.
Moreover
M(grad Pe,) = A

(M is the average in YV: Mg = (1] V) ygdx).
Observing that e, is linear in A and that Q is a linear operator we can define a
matrix &7 by
Vie R?

(14)
AN — MQA*(v) grad wy(y)).
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DeriNITION. The matrix &7 given by (14) defines an operator & called
homogenized operator associated with problem 1.

(i) The homogenized equation. From the results obtained in the first two
steps, we get:
Pu, —u* in HM(82) weakly

(15)
Q. & in [LYQ)] weakly
and
~divér=f in £
Next let
<X
s (%) = ePw, (=
w(x) = ePw, (e )
%
(%) = m (?) .
The gradient of %, is periodic by construction. To extend 7,, we use the same
technique as the one used to extend ¢, and we define

(Qema) (=) = (On) (&) -

From the step (ii) and the preceeding remarks, it follows that

—divQam,, —0 (16)
w, Sy w* in H(R) weakly
(17)
grad @, —3 A in  [L¥Q)]? weakly
and

Ome o POeme) = A in [LAQ)]* weakly. (18)

Moreover

grad w* — A

Fix ¢ € D(L2) and choose a relatively compact open subset 2’ of £ such that
supp ¢ C ' € Q.

Multiplying (12) by ¢ - @, and (16) by ¢ - P, , subtracting one from the other
it follows that:

f QeEe ’ V‘P * W, dx + J. ngs 2 sz dx
o o)
— fg O - Voo - P, doe — L' O ¢ V(Pa)dx  (19)

ZL,f'tp"wde.
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We use the definitions of the extension operators to compute the following
expression in (19):

[ 0tg-Vucds— [ Qo ViPa)ds
2 72

YN’

X

(A (?) Vu, - Vo, — A* (%) - Vao, - Vue) @ dx (20)
+ [l N [Qée - V. — Oampe * V(Pau)] o dax.
(U5 R0

This expression is equal to zero. Indeed the first term in the right hand side
of (20) is zero since A* is the adjoint of A4, and the second term is also zero by
the definitions of Pu, and of w, .

Using this remark in (18), it follows that

[Q Q. Vo - w, dx — L,QJME Vg - Pu, dx - fpf @ - w, dx

and we can pass to the limit in this expression when ¢ — O because of the con-
vergences (15), (17) and (18).
We thus deduce:

[ e Vo wrde— [ A Vo urdy [ [ro w*dr
el ’ v

v

Recalling (13) and the fact that supp ¢ C £, we get:
— [ & Xpder [ ANg-Vurdx=0.
Jo Jo

This is true for any A € R? and any ¢ € D(£2). Hence
£* - ofVu*
which implies
—div(fVu*)y=f in Q. 21)
We call (21) the homogenized equation associated with problem 1.

Remarks. 1. We have constructed independent extensions for #, and
A(x/e) grad u, . Indeed

4 (9 grad P, # Q.4 ( ’e‘) grad u) .
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In Q2 £, cannot be extended by 0 (which is the value assumed by A(x/e) grad P.u,
there) because we want to preserve the equation —div €, = f, while £, -n=20
on Q21

2. The “local’’ character of the proof in step (iii) should be noticed. In order
to obtain equation (21), we multiply the equations verified by Q.£, and O,

by functions ¢ with compact support. This is the reason why an extension of £,
is needed only in £’ and not in &2, though an extension of #, in £2 was used.

THEOREM 2. The homogenized operator o and the himit function u* do not
depend on the extension operators P, | O, and P.

Proof. Notations
aidp ) = [ 4%(3) grad g grad § dy

P
= u( )G—y:gy] dy

—x* = w, — y; where A; = (1,0) and A, = (0, 1)

A = (gi)i.5-1.2
Om = (@1 > (Ona)e)-

From the definition of the homogenized operator, it follows

h =y ([ A0 Ermd i)y + Om dy) .

Ug_l(T‘f\Y)

Using the definition of On, and integrating by parts, we get:

ij = — a .
95 I l v el Y ay ay U‘_l(,.‘f\y) Nt ayl
1 * 7 d .
= aydx' — yi> =) + (—divOn,) y; dy
V] [« ’ f UY i) W

* Jo

U 9(rnY)

(Om, " 1) y; ds]

(n, is the normal directed towards the exterior of 7;).
Since

M
—divQn, =0 in  (JmNnY)
i=1
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by construction, and

| . (Ona, " my)y;ds = — u (r;ﬂi “n)y,ds
Uil itr.nY) U, étr;nY)
f?‘zc,\.
—- —,.l——l_\')' (IS
TUM arny) Par
it follows:
[ s, s . W' = x) o
%= 7y [“Y*(X — Y =¥ S » - ';V——"L' i dSJ . (22)
(L YU ErnY) A

'I'he functions x are periodic in ¥* (i.e. they take equal values on opposite
sides of V). Multiplying the equation
--div(4*(y) grad w, ) - 0 m y*
by x’ and integrating by parts we get
i . ” Ewhi
ay(w,,, x') .—_-J y ——x ds.
UM ar,ay) OV

Using this result in (22) it follows:

1 - 5
9y - ﬁ—| aylx' - vioxX — )
since
~ Hxt —- ¥s) ,
[ A yyaseo
Up étr,nyy  (Vae

by the definition of =, .

This formula gives ¢;; independently of any extension used in the proof of
Theorem 1. The assertion that u* is also independent of these extensions is a
trivial consequence of the unicity of the solution of

—div(e/ grad u*) == f
u* ¢ Hy\(£2).

4. Tue DIRICHLET AND NEUMANN PROBLEMS. HOMOGENIZATION THEOREMS

(1) Make the assumptions A.l, A.2, A3 and consider the Dirichlet
problem (Problem 2):
. x .
A, = —div (A (~€—) grad ue) =f in QX
u g 2 =0 (23)
0 = 1,.,N,.

ue IEQ(‘ =
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TueoreM 3. There exists an extension P, of u, such that Pu, e H)\(8), and

Pu,—0 in  H}S) weakly.

€ >0

Proof. By assumptions A.l to A.3, the system (23) has a unique solution
u, € H\(2F). Moreover

| 4] g ey < constant (independently of €). (24)

Let P, be the extension of u_ by 0 in £2\Q¥. From (24) it follows

“Pu HA@) =1 constant (independently of )
consequently, there exists a weakly convergent subsequence P.u, with limit, say
u*, 1e.
Pu, o u* in  Hy'(Q) weakly
and hence in L¥(£2) strongly.

Next
XY Pu =0 Ve (25)

€ €

(x4 is the characteristic function of the set 4).
Since
Xulse,i &b 1—6 in  LY£Q)wcakly

passing to the limit in (25), it follows

(t—8u*—0
hence
u* == (.

CoroLLARY (Problem 3). Suppose that the representative cell Y has M hoses
(M >> 1) and that the boundary conditions are: a Dirichlet condition on at least
one hole and a Neumann condition on all the other holes. Then

u* = 0.

The proof is similar to that of Theorem 3.

(iily We now prove a homogenization result for the Neumann problem
with an extension technique similar to the one used in the proof of Theorem 1
(see Tartar [5]).

The following assumption is added:
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A.5. The holes do not meet the boundary 2.

This assumption restricts the geometry of the open set Q2. (Example: 2 is a
finite union of rectangles homothetic to the representative cell).

Consider the Neumann problem (Problem 4)

Ay, = —div (A (%) grad ue) =f in QF

U, i@.Q =

ou,

=0 i= L., N,
a0,

6VAE

Tueorem 4. Under the assumptions Al to A.S, there exists an extension
Py, e H(82) such that:

Pu, —u* in Hy(82) weakly
where u* is the solution of the equation

oy — —div(e/ grad u*) = 0f in Q.

The matrix o has constant coefficients and will be defined later.

Proof. The idea is the same as in Theorem 1.
In ¥ we have the following estimates:

7L <
J. ue !!Ho‘(nz) S constant independently of ¢
Il € lig 2@y < constant

and the equation:
—divé = f o= flo in QX

with
(£, n=0 on o, i=1,.,N,. (26)

We want to construct extensions O£, € [L¥()]? and R, f, € L*(£2) such that

’Qefi l[[_ﬁ(g)]ﬂ < C1(I fe I[Lﬁ(n:)]z f_ lf‘]_z(g))' (27)
| Refe lL"(Q) S8 Cz lfe ]L’(n:) (28)

and
—divQ.t =R.f. in Q. (29)

with constants C; and C, independent of ¢.
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By the boundary condition (26), we extend £, and £, by 0 in 2., Let @ £, and
R_f. denote these extensions. Notice that

REfs = XQEf'

Then the estimates (27), ( 8) and the equation (29) follow easily.
Hence, we can extract subsequences, still denoted by {(.£.} and {R.f.}, such
that
Ok €F  in [LAQ)]? weakly

Rf.—36f in  LXQ)weakly

and
—div £* = 6f.

We now seek an extension Pu, € H}(®2) such that:
| grad P.EuE ][,}(m]2 < C, | grad u, l[,}m:)]g . (30)

It is possible to use the Lemma of Bramble—Hilbert which gives the existence
of such an extension, but is not constructive. Another possibility is to construct
actually an extension verifying the inequality (30; see Tartar [5]).

We first construct extensions on the representative cell Y and then we derive
extensions on 2 by the same method as in the proof of Theorem I.

Lemma 3.  There exists on extension operator

Pe P(H(Y*), H(Y))
such that

| grad Po | 2y < C, | grad @ |paymps s Vo € H(YH).
Proof. Let ¢ € H(Y*). We may write ¢ in the form:
¢ =My(p) +¢  where  My($)=0.

Let Se Z(HY{Y*), H(Y)) be any extension operator (such an operator exists
since the boundaries of the holes are smooth enough). Then:

| Sy < CI g ygn -
Since the average of  in Y* is zero, we have
4 lgrgpsy < C' | grad ¢ liz2pnyye = €' I grad @ ltzacyye -

409/71/2-20
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Hence
| Sy ey & C’| grad ¢ |[Lz“,,.)]2 . (31

Set
Py = Myg) + Sp.

By (31) this extension has the required properties. [

The extension given by Lemma 3 can now be used to extend #, .
Let y = x/e and define the function &, by

i(y) = ~ (o). (32)

This function is defined on ¥ since u, is defined in 2% = ¢Y*. Notice that

i, e HY(Y™).
By Lemma 3 we have:
Plze == gJIY“(ds) + Svs

where

v, = i, — Myu(dL)).

The function Pi, is defined on Y; define Pu, on Q=Y by:
(P, (x) = (Pi) (%) recY.

It remains to show that this extension satisfies inequality (30).
Since

(V(Bu)) (x) = %(V(ﬁeu)) (—9

it follows that:
[ 1VBad = [ |4 @) (£)] de
=e [ (VP () b

The domain /e is covered by cells ¥ (with sides /; and };) and the number of
such cells is of order of (1/€?) (meas £2/meas Y);

@ [ (V) () dy

Qfc
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is of the same order as

Ezzf

p,q VPl

i1 L@+,

fq ) ()P dy (33)

(the number of terms in the above sum is of the order of (1/€?) (meas £2/meas Y)).
We shall now estimate this sum; each term has the form

[ 1z iy

(Y, is a translate of the cell Y).
By Lemma 3, it follows that:

[ 1@y Gy < ¢ | 1va) (332 dy.

By definition (32), we have

(Vi) () = (Vu)(ey) ye¥™
and hence

[ 1@y ey <[ i) @ e

Therefore, the sum (33) is bounded by

(1/¢*) (meas/measy)

e y f

k=1 €

(V) () d

which is of the same order as ‘fgz . Vu, |* dx. This completes the proof of (30)
(the cells Y cover 2F). |

By inequality (30), we can extract a subsequence (denoted by Pu,) such that

e =y U™ in H\(82) weakly.
In order to find the equation satisfied by u#*, we proceed as in the proof of
Theorem 1.
Now w, depends on the new boundary conditions. For any A€ R? define
w, by
—div(A*(y) grad #,(»)) = 0  in Y
(@) — X - y) periodic  in Y*
8VA:

= on or;NY), {—=1,.,M.



606 CIORANESCU AND PAULIN

The function 4j, = A* grad @, is extended by O inside =; (i = 1,..., M). Let
(4, denote this extension.
The matrix o is defined by

X =M(Q7,)  for any X e R?

and we introduce the functions:

@ (x) = (P, (—’:_)
)
and
Qe (=) = (07) (Z)
We have
—div Qeﬁk ) in QF. (34)

By the definitions of @, and 7, we can now extract subsequences {w.} and
{Ois} such that

W 5 D* in HY(82) weakly
grad @, — A in  [L*$2)]? weakly
Oine = @A in  [LAQ) weakly
and
grad * = A

Let ¢ € D(R). Multiplying (29) by ¢@, and (34) by ¢ - Pu, we get:
[0k Vo wdr + [ O - Vi ds
2 2
— [ Oétne- Vo - Pagds — [ Qi o - V(Pa) d
Q o
:f R.f. - @, dx.
2
Therefore
f g*-v¢-w*dx—j Jz\-th-u*dx='f of - @ - * dx
7] 2] o

which completes the proof.
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Remarks. 1. A computation similar to the one used in the proof of Theorem
2 gives the coefficients §;; of the matrix &:

~ 1 * ¢t , o
9i; = [ YI aY‘(X YisX y))

where

X= — (@, — 53 A =(1,0) and A = (0, 1).

Consequently, the homogenized matrix %7 and the limit function # do not
depend on the extensions used in the proof.

2. Assumption A.5 is necessary to overcome the difficulties of extending #,
in the holes intersecting the boundary d22. However, we can always extend u,
in any relatively compact open subset £’ of £2. In 2" we extend #, by P/u, and
we get

Pu,>u* in  HYQ)weakly

-—
€ ¢-50

where u* is a solution of

Au = —div(f Vu*) = bf

but we know nothing about the value of #* on 92. The homogenization of the
Neumann problem without the assumption A.5 is still an open problem.

3. In the case of Problems 2, 3 and 4, the method of asymptotic expansions
(cf. Lions [4]) gives precise results regarding the order of convergence,
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