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A new generating function identity for special pairs of partitions with steadily

decreasing parts is proved via a bijection. Viewing such pairs of partitions (or, more

generally, special r-tuples of partitions) as coloured modular Young diagrams also

allows to give bijective proofs for generating function identities due to Carlitz and
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1. INTRODUCTION

The starting point of this article was a problem arising in the work of
Meinolf Geck on Hecke algebras of type B. The question was how to
parameterize the simple modules for these algebras at q ¼ �1 by
suitable pairs of partitions; led by computations he conjectured a genera-
ting function for a special family of pairs of partitions with steadily
decreasing parts. His conjecture is confirmed in this article as a con-
sequence of Theorem 5.1. On the way towards proving this result some
ideas were developed that provided easy constructive proofs of a
classical theorem by Carlitz on pairs of partitions with steadily decreasing
parts as well as its generalization to special r-tuples of partitions by
Andrews.

In this article, we describe first a useful diagrammatic description for pairs
of partitions with steadily decreasing parts. Then we use this description to
provide a natural bijection proving Carlitz’ Theorem. The diagrammatic
description as well as the idea underlying the bijection generalize naturally
also to the r-tuples of partitions considered by Andrews. In the final section,
a more intricate map is constructed to transform pairs of partitions into
distinct and steadily decreasing parts bijectively into pairs of partitions with
odd resp. distinct and odd parts.
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2. PAIRS OF PARTITIONS WITH STEADILY DECREASING PARTS

Let a ¼ ða1; a2; . . .Þ; b ¼ ðb1;b2; . . .Þ be partitions. If a is a partition of n
and b a partition of m; we write ða; bÞ ‘ ðn;mÞ and jða;bÞj ¼ jaj þ jbj ¼ nþ m:

We say that the pair ða;bÞ is a pair of partitions with steadily decreasing
parts (see [1]) if the following condition is satisfied:

ð* Þ minðai; biÞ5maxðaiþ1;biþ1Þ for all i:

For any n;m 2 N0 we define

Sðn;mÞ ¼ fða;bÞ ‘ ðn;mÞ j ða;bÞ has steadily decreasing partsg

and we set sðn;mÞ ¼ jSðn;mÞj; note sð0; 0Þ ¼ 1:
We think of a;b in such a pair as partitions into different colours. For

example, a ¼ ð62421Þ and b ¼ ð84312Þ are depicted by

a

j j j j j j

j j j j j j

j j j j

j j

j

b

� � � � � � � �

� � � �

� � � �

� � � �

�

�

We then draw a diagram Y ða; bÞ for the pair by overlaying these
diagrams:

Y ða;bÞ

þ þ þ þ þ þ � �

þ þ þ þ j j

þ þ þ þ

þ þ � �

þ

�

Condition ð* Þ is then equivalent to the condition that the length of each row
in Y ða;bÞ is at most the length of the þ part of the previous row. In terms of
the columns of the diagram it is also equivalent to the condition that each
column in Y ða; bÞ contains at most one j or one � at its end (and that Y ða;bÞ
has the shape of a Young diagram).

We also think of Y ða;bÞ as a generalized coloured 2-modular Young
diagram, where 1 comes in two colours, denoted by the marked and the
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unmarked letter, and 2 carries both colours simultaneously:

*YY ða;bÞ

2 2 2 2 2 2 10 10

2 2 2 2 1 1

2 2 2 2

2 2 10 10

2

10

In fact, the conjugate diagram is a coloured 2-modular Young diagram, for
the 2-coloured partition ð110; 8; 70; 70; 3; 3; 10; 10Þ:

3. CARLITZ’ THEOREM

Viewing bipartitions slightly differently, we define for n;m 2 N

Tðn;mÞ ¼ fg ‘ ðn;mÞ j g has only parts of the form ða; a� 1Þ; ða� 1; aÞ;

ð2a; 2aÞ; a 2 Ng:

Then

Theorem 3.1 (Carlitz [3]; see also Andrews [1, 12.4 and 12.5]). For all

n;m 2 N0; jSðn;mÞj ¼ jTðn;mÞj:
Hence the generating function for pairs of partitions with steadily

decreasing parts is

X
n;m2N0

sðn;mÞxnym ¼
Y
a2N

ð1 � xaya�1Þ�1ð1 � xa�1yaÞ�1ð1 � x2ay2aÞ�1:

Proof. We prove this by constructing a bijection j : Sðn;mÞ ! Tðn;mÞ:
Let ða;bÞ 2 Sðn;mÞ and consider the corresponding diagram *YY ða; bÞ
defined in the previous section. For example, take ða; bÞ ¼ ð7241; 95212Þ; so

*YY ða; bÞ

2 2 2 2 2 2 2 10 10

2 2 2 2 2 1 1

2 2 1 1

2

10
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Now for obtaining the parts of jða;bÞ ¼ g 2 Tðn;mÞ; we transform the
columns of *YY ða; bÞ into parts of g as follows:

2 . . . 2|fflffl{zfflffl}
a�1

1 ! ða; a� 1Þ;

2 . . . 2|fflffl{zfflffl}
a�1

10 ! ða� 1; aÞ;

2 . . . 2|fflffl{zfflffl}
2a

! ð2a; 2aÞ;

2 . . . 2|fflffl{zfflffl}
2a�1

! ða; a� 1Þ; ða� 1; aÞ:

Note that the weights of the colours are not changed in this process, so that
indeed the resulting g is a bipartition of ðn;mÞ: In the example above, after
sorting the parts we obtain

g ¼ ðð4; 5Þ; ð3; 2Þ2; ð2; 2Þ; ð2; 1Þ3; ð1; 2Þ; ð0; 1Þ2Þ:

Also, it is easy to see how to construct the inverse map. Given g 2 Tðn;mÞ;
let ma; m0

a be the multiplicity in g of the parts ða; a� 1Þ; ða� 1; aÞ;
respectively, and let na be the multiplicity of the part ð2a; 2aÞ; for a 2 N:
Then the excess jma � m0

aj gives the number of columns 2 . . . 2|fflffl{zfflffl}
a�1

1

or 2 . . . 2|fflffl{zfflffl}
a�1

10 in the diagram *YY of a pair ða; bÞ; depending on whether

ma � m0
a is positive or negative. Furthermore, there are na columns of

the form 2 . . . 2|fflffl{zfflffl}
2a

and minðma;m0
aÞ columns of the form 2 . . . 2|fflffl{zfflffl}

2a�1

in *YY :

Hence we have constructed *YY ða;bÞ and thus we can read off ða; bÞ: It is
clear that these two maps are inverses to another, so j gives a bijection as
required. ]

Remark 3.2. The bijection j provides further refinements of the
Carlitz identity. We describe the relation between some nice para-
meters of the partition pairs in Sðn;mÞ and Tðn;mÞ; respectively. For
ða;bÞ 2 Sðn;mÞ and g ¼ jða; bÞ 2 Tðn;mÞ we use the same notation as above.

(i) Counting the multiplicity of entries 1 and 10; respectively, in the
diagram *YY ða;bÞ we immediately obtain

X
ai>bi

ðai � biÞ ¼
X
ma>m0

a

ðma � m0
aÞ;

X
ai5bi

ðbi � aiÞ ¼
X

ma5m0
a

ðm0
a � maÞ:
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Associating corresponding weights to ða;bÞ and g; respectively, this gives an
identity for the weighted generating function.

(ii) By collecting the first entries of all parts of g we obtain a partition

gð1Þ ¼ ðgð1Þ1 ; . . .Þ; and similarly, from the second entries we obtain a partition

gð2Þ ¼ ðgð2Þ1 ; . . .Þ:

We then have

lðaÞ ¼ maxðgð1Þ1 ; 2a� 1 j a 2 N with minðma;m0
aÞ > 0Þ;

lðbÞ ¼ maxðgð2Þ1 ; 2a� 1 j a 2 N with minðma;m0
aÞ > 0Þ:

Carlitz also proved a ‘‘finite version’’ of his generating function theorem.
For any n;m; k 2 N0; let

Skðn;mÞ ¼ fða;bÞ 2 Sðn;mÞ j lðaÞ; lðbÞ4kg

and set skðn;mÞ ¼ jSkðn;mÞj; note s0ð0; 0Þ ¼ 1:
Then Carlitz’ result is

Theorem 3.3 (Carlitz [3, 4]). For all k 2 N0; the generating func-

tion for pairs of partitions with steadily decreasing parts and of length

at most k is

X
n;m2N0

skðn;mÞxnym ¼
Yk
a¼1

1 � x2a�1y2a�1

ð1 � xaya�1Þð1 � xa�1yaÞð1 � xayaÞ
:

Proof. The equation above is equivalent to the equation

Y2k�1

b¼kþ1
b odd

ð1 � xbybÞ�1
X

n;m2N0

skðn;mÞxnym

¼
Yk
a¼1

ð1 � xaya�1Þ�1ð1 � xa�1yaÞ�1
Yk
b¼2

b even

ð1 � xbybÞ�1:

The objects counted on the left-hand side can be thought of as
special 2-modular Young diagrams, where a 2-modular Young diagram
*YY ða; bÞ with at most k rows (corresponding to ða; bÞ 2 Skðn;mÞ) is

complemented to the left by columns of odd height larger than k
and at most 2k � 1; consisting of 2’s only; i.e., for k ¼ 6 a typical example
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looks like

2 2 2 2 2 2 2 2 2 10 10

2 2 2 2 2 2 2 1 1

2 2 2 2 2 2 2

2 2 2 2 2 10 10

2 2 2 2

2 2 2 10

2 2 2

2

2

We now apply our previously defined map j to this diagram, reading the
parts of the image under j off the columns exactly as before. One sees
immediately that the parts are of the form ða; a� 1Þ; ða� 1; aÞ for a4k; and
ð2a; 2aÞ for 2a4k: The corresponding bipartitions are exactly the ones
counted by the right-hand side of the equation above. ]

4. ANDREWS’ GENERALIZATION OF CARLITZ’ THEOREM

Let r 2 N: For an r-tuple ðs1; . . . ; srÞ of natural numbers the summatory

maximum is defined as

smaxðs1; . . . ; srÞ ¼
Xr
i¼1

si

 !
� ðr � 1Þ minðs1; . . . ; srÞ

¼minðs1; . . . ; srÞ þ
Xr
i¼1

ðsi � minðs1; . . . ; srÞÞ:

The generalization of condition ð* Þ in Section 2 on a pair of partitions is
now the following condition on an r-tuple of partitions ðað1Þ; . . . ; aðrÞÞ:

ð*Þr minðað1Þi ; . . . ; aðrÞi Þ5smaxðað1Þiþ1; . . . ; a
ðrÞ
iþ1Þ for all i:

Let Sðn1; . . . ; nrÞ denote the set of r-tuples of partitions ðað1Þ; . . . ; aðrÞÞ ‘
ðn1; . . . ; nrÞ satisfying ð* Þr; and set sðn1; . . . ; nrÞ ¼ jSðn1; . . . ; nrÞj:

The analogue of the set Tðn;mÞ is given as follows. Let Tðn1; . . . ; nrÞ be
the set of g ‘ ðn1; . . . ; nrÞ such that g has only parts of the form

viðaÞ ¼ ða; . . . ; a; aþ 1; a; . . . aÞ with aþ 1 at position i 2 f1; . . . ; rg
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or of the form

wjðaÞ ¼ ðraþ j; . . . ; raþ jÞ; j 2 f2; . . . ; rg;

where a 2 N0:
For indeterminates x1; . . . ; xr and an r-tuple v ¼ ðv1; . . . ; vrÞ we use the

notation xv :¼ xv1

1 
 
 
 xvrr :

Theorem 4.1 (Andrews [1, Section 12.4; 2]). For all n1; . . . ; nr 2 N0

we have

jSðn1; . . . ; nrÞj ¼ jTðn1; . . . ; nrÞj:

Hence the generating function for the r-tuples of partitions of type S is

X
n¼ðn1;...;nrÞ2Nr

0

sðn1; . . . ; nrÞxn ¼
Y
a2N0

Yr
i¼1

ð1 � xviðaÞÞ�1
Yr
j¼2

ð1 � xwjðaÞÞ�1:

Proof. For proving the assertion, we construct a bijection
c : Sðn1; . . . ; nrÞ ! Tðn1; . . . ; nrÞ generalizing the previous bijection j:

For a ¼ ðað1Þ; . . . ; aðrÞÞ we draw a diagram Y ðaÞ by overlaying in the ith row

the r contributions m :¼ minðað1Þi ; . . . ; aðrÞi Þ from the r partitions in a; and then
ending on contributions aðjÞi � m in r different colours in some order (note that
in any given row only contributions in r � 1 colours appear). So for r ¼ 3 the
diagram for a ¼ ð9512; 861; 763Þ in the colours j; � and * looks like

Y ðaÞ

*þþ *þþ *þþ *þþ *þþ *þþ *þþ j j �
*þþ *þþ *þþ *þþ *þþ � *

*þþ * *

j

The corresponding generalized coloured r-modular diagram is then

*YY ðaÞ

3 3 3 3 3 3 3 1 1 10

3 3 3 3 3 10 100

3 100 100

1

where we have used here the 3 coloured versions of 1: 1; 10; 100: In the general
case, we will denote the r versions of 1 by 1j; j ¼ 1; . . . ; r: The smax-
condition is exactly tailored to provide the analogous condition to the one
we have used before, namely that each column in *YY ends on r or on at most
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one 1j: So as before we turn the columns of *YY into parts of g ¼ cðaÞ as
follows:

r . . . r|fflffl{zfflffl}
a

1j ! vjðaÞ;

r . . . r|fflffl{zfflffl}
raþj

! wjðaÞ for j ¼ 2; . . . ; r;

r . . . r|fflffl{zfflffl}
raþ1

! v1ðaÞ; . . . ; vrðaÞ;

where a 2 N0: As before, one easily constructs the inverse map to c to see
that c is bijective. ]

Similar as in the case of Carlitz’ Theorem, the explicit bijection provides
further refinements and allows to relate some natural parameters of the r-
tuples of partitions in Sðn1; . . . ; nrÞ and Tðn1; . . . ; nrÞ in a nice way. We
refrain here from spelling out the analogue of Remark 3.2 in detail.

Also, similarly as before, we can deduce a ‘‘finite version’’ of Andrews’
Theorem. For stating this, define for k 2 N0

Skðn1; . . . ; nrÞ ¼ fðað1Þ; . . . ; aðrÞÞ 2 Sðn1; . . . ; nrÞ j lðaðiÞÞ4k for i ¼ 1; . . . rg

and set skðn1; . . . ; nrÞ ¼ jSkðn1; . . . ; nrÞj:
Furthermore, for a 2 N0 set wðaÞ ¼ ða; . . . ; aÞ 2 Nr

0: Then an argument
similar to the one used for Theorem 3.3 shows:

Theorem 4.2. For all k 2 N0; the generating function for r-tuples of

partitions of type S and of length at most k is

X
n¼ðn1;...;nrÞ2N

r
0

skðn1; . . . ; nrÞxn ¼
Yk
a¼1

1 � xw1ðaÞ

ð1 � xwðaÞÞ
Qr

i¼1 ð1 � xviðaÞÞ
:

5. PAIRS OF PARTITIONS INTO DISTINCT PARTS

In this section, we now consider the special set of partition pairs which
turned up in the work of Meinolf Geck on Hecke algebras, and which had
originally motivated this article.

For n 2 N; let DðnÞ be the set of partitions of n into distinct parts, and set
D ¼

S
n DðnÞ: We consider pairs of partitions with steadily decreasing parts

and some further conditions:

Rðn;mÞ ¼ fða;bÞ 2 Sðn;mÞ j a ¼ ða1; a2; . . .Þ; b ¼ ðb1; b2; . . .Þ 2 D;

ai=bi for i ¼ 1; . . . ;minðlðaÞ; lðbÞÞg:
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We then set

RðkÞ ¼
[

n;m2N0
nþm¼k

Rðn;mÞ

and R ¼
S

k RðkÞ: In the context of Geck’s work, the set RðkÞ was suspected
to be a suitable labelling set for simple modules of the Hecke algebra under
consideration.

We will use again the diagrams introduced in Section 2 for a better
understanding of the partition pairs in R: So for example, the diagram of
ða;bÞ ¼ ðð14; 11; 7; 6; 3; 2; 1Þ; ð11; 10; 9; 7; 4; 3ÞÞ 2 R looks like this:

*YY ða;bÞ

2 2 2 2 2 2 2 2 2 2 2 1 1 1

2 2 2 2 2 2 2 2 2 2 1

2 2 2 2 2 2 2 10 10

2 2 2 2 2 2 10

2 2 2 10

2 2 10

1

The conditions defining R can be translated into the following conditions on
the diagram *YY :

(i) Each row ends on a (non-empty) sequence of letters 1 or on a (non-
empty) sequence of letters 10:

(ii) The length of each row is at most the length of the 2-part of the
previous row, and if these lengths are equal then the rows end on the same
colour.

Furthermore, let OðnÞ be the set of partitions into odd parts only, and set
O ¼

S
n OðnÞ: Then we define

QðkÞ ¼ fðl;mÞ j l 2 D\ O; m 2 O; jlj þ jmj ¼ kg:

Theorem 5.1. For all k 2 N we have jRðkÞj ¼ jQðkÞj:

Proof. We prove the assertion by constructing a bijection
F : RðkÞ ! QðkÞ:

We start with a pair ða; bÞ 2 RðkÞ and its associated diagram *YY and show
how to obtain the parts of Fða;bÞ ¼ ðl; mÞ 2 QðkÞ:

In the first step we take out all repeated columns from *YY ending on 1 or 10

(i.e., leaving only one column of each such type), remove the marks, and
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turn them directly into parts of m: Let lð0Þ be the partition corresponding to
the left-over diagram (reading this as a 2-modular Young diagram), and let
mð0Þ be the partition where we have collected the parts corresponding to the
columns taken out. So lð0Þ is a partition in D\ O with parts in two colours,
and mð0Þ 2 O: In our example above we obtain in this first step:

lð0Þ

2 2 2 2 2 2 2 2 2 2 1

2 2 2 2 2 2 2 2 2 1

2 2 2 2 2 2 2 10

2 2 2 2 2 2 10

2 2 2 10

2 2 10

1

mð0Þ
2 2 1

1

1

i.e., lð0Þ ¼ ð21; 19; 150; 130; 70; 50; 1Þ; mð0Þ ¼ ð5; 12Þ: We observe that no
information is lost at this point, since the colours of the columns moved
as parts into mð0Þ can be recovered from the one copy of the column of each
type that remained in lð0Þ: Furthermore, note that in lð0Þ consecutive odd
numbers have to be of the same colour. Note also that max mð0Þ42lðlð0ÞÞ � 1
since max mð0Þ corresponds to a column in lð0Þ:

Now to obtain the final pair ðl;mÞ; we use the following algorithm: for the
start of any consecutive sequence of colour 10 in lð0Þ we iteratively take out a
corresponding co-hook. More precisely, we proceed as follows. Consider the
lowest sequence of consecutive odd numbers of colour 10 in lð0Þ (possibly of
length 1). Take out the co-hook corresponding to the 10 of the largest part of
this sequence, or equivalently, remove the ‘L’-shaped hook consisting of this
part as well as one 2 from all the parts above it. Below, the entries in the
corresponding L-shaped hook are marked in bold:

lð0Þ

2 2 2 2 2 2 2 2 2 2 1

2 2 2 2 2 2 2 2 2 1

2 2 2 2 2 2 2 10

2 2 2 2 2 2 10

2 2 2 10

2 2 10

1

We stretch this L-hook into a part, remove the mark on 10 and put this part
into mð0Þ to obtain mð1Þ; note that this is automatically the largest part of this
new partition. After taking this L-hook out of lð0Þ; we also remove all the
marks on the letters 10 in the consecutive sequence we have just considered,
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and we thus obtain lð1Þ: In the example above, we have

lð1Þ

2 2 2 2 2 2 2 2 2 1

2 2 2 2 2 2 2 2 1

2 2 2 2 2 2 10

2 2 2 2 2 10

2 2 1

1

mð1Þ

2 2 2 2 2 2 2 1

2 2 1

1

1

Note that we can reverse this step: by construction, the largest part of mð1Þ is
now larger than 2lðlð1ÞÞ � 1: We then insert this part as an L-hook into lð1Þ

at the highest possible place such that the resulting partition is in D\ O; this
is uniquely defined and gives a new part in the resulting partition which
starts a consecutive sequence of odd parts. We then put marks on all the
letters 1 in the parts of this sequence. More precisely, if lð1Þ ¼ ðl1; . . . ; lkÞ;
mð1Þ ¼ ðm1; . . .Þ and m1 > 2k � 1; then let j 2 N0 be minimal such that
ðl1 þ 2; l2 þ 2; . . . ; lj þ 2;m1 � 2j; ljþ1; . . . ; lkÞ is a partition into distinct
parts; this recovers lð0Þ:

We now take the next step in the process of computing Fða; bÞ by iterating
the previous step; i.e., we consider again the highest part in the lowest
consecutive sequence of colour 10 in lð1Þ; remove the corresponding L-hook
(marked above in boldface), turn it into a part for the next partition mð2Þ and
delete all the marks on the letters 10 on the parts of this sequence. Note that
as our partition lð0Þ is in D\ O (up to the colouring), the size of the L-hooks
removed in this procedure is weakly increasing so that the new part on the
m-side is always the largest part at this step. In our example, we obtain in
the next step

lð2Þ

2 2 2 2 2 2 2 2 1

2 2 2 2 2 2 2 1

2 2 2 2 2 1

2 2 1

1

mð2Þ

2 2 2 2 2 2 2 2 1

2 2 2 2 2 2 2 1

2 2 1

1

1

The procedure ends when there are no more marked letters 10; say the final
pair is lðrÞ;mðrÞ: We then set Fða;bÞ ¼ ðl;mÞ ¼ ðlðrÞ;mðrÞÞ: So in our example,
l ¼ lð2Þ ¼ ð17; 15; 11; 5; 1Þ; m ¼ mð2Þ ¼ ð17; 15; 5; 12Þ:

Note that one can also write down a (somewhat clumsy) formula for ðl;mÞ
directly from the parts of ðlð0Þ;mð0ÞÞ; corresponding to taking out all the
L-hooks at once.
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By the remarks made above it is clear how to construct the inverse map.
The main point is that as long as the maximal part on the m-side is larger
than the longest column on the l-side it is always possible to insert this
maximal part from the m-side as an L-hook into the l-side such that it is the
starting part of a consecutive sequence of odd parts. Once the largest part is
at most as large as the largest column on the l-side we are at the easy part of
the procedure where we just put back all these small parts as repeating
columns into the l-side. ]

As it is easy to write down the generating function for partition pairs of
type Q; we now immediately obtain the generating function for partition
pairs of type R; confirming the conjecture by Geck mentioned in the
Introduction. Let rðkÞ ¼ jRðkÞj for k 2 N; rð0Þ ¼ 1:

Corollary 5.2. The generating function for the pairs of partitions of

type R is

X
k50

rðkÞxk ¼
Y
k51

1 þ x2k�1

1 � x2k�1
¼
Y
k51

ð1 þ x2k�1Þð1 þ xkÞ:

Remark 5.3. Let ða;bÞ 2 RðkÞ and Fða;bÞ ¼ ðl;mÞ 2 QðkÞ; a ¼ ða1; a2; . . .Þ;
b ¼ ðb1;b2; . . .Þ; l ¼ ðl1; . . .Þ; m ¼ ðm1; . . .Þ ¼ ð1m1 2m2 . . .Þ:

There are a number of nice relations between the parameters of ða;bÞ and
ðl;mÞ that can easily be derived from the description of the bijection above.
These can be viewed as giving refinements of Theorem 5.1 and Corollary 5.2,
respectively.

(i) maxða1;b1Þ ¼ a1 if and only if maxðl1; m1Þ ¼ l1:

More precisely, we have the following:

If l15m1; then a1 ¼ 1
2ðl1 þ 1Þ þ lðmÞ and b1 ¼ 1

2ðl1 � 1Þ þ lðmÞ � m1:

If l15m1; then a1 ¼ 1
2
ðm1 � 1Þ þ lðmÞ � 1 � m1 and b1 ¼ 1

2
ðm1 þ 1Þ þ

lðmÞ � 1:

(ii)
P

i jai � bij ¼ lðlÞ þ lðmÞ:

(iii) Let b 2 N0 be minimal such that mbþ142ðlðlÞ þ bÞ � 1: Then

(a) b is the number of connected 10-components in *YY ða;bÞ;
where we consider two entries 10 in the diagram as connected
if the corresponding boxes of the diagram intersect in an edge or in a
vertex.

(b) lðlÞ þ b ¼ maxðlðaÞ; lðbÞÞ:
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