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The wettability control of the nanostructured surfaces requires the knowledge of the surface energy. In
this work, van der Waals potential has been used to theoretically predict the surface energy of nanopar-
ticles or nanostructured surfaces. The model predicts that, for length scales below 30 nm, a single sphere
exhibits an over-energetic term while spheres arranged in a close-packed manner highlight a complex
competition between the porosity and the intrinsic low-radius effect. All nanostructuration effects vanish
for greater sizes. Above 30 nm, the surface energy tends to reach its classical value.
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1. Introduction

Most implants in the living are still badly tolerated and cause
infections and inflammation due to the living organism’s response.
In order to overcome this biological barrier, it is crucial to control
the chemical and physical properties of the interface between the
medical device and the host because most of the known problems
definitely arise at this junction. In this work, van der Waals poten-
tial has been used to theoretically predict the surface energy of
nanoparticles or nanostructured surfaces. Indeed, the nanostruc-
tures happen to possess many assets so they can, at least partially,
aspire to be a solution for a better integration of implantable
medical devices. For instance, it is possible to fabricate nanoporous
surfaces which can potentially load and release drugs or other
molecules of interest (Awitor et al., 2008; Robert-Goumet et al.,
2009; Gultepe et al., 2010; Liang et al., 2011; Perry et al., 2011;
Kwak et al., 2010; Aw et al., 2011). It should constitute a very well
targeted treatment. The behavior of such nanostructured surfaces
in relation to the living as well as drug diffusion mechanisms are
not yet well known. The surface energy is one important key as
well as the various possible surface topographies (nanopores,
nanodots, nanopillars, etc.). By affecting the wettability, the surface
energy controls the affinity between the device, the living environ-
ment and other molecules. The reference Yang and Leong (2010)
gives an interesting rundown of techniques of great potential in
regenerative medicine including vascular, bone, neural and stem
cell tissue engineering. It has been observed that surface energy
and topography can be decisive as far as a biological medium is
ll rights reserved.

. Awitor).
concerned. One remarkable example of this field is the impact of
the nanoscale environment on cell behavior. Park et al. (2007)
and von Wilmowsky et al. (2011) went into it in depth. It was
shown that a peri-implant bone growth was strongly affected by
the diameter of TiO2 nanotubes of the implant surface. Although
the value of the surface energy of a material can be reached by dif-
ferent experiments, its evolution for a nanoparticle or a nanoasper-
ity against the size is still very controversial. On the one hand,
Bradley (1932), Derjaguin (1934), De Boer (1936) and Hamaker
(1937) were the first to have computed the effective interaction
between two macroscopic bodies in the vaccum based on van
der Waals intermolecular interactions. On the other hand, Tolman
(1948) was the first to have tried to theorize the effect of curvature
of an interface on Gibbs free surface energy. After him, many
experimenters followed the same goal based on thermodynamical
considerations (Hill, 1950; Fisher and Wortis, 1984; Lei et al., 2005;
Nishioka et al., 1989; Nanda, 2005). Statistical mechanics was also
a means used for this estimation (Falls et al., 1981; Guermeur et al.,
1985; Baidakov and Boltachev, 1999) as well as molecular
dynamics (Nanda et al., 2003; Jia et al., 2009). Conclusions are of-
ten contradictory, involving for instance the sign of Tolman’s
length (Lei et al., 2005; Van Giessen et al., 1998). Some of them pre-
dict an increase of surface energy when the interface curvature
gets greater (Moody and Attard, 2001) whereas others predict
the contrary. Nishioka et al. (1989) evokes a surface energy 20%
smaller for a curvature being about five intermolecular distances.

This paper also supports the hypothesis that the surface energy is
modulated by the curvature of the interface when the scale is less
than a few tens of nanometers. All surface free energies are com-
puted based on the superpositional principle of the classical
Hamaker–De Boer approach to the van der Waals interaction. For
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this reason, the scope of this model is limited to neutral and apolar
compounds and cannot apply to ionic systems or metals. Polar mol-
ecules are to be excluded from the field of this study because they in-
volve correlations of dipole orientation so that interactions between
them are never properly additive. Keesom and Debye interactions
have to be negligible. Our model focuses on the surface energy of a
particle itself. It is based on Hamaker’s well known calculations (Ha-
maker, 1937) on the energy of two interacting particles. The paper
begins with a reminder of the classical case of planar surfaces and
gives the expression of surface energy in terms of the Hamaker con-
stant and the intermolecular distance. This expression is then used
as a yardstick. First, a single sphere is studied as a function of its
radius. Then, the effect of a periodization pattern is studied. In both
cases, a correction factor is defined in terms of some reduced char-
acteristic quantities and then analyzed. The single sphere exhibits
an over-energetic term as a result of the radius decrease. The peri-
odization highlights a complex competition between the previous
intrinsic low-radius effect and the porosity of the environment that
tends to decrease surface energy. The scope of these results is
broad because they may apply to both solid nanoparticles in vac-
uum as well as nanoasperities dug into a solid.

2. Quantities definition
E
 potential energy of van der Waals interaction
between two bodies
S
 solid (an index designates one part of this solid after
it was broken)
q
 atomic density of a body

a
 polarisability of a particle

V
 solid volume

ds
 element of a solid volume

R
 sphere radius

D
 center-to-center distance between two neighboring

spheres

a0
 intermolecular distance

W
 potential energy of interaction per unit surface

c
 surface energy of a phase (solid or liquid)

A
 Hamaker constant

C
 London–van der Waals constant

f
 correction factor of the surface energy of a given

surface compared to a flat surface

i, j, k
 basis vectors of an orthonormal basis

a, b, c
 basis vectors of a hexagonal lattice

x
 normalized sphere radius

y
 normalized space between two spheres

r, r0, l, d
 generic lengths used as calculation intermediates
Fig. 1. Elementary volume dv1 from the half-space S1 interacting with ds2 from
half-space S2.
3. van der Waals interaction potential

van der Waals potential is universal and combines Keesom,
Debye and London forces. It is responsible for the cohesion of
neutral solids and liquids. For this reason, these forces have to be
overcome to break a solid or a liquid and to create a new free sur-
face. The van der Waals potential is a good candidate for the study
of the origin and the evaluation of surface energies.

Let us consider two bodies which volumes are V1 and V2. Their
respective atomic densities are noted q1 and q2. These two neutral
bodies interact through a van der Waals potential. Assuming that
two atoms experience the same interaction regardless of the pres-
ence of other atoms between them, a pairwise summation can
be carried out over V1 and V2. The potential energy of the system is:
E ¼ �
Z

V1

ds1

Z
V2

ds2
C12q1q2

r6 ð1Þ

where r stands for the distance between elementary volumes ds1 and
ds2. C12 is called London–van der Waals constant for the media 1
and 2, combining Keesom, Debye and London interaction constants
and depending on respective polarisabilities a1 and a2 among others.

4. Flat surface: the classical case

The goal of this part consists of obtaining the expression of the
surface energy c of a solid surface. One must remember that the so-
called surface energy is the work needed to create a free unit sur-
face within the solid bulk. This paragraph is particularly focused on
the classical case of a flat solid surface. The problem is to break an
ideal infinite solid S along a plane and then to separate its two
parts S1 and S2 far away from each other (an ideal infinite distance
is necessary so that any interaction acting on them vanishes).

We start the process with the estimation of the potential energy
associated with the interaction of S1 and an elementary volume
from S2. To this end, S1 is divided into volumes dv1. Each of them
is defined by a specific distance r to ds2 (see Fig. 1).

The elementary volume dv1 is expressed by:

dv1 ¼ 2pr2ð1� cos hÞdr ð2Þ

So, noting that r0 = rcosh and applying the general expression of Eq.
(1) leads to:

dE ¼ �pC12q1q2

6r03
ds2 ð3Þ

Let us consider ds2 = dSdr0 where dS is one side of the elementary
surface containing ds2, parallel to the surface S2. Potential energy
per unit surface is W and is given by:

dW ¼ dE
ds2

dr0 ð4Þ

WðKÞ ¼ �pC12q1q2

6

Z 1

K

dr0

r03
ð5Þ

WðKÞ ¼ �pC12q1q2

12K2 ð6Þ
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To write the expression of the surface energy, let us consider that S1

and S2 are initially separated by an interatomic distance and finally
by an infinite distance. The interatomic distance will now be re-
ferred to as a0. We must not forget that this break does not form
one but two new free surfaces. These couple of remarks justify
the following expression of c:

c ¼Wð1Þ �Wða0Þ
2

ð7Þ

Using Eq. (6) and noting that W(1) = 0, we get this new
formula:

c ¼ A
24pa2

0

ð8Þ

where A is termed Hamaker constant. Its expression is given by:

A ¼ p2C12q1q2 ð9Þ

The Eq. (8) form of c will be the reference for further comparisons of
surface energies. This expression was built so that it applies to ideal
flat and smooth solid surfaces. However, we know that it is still valid
to describe practical cases such as rough solid surfaces: the well
known Wenzel’s wetting equation (Wenzel, 1936) is still widely used
today to predict the equilibrium contact angle of a liquid on a rough
surface. This equation describes the increase of the real surface of
the solid–liquid contact which leads to the reinforcement of the na-
tive hydrophobic or -philic behavior. But it does not assume any
change of surface energy in the asperities. The observation of the c
expression shows that the only scale reference is the intermolecular
distance a0. Common surfaces have irregularities characterized by a
large length compared to a0 so that their effects remain impercepti-
ble. How about nanotextured surfaces? Classical values of a0 are
about a few ångtröms so a more precise study is necessary for
nanoscales.
5. Study of a full and isolated sphere

5.1. Potential energy expression

Let’s consider the solid S ¼ fS1 [ S2g again but with a different
split. S1 is a sphere with a radius R. S2 is a solid that fills all the uni-
verse but an empty spherical part centered on S1, with a radius
R + K > R.

Let us study the potential energy linked to the interaction be-
tween a volume element ds2 2 S2 and the sphere S1 with center
l P R + K away from ds2. S1 is divided into volume elements dv1

featured by a distance r from ds2 (see Fig. 2).
The first difficulty is to determine the expression of dv1 in terms

of R, l and r. Volume element dv1 is a spherical cap that is the
Fig. 2. Elementary volume dv1 from the sphere S1 interacting with ds2 from S2.
intersection of S1 and a spherical surface with a radius r centred
on ds2 and which elementary thickness is noted dr (see Fig. 2).

The current expression of dv1 looks like the previous one. We
use again Eq. (2). Basic geometry principles let us express cosh in
terms of three lengths:

R2 ¼ l2 þ r2 � 2lr cos h ð10Þ

so that:

dv1 ¼ p r
l

R2 � ðl� rÞ2
h i

dr ð11Þ

Then, the distance r must be integrated over S1, that is from
l � R to l + R, as:

dE ¼ �ds2
Cpq1q2

l

Z lþR

l�R
dr

R2 � ðl� rÞ2

r5 ð12Þ

dE ¼ �ds2
Cpq1q2

l
1

12
2R

ðlþ RÞ3
þ 2R

ðl�RÞ3
þ 1

ðlþ RÞ2
� 1

ðl�RÞ2

( )
ð13Þ

where ds2 can be enlarged to a spherical cap that surrounds S1:

ds2 ¼ 4pl2dl ð14Þ

To finish with the potential energy expression, we must add every
single ds2 contribution over the entire S2 volume. The next formula
gives the whole energy of the interaction between S1 and S2.

E ¼ �Cpq1q2

12

Z 1

RþK
dl 4pl2

� 1
l

2R

ðlþ RÞ3
þ 2R

ðl� RÞ3
þ 1

ðlþ RÞ2
� 1

ðl� RÞ2

( )
ð15Þ

The primitiveabove vanishes at +1so that the final expressionis:

E ¼ �Cpq1q2

12
4p 2RðRþKÞ½R2 þ ðRþKÞ2�

4RðRK2 þK3Þ þK4 � ln
2RþK

K

� �( )

ð16Þ
5.2. Surface energy expression

The method used to get the flat surface energy is used again
here. We first express the interaction energy per unit surface W(K):

WðKÞ ¼ E
4pR2 ð17Þ

that is

WðKÞ ¼ �Cpq1q2

12
ðRþKÞ½R2 þ ðRþKÞ2�

2RK2 Rþ K
2

� �2 � 1
R2 ln

2RþK
K

� �( )

ð18Þ

and then, we can express surface energy cS(R) of the sphere with Eq.
(7)

cSðRÞ ¼
A

24pa2
0

ðRþ a0Þ½R2 þ ðRþ a0Þ2�
2R Rþ a0

2

� �2 � a2
0

R2 ln
2Rþ a0

a0

� �( )
ð19Þ

cSðxÞ ¼
A

24pa2
0

ðxþ 1Þ½x2 þ ðxþ 1Þ2�
2x xþ 1

2

� �2 � x�2 lnð2xþ 1Þ
( )

ð20Þ

cSðxÞ � c� fðxÞ ð21Þ

One will recognize surface energy of a flat surface c from Eq. (8).
We defined a new function f(x) that is a correction factor that de-
pends on R. All the problem reduces to this function. We introduced
x = R/a0 as the sphere radius value normalized to the mean intermo-
lecular distance. We can equally use either R or x to define the
sphere or any other quantity.



Table 1
Radius of the sphere and percentage of over-energy at the surface for some x values –
R is computed assuming an intermolecular distance a0 = 3.5 Å.

x R/nm (f(x) � 1) K%

1 (a0) 0.35 12.3
1.84 0.64 (maxi) 15.8
14.3 5.0 5.5
28.6 10 3.0
57.1 20 1.6
143 50 0.67
286 100 0.34
2860 1000 0.035
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5.3. Asymptotic study: case of a high radius sphere

The goal of this part is to check whether the cS expression pre-
dicts that a little curved sphere behaves like a flat surface. In other
words, we aim to investigate what happens to the f(x) value when
x is much greater than 1. The two terms inside can first be approx-
imated by:

fðx >> 1Þ � f1� x�2 ln 2xg ð22Þ

which could be problematic. Fortunately, the limit is favorable

lim
x!þ1

x�2 lnð2xÞ ¼ 0 ð23Þ

and leads to

fðx >> 1Þ ¼ 1 ð24Þ

or, in terms of surface energy,

cSðx >> 1Þ ¼ c ð25Þ

which is the expected result. It wholly agrees with the assumptions,
based on experience, we made previously concerning the impercep-
tible effect of solid surface imperfections on surface energy as long
as these imperfections have high scales compared to the intermo-
lecular distance of the matter.

5.4. Full study of the f(x) function

The f(x) function is plotted in Fig. 3. Its values are displayed
against x from 1 up to 103 that is to say for R ranging from a0 to
103a0. First, one must notice that f(x) tends to reach unit value
when the sphere radius gets high enough (as shown in the previous
paragraph). Its behavior is more complex for low R values. It nota-
bly has a maximum for R � 2 a0. In this case, surface energy of the
sphere is about 16% higher than for a flat surface (see Table 1). Sec-
ond statement: the function is always greater than 1. This is one
important result of this paper: a highly curved surface behaves
more energetically than a flat one. This can be of great importance
when dealing with nanoparticles. Indeed, a given volume of nano-
particles, apart from having a huge effective surface, has its surface
energy intrinsically increased. This prediction concurs with Shi-
mada’s (Shimada et al., 1993) and Nanda’s (Nanda et al., 2003)
experimental works. They reported that the evaporation tempera-
ture of nanoparticles is strongly affected by their size. The smaller
the particle, the lower the evaporation temperature (according to
Kelvin’s equation).
1.00

1.05

1.10

1.15

1.20

1 10 102 103

ζ(
x)

x = R/a 0

Fig. 3. Correction factor f(x) of the surface energy cS of a sphere to its nominal value
c for a flat surface – the graph is plotted against an x logarithmic scale.
Another important result depicted by Fig. 3 is the decrease of
the surface energy observed for R < 2a0, that is more or less a free
single particle. This decrease plays a stabilizing role concerning va-
pors. It must be favorable to the evaporation or the sublimation of
a liquid or a solid respectively. Both the bulk and a single particle
(case of vapors) are more stable than an aggregate of a few num-
bers of entities. Such a kind of small aggregates should either get
bigger (crystal growth) or decay (evaporation) if the environment
and the thermal agitation help. The maximum of energy on Fig. 3
can be interpreted as a sort of activation energy necessary to ex-
tract one atom from the surface. The energy is needed to go from
the state ‘‘surface atom’’ to the state ‘‘free atom’’. For this reason,
the activation energy is all the more weak than the mother-particle
is small. It explains why the evaporation temperature decreases
with the particle radius.

The function f(x) is plotted from x = 1, that is the minimum value
with a physical meaning. The main reason of this choice is to let the
reader have an idea of the hypothetical behavior of such an entity.
Nonetheless, the 1 to 10 x-range does not seem to be a technologi-
cally reachable scale for nanotextured surface. Though, the field of
nanoparticles could be largely affected by this extra energetic term
as discussed above. In contrast to this, x values greater than 10 are
more likely and really interesting for nanostructured surfaces. One
can notice on Fig. 3 or in Table 1 that a few percent over-energetic
term still remains while the scale is greater than 5 nm.

6. Sphere in a periodic environment

A nanometric entity seldom stands alone. Whether we deal with
the asperities of a nanotextured surface or with free nanoparticles,
we should take into account the proximity of a big number of them.

6.1. Expression of the surface energy

Let’s consider that the sphere is not alone but constitutes one
element of an infinite lattice of spheres. Note that, given the
symmetry of all equations, this scheme can describe spherical
asperities inside a solid as well as solid spheres in the vacuum.
Center-to-center distance is D = D + 2R (see details on Fig. 4). What
happens with S1 surface energy cS(R)? We will refer to this new
effective surface energy as c�SðR;DÞ. A rigorous expression will be
developed in the next part. We can first check a simpler model.
We will consider that S1 is surrounded by a homogeneous solid,
with atomic density q, for radius ranging from R + a0 up to R + D.
Beyond that, there is another solid, assumed to be homogeneous
too, which atomic density is reduced. It is noted [1 � g(R,D)]q.
The term g(R,D) stands for solid porosity i.e. the ratio of empty
volume to a given volume of the system.

c�SðR;DÞ ¼
1
2
½Wð1Þ �Wða0Þ� �

1
2
gðR;DÞ½Wð1Þ �WðDÞ� ð26Þ

c�SðR;DÞ ¼ cSðRÞ þ
gðR;DÞ

2
WðDÞ ð27Þ



Fig. 4. Sphere S1 surrounded by a hexagonal lattice of clones – center-to-center
distance is D. Free space between two spheres is D = D � 2R.
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Fig. 5. Correction factor f⁄(x,y) of the surface energy c�S of a sphere in a periodic
environment to its nominal value c for a flat surface – the function was obtained
with a simplified model assuming two homogeneous solids.
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Again, we use reduced quantities and we define y = (D � a0)/R.
The arbitrary choice to subtract a0 from D is a comfort choice be-
cause, in this way, y = 0 is allowed and is associated to the smallest
distance between two neighbors, which is a0, regardless of R value.
Porosity formula is based on the assumption of a hexagonal
structure.

gðx; yÞ ¼
4
3 pR3

4
ffiffiffi
2
p

Rþ D
2

� �3 ð28Þ

gðx; yÞ ¼ p
3
ffiffiffi
2
p 1þ x�1 þ y

2

� ��3

ð29Þ

Moreover, it can be shown that:

WðDÞ ¼� A
12pa2

0

a2
0

D2

ðRþDÞ½R2þðRþDÞ2�
2R Rþ D

2

� �2 � 1
R2 ln

2RþD
D

� �( )
ð30Þ

WðDÞ ¼�2c
a2

0

R2

R2

D2 f
R
D

� �
ð31Þ

Wðx;yÞ ¼�2cð1þ xyÞ�2f ðx�1þ yÞ�1
� �

ð32Þ

Now, the computation of c�Sðx; yÞ can be reached using Eqs. (27)
and (32):

c�Sðx; yÞ ¼ c fðxÞ � ð1þ xyÞ�2gðx; yÞf½ðx�1 þ yÞ�1�
h i

ð33Þ

c�Sðx; yÞ � c� f�aðx; yÞ ð34Þ

We introduced f�aðx; yÞ, the new correction factor to the surface en-
ergy for the sphere, surrounded by an hexagonal arrangement of its
clone spheres. This factor is an approximation given by the simpli-
fied model. f�aðx; yÞ is plotted on Fig. 5 against x for six different rep-
resentative y values.

The first criterium that must be checked is that f�aðx; yÞ should
look like f(x) when y is high enough. Fig. 5 clearly shows this sim-
ilarity, even for y = 10, that’s to say D � 10R (exact if R > >a0). For
such a y value, the nearest neighbors spheres are so far that they
do not interact with each other.

The effective porosity of the solid tends to decrease effective
surface energy of the sphere. This element is opposed to the intrin-
sic over-energy observed for high curvatures (small radii). The low-
er the y value, the more important the x-range that porosity acts
on. The ultimate case, y = 0 concerns spheres in intimate contact
(D = a0). The dedicated curve on Fig. 5 shows that f�að1;0Þ tends
to 0.26. One must observe that 0.26 = 1 � 0.74 where 0.74 is the
known classical packing efficiency of a hexagonal close-packed
structure.

This last result is in agreement with current model concessions
we made and shows that the model behaves the way it was built.
However, it also constitutes the proof that this model is only valid
for high y values. As expected, when the spheres are too close, the
assumption of an equivalent homogeneous solid fails and leads to a
bad prediction. Indeed, when the cavities (or the spheres) are in
intimate contact, solid (or vacuum) situated around tetrahedral
sites is still there and wholly plays its role in van der Waals poten-
tial expression. A good model should predict f�að1;0Þ ¼ 1.

6.2. Rigorous computation of surface energy

A more accurate model implies the knowledge of the energy of
two interacting spheres. This energy must be subtracted from
cS(R). Hamaker carried out this calculation (Hamaker, 1937). He
showed that two spheres of same radius R and with a distance d
between their centers have a potential energy of interaction:

E ¼ �A
6

2R2

d2 � 4R2
þ 2R2

d2 þ ln
d2 � 4R2

d2

( )
ð35Þ

Assuming a hexagonal close-packed structure, we can express
the three basic vectors of the lattice a, b and c in terms of unitary
vectors of an orthonormal basis i, j and k:

a ¼ Di ð36Þ

b ¼ D
2

iþ D
ffiffiffi
3
p

2
j ð37Þ

c ¼ D
2

iþ D

2
ffiffiffi
3
p jþ

ffiffiffi
2
3

r
Dk ð38Þ

Let X be the representative vector of an entity belonging to the
hexagonal lattice. Its generic expression is:

X ¼ m aþ nbþ pc ðm;n;pÞ 2 N3 ð39Þ

Its distance d to the original sphere is:

d2 � kXk2 ¼ D2½ðmþ nþ pÞ2 � ðmnþmpþ npÞ� ð40Þ

In other words, the center-to-center distance between any spheres
can be expressed as:

di ¼ kiD ð41Þ
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environment to its nominal value c for a flat surface – the function was obtained
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where ki is a factor such as:

ki ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ nþ pÞ2 � ðmnþmpþ npÞ

q
ð42Þ

ki ¼
ffiffi
i
p

i 2 N�þ ð43Þ

The main problem is knowing how many different X vectors are
associated with the same ki value. This is not trivial! On the other
hand, it is quite easy to program an algorithm that tries every com-
bination (m,n,p) and saves its contribution. Table 2 gives ni, the ki-
degeneracy, for the 10 smallest distances.

The energy, per unit surface, associated with the interaction of
two spheres separated by a distance D (reference) is (Hamaker,
1937):

W ¼ E
8pR2 ð44Þ

¼ � A
24p

1
D2 � 4R2 þ

1
D2 þ

1
2R2 ln

D2 � 4R2

D2

( )
ð45Þ

W ¼ �c
1

ðxyþ 2xþ 1Þ2 � 4x2
þ 1

ðxyþ 2xþ 1Þ2

(

þ 1
2x2 ln

ðxyþ 2xþ 1Þ2 � 4x2

ðxyþ 2xþ 1Þ2

)
ð46Þ

So, taking into account all possible distances di and all actors for
each distance, the surface energy of the sphere in its hexagonal lat-
tice is:

c�Sðx;yÞ ¼ cfðxÞ � c
X1
i¼1

ni
1

k2
i ðxyþ 2xþ 1Þ2 � 4x2

þ 1

k2
i ðxyþ 2xþ 1Þ2

(

þ 1
2x2 ln

k2
i ðxyþ 2xþ 1Þ2 � 4x2

k2
i ðxyþ 2xþ 1Þ2

)
ð47Þ

c�Sðx;yÞ � c� f�ðx;yÞ ð48Þ

The rigorous correction factor f⁄(x,y) is defined. It replaces the
approximated correction factor f�aðx; yÞ of the last paragraph. Let’s
take a look at the plot of this new more realistic function (see
Fig. 6) so that we can compare it with the previous one (Fig. 5).
Note that Fig. 6 uses Eq. (47) with the only four first distancesP4

i¼1

� �
, which gives a very good numeric approximation.

Looking at the graph of Fig. 6 gives us several evidences of the
coherence of this new model with the previous one. First, it seems
that an increase of y – reflecting a large distance between the
spheres – makes f⁄(x,y) tend to f�aðx; yÞ (and so to f(x)). In a more
general way, we can see that the simple model gives good predic-
tions as long as y is greater than 0.5. Below this value, the simple
model deteriorates and is no longer able to make proper predic-
tions. In fact, the region surrounding the sphere, closer than a half
sphere-radius has too much impact through van der Waals poten-
tial to be approximated by a homogeneous less dense medium: the
rigorous model is to be used below this limit. Secondly, we have
fixed the bad behavior of the correction factor when y tends to 0.
This time, f⁄(x,0) no longer tends to 0.26 but to 1. In other words,
even though spheres are in intimate contact (D = a0), a big radius R
makes it so that tetrahedral sites are dominant around the sphere
and cancel any proximity effect.
Table 2
Number ni of neighbors found at a distance di = kiD of the sphere.

i 1 2 3 4 5 6 7 8 9 10 . . .

ki 1
ffiffiffi
2
p ffiffiffi

3
p

2
ffiffiffi
5
p ffiffiffi

6
p ffiffiffi

7
p

2
ffiffiffi
2
p

3
ffiffiffiffiffiffi
10
p

. . .

ni 12 6 24 12 24 8 48 6 36 24 . . .
In a more general way, and as expected, the new function f⁄(x,y)
reveals a much less strong effect of the porosity on the surface en-
ergy. Even the more favorable case in terms of surface energy loss
(x � 4) hardly shows a decrease of 15%. However, this effect is not
negligible and should be reported and accounted when dealing
with compacted nanopowders which typical radii are lower than
about 30 or 40 nm (x � 102 on the graph).

These results also concur with numerous studies on that the en-
ergy of a single-crystal surface strongly depends on its Miller’s in-
dex. It was experimentally pointed out that the higher Miller’s
index, the less filled is the plane and, as a result, the higher is
the surface energy. Jia et al. (2009) mention a difference of 10% be-
tween surface energies of [110] and [100] faces of fcc copper nano-
particles. Although these sorts of crystal planes are not in the scope
of this study, our model (Fig. 6) qualitatively predicts the variations
of energy with the particle neighborhood (y value). An isolated sin-
gle particle (x = 1,y > >1) has an energy 20%-larger than the same
one close to 12 neighbors (x = 1,y = 0). The factor 2 between Jia’s
predictions and ours can be partly explained by that Jia always as-
sumes surface atoms in contact with a full half-space (the bulk).

7. Conclusions

The van der Waals potential was integrated over planar and
spherical bodies. It was clearly shown that the surface energy is
dependent on the curvature, particularly when the radius is lower
than 100 intermolecular distances. This dependence consists of an
over-energetic term which is in contrast with Tolman’s prediction
but is confirmed by experiments based on evaporation of Ag nano-
particles. The proximity of other nano-entities, whether we focus
on nanoparticles or nanostructuration in a solid bulk, was also the-
oretically investigated. Two models were used. On the one hand, a
simple model, based on a homogeneous less dense surrounding
medium, is not applicable when entities are closer than a half
sphere-radius. On the other hand, a second model, based on rigor-
ous computation of interactions between the sphere and its closest
neighbors, gave more valuable information. It showed that the
nano-porosity of a solid or a compact group of nanoparticles both
lead to a substantial decrease of surface energy as long as the ra-
dius of curvature is less than 30 or 40 nm. A maximum of 15% de-
crease is predicted for 2 or 3 nm. Above 30 nm, the surface energy
tends to reach its classical value. We believe these results, although
based on the case of spheres, can be extended to all types of nano-
structured surfaces. They could help to achieve a better under-
standing of the behavior of nanoporous surfaces.
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