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Human reproduction is complex and prone to failure. Though causes ofmiscarriage remain unclear, adenosine, a
proangiogenic nucleoside, may help determine pregnancy outcome. Although adenosine receptor (AR) expres-
sion has been characterized in euploid pregnancies, no information is available for aneuploidies, which, as prone
to spontaneous abortion (SA), are a potential model for shedding light on the mechanism regulating this event.
AR expressionwas investigated in 71first-trimester chorionic villi (CV) samples and culturedmesenchymal cells
(MC) from euploid and TR21 pregnancies, one of the most frequent autosomal aneuploidy, with a view to eluci-
dating their potential role in themodulation of vascular endothelial growth factor (VEGF) and nitric oxide (NO).
Compared to euploid cells, reduced A1 and A2B expression was revealed in TR21 CV and MCs. The non-selective
adenosine agonist 5′-N-ethylcarboxamidoadenosine (NECA) increased NO, by activating, predominantly, A1AR
and A2AAR through a molecular pathway involving hypoxia-inducible-factor-1 (HIF-1α), and increased VEGF,
mainly through A2B. In conclusion the adenosine transduction cascade appears to be disturbed in TR21 through
reduced expression of A2B and A1ARs. These anomalies may be implicated in complications such as fetal growth
restriction, malformation and/or SA, well known features of aneuploid pregnancies. Therefore A1 and A2BARs
could be potential biomarkers able to provide an early indication of SA risk and their stimulation may turn out
to improve fetoplacental perfusion by increasing NO and VEGF.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

15% of human pregnancies are known to end in spontaneous abor-
tion (SA) before 12 weeks of gestation, and immunity, angiogenesis
and apoptosis-related genes have all been implicated. In aneuploidy,
however, the reportedpercentage of SA ismuchhigher [1]. One possible
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reason could be that the chromosomal abnormality itself leads to mis-
carriage, but if this is the case, the pathogenic mechanism is still
unknown.

It has also been suggested that the causes of SA in aneuploidy are no
different to those in euploidy,with the increased frequency in the former
perhaps being ascribable to a genetically-determined imbalance in the
mediators of placental perfusion and uterine contraction [1]. In this sce-
nario, mediators such as endothelial growth factor (VEGF) and nitric
oxide (NO) may be involved; indeed, a critical role has been reported
for both in placental angiogenesis [2,3]. During gestation, angiogenesis
occurs extensively in the placenta and villi to supply the fetus with oxy-
gen andnutrition. This vascular development during embryonic and fetal
growth in utero is triggered by hypoxia, a condition that is also known to
increase the levels of adenosine (Ado) [4]. This important hormone is lo-
cally released frommetabolically active cells, or generated extracellularly
by the degradation of ATP. Acting through its receptor (AR) subtypes A1,
A2A, A2B and A3, this nucleoside has been shown to regulate a wide vari-
ety of physiological processes, including angiogenesis in hypoxic tissues
[5]. In particular, Ado plays an important role in the regulation of VEGF
from placental villi in hypoxic conditions, and it also increases NO
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synthesis in the fetoplacental endothelium; it is therefore considered to
be a major factor in maintaining normal fetoplacental function [6,7].

Although AR expression has been characterized in human placenta
fromnormal pregnancies, no data are as yet available concerning expres-
sion and signaling cascades triggered byARs in aneuploidies [8,9]. Never-
theless, as previously mentioned, aneuploidies very often end in SA,
making them a good experimental model for potentially shedding light
on themechanism regulating this event. The aim of this studywas there-
fore to investigate the expression of ARs in first-trimester chorionic villi
Fig. 1. Expression levels of A1, A2A, A2B, A3AR proteins in E and TR21 CV. Representative W
pregnancies at 12 weeks of gestation. CHO cells transfected with the different ARs were load
nancies. Densitometric quantification of Western blots is the mean±SE values (N=4 for e
MRE 2029 F20 and [3H]MRE 3008 F20 binding to A1, A2A, A2B, A3ARs in CV biopsies from E
binding (▲) were determined as described in the methods. Each value represents the mean
(CV) and isolatedmesenchymal cells (MC) fromboth euploid (E) and tri-
somy (TR) 21pregnancies, one of themost frequent autosomal aneuploi-
dy; viable cells, namely those obtained via routine chorionic villus
sampling, rather than spontaneous abortus tissue, were chosen, as any
alteration of ARs in the latter could be a consequence rather than the
cause ofmiscarriage. The rationale behind the studywas that elucidating
the role of Ado in the modulation of important proangiogenic molecules
like VEGF and NO in aneuploid pregnancies may also shed light on the
proteins and pathways involved in SA in euploid pregnancy.
estern blot analyses of ARs in CV biopsies from women with E (line 2) and TR (line 3)
ed as positive control (line 1). Histograms represent % decrease with respect to E preg-
ach group) ∗Pb0.01 vs E CV. (A); Saturation curves of [3H]DPCPX, [3H]ZM 241385, [3H]
(N=13) and TR21 pregnancies (N=10) (B).Specific (■) and nonspecific equilibrium
±SEM of experiments performed in duplicate.



Fig. 1 (continued).
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Fig. 2. Immunophenotyping by flow cytometry analysis of purified CVMCs. Cell surface expression of MSC (CD13, CD73, CD90 and CD105), myeloid (CD14, CD45) and endothelial
(CD31, CD34) markers is reported. The number of positive cell is reported in each diagram as % of total gated cells (>10,000 events were analyzed). As negative control, cells were
also stained with isotype-matched irrelevant antibody fluorescence (Irr.-FITC and Irr.PE). A representative sample is reported (N=3).

Fig. 3. Expression levels of A1, A2A, A2B AR and CD73 target genes in E and TR21 CVMCs.
Histograms showing the content of AR (A) and CD73 (B) mRNA in E (N=13, black) and
TR21 (N=8, white) MCs. Data were expressed as percentage of β-actin expression.
*Pb0.01, vs. the corresponding receptor in E cells.
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2. Materials and methods

2.1. Materials

[3H]1,3-dipropyl-8-cyclopentyl-xanthine ([3H]DPCPX) (specific
activity 120 Ci/mmol), was purchased by NEN Research Products
(Boston, MA). [3H] (4-(2-[7-amino-2-(2-furyl)-[1,2,4]triazolo-
[2,32][1,3,6]triazinyl-amino]ethyl)-phenol) ([3H]ZM 241385) (spe-
cific activity 20 Ci/mmol), was furnished by Tocris (Boston, MA).
[3H]N-benzo[1,3]dioxol-5-yl-2-[5-(1,3-dipropyl-2,6-dioxo-2,3,6,7-
tetrahyro-1 H-purin-8-yl)-1-methyl-1 H-pyrazol-3-yl-oxy]-acetamide]
([3H]MRE 2029-F20) (specific activity 123 Ci/mmol) and [3H]5-N-(4-
methoxyphenylcarbamoyl)-amino-8-propyl-2-(2-furyl)-pyrazolo[4,3e]-
1,2,4triazolo[1,5c]pyrimidine ([3H]MRE 3008 F20) (specific activi-
ty 67 Ci/mmol), were synthesized at Amersham International
(Buckinghamshire, UK). ARs small interfering RNA (siRNA) were from
Santa Cruz DBA (Milano, Italy). RNAiFect Transfection Kit was purchased
from Qiagen (Milano, Italy). Antibody against A1and A3 ARs were
obtained from Calbiochem Inalco (Milano, Italy). Antibody against A2A

was from Alpha Diagnostic, Vinci Biochem (Firenze, Italy). Antibody
against A2B was from Santa Cruz, Tebu-bio (Milano, Italy). VEGF ELISA
kit was purchased from R&D Systems, Space Import–export (Milano,
Italy) and NO ELISA kit was furnished by Merck Chemicals (Nottingham,
UK). CD45, CD34, CD14, CD73, CD90, CD13, CD31 antibodies were pur-
chased from BD Biosciences (Milano, Italy), CD105 was from Space
Import–export Milano (Milano, Italy). The Assays-on- demand™ Gene
expression Products Hs00181231_m1, Hs00169123_m1, Hs00386497_
m1, Hs00181232_m1, Hs01573922_m1, Hs00173626_m1 for A1, A2A,
A2B, A3, CD73 and VEGF, respectively were purchased from Applied
Biosystems (Monza, Italy). Unless otherwise noted, all other reagents
were purchased from Sigma (Milano, Italy).

2.2. Study subjects and sample collection

From2008 to 2011CVwere collected from71pregnantwomen con-
secutively scheduled for sampling at 12 weeks of gestation. Pregnancies
were categorized as follows: 41 E and 30 TR21. Informed consent was
obtained in all cases, and the study was approved by the Ferrara S.
Anna University Hospital Ethics Committee.

2.3. Membrane preparation from CV

Membrane preparation from 23 CV (13E and 10TR21) was carried
out as described previously with minor modifications [10]. Briefly,

image of Fig.�2
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tissuewas homogenized in a polytron homogenizerwith 50 mMHEPES
buffer (pH 7.5) containing 250 mM sucrose, 1 mM EDTA and 2 mM
phenylmethyl-sulphonyl fluoride. The homogenate was centrifuged at
600 ×g for 15 min. The pellet was discarded and the supernatant
Fig. 4. Expression levels of A1, A2A, A2B, A3AR and CD73 proteins in E and TR21 CVMCs. Rep
pregnancies at 12 weeks of gestation. Histograms represent % decrease with respect to E pre
for each group). ∗Pb0.01 vs E CV.
centrifuged at 18,000 ×g for 30 min. The supernatant obtainedwas fur-
ther centrifuged at 100,000 ×g for 60 min. The crude membrane pellet
was washed twice and finally resuspended in membrane buffer
(50 mM HEPES, pH 7.5 containing 4 mMMgCl2).
resentative Western blot analyses of ARs and CD73 in MC cells from euploid and TR21
gnancies. Densitometric quantification of Western blots is the mean±SE values (N=3

image of Fig.�4


Fig. 5. NECA-stimulated NO secretion in E (white) and TR21 cells (black). NO levels in
MC treated with 1 μM NECA in the absence and presence of 50 nM PSB 36, 25 nM SCH
44,216 and 300 nM PSB 603 (A) and with specific siRNAs of A1, A2A, and A2B ARs (B).
Effect of HIF-1α siRNA on NO secretion (C). *Pb0.05 vs. the corresponding control (E
and A cells without NECA) and **Pb0.05 vs. the corresponding NECA (N=5 for each
group).
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2.4. Binding studies

Saturation experiments of [3H]DPCPX (0.1-30 nM), [3H]ZM 241385
(0.1–30 nM), [3H]MRE 2029 F20 (0.1–30 nM) and [3H]MRE 3008 F20
(0.1–30 nM) to label A1, A2A, A2B and A3 ARs, respectively, were carried
out inmembranes fromCV as previously described [11]. 100 μl ofmem-
brane homogenate (80 μg of protein assay−1) were incubated in dupli-
cate, in a final volume of 250 μl in test tubes containing 50 mMTris HCl
buffer (10 mM MgCl2 for A2A, 10 mM MgCl2, 1 mM EDTA, 0.1 mM
benzamidine for A2B and 10 mM MgCl2, 1 mM EDTA for A3) pH 7.4,
with 10–12 different concentrations of each selective radioligand.
Non-specific binding was obtained by using PSB 36, SCH 442416, PSB
603 and VUF 5574 1 μM and at the KD value for each radioligand was
31, 30, 32, 26%, respectively of total binding in euploid and 39, 30, 41,
34%, respectively in trisomy 21 cells.

Bound and free radioactivitywere separated, after an incubation time
of 120 min at 4 °C, by filtering the assaymixture throughWhatmanGF/B
glass-fiber filters using a cell harvester (Packard Instrument Company).
The filter bound radioactivity was counted on Top Count Microplate
Scintillation Counter (efficiency 57%) with Micro-Scint 20.

2.5. Western blot analysis

AR expression was evaluated in CV samples (4E and 4TR21) and in
mesenchymal cells (3E and 3TR21) byWestern blot. Whole cell lysates,
prepared as previously described were resolved on a 10% SDS gel and
transferred onto the nitrocellulose membrane [11]. Aliquots of total
protein sample (50 μg) were analyzed using antibodies specific for A1,
A2A, A2B and A3 ARs (1:1000 dilution) in 5% non-fat dry milk in PBS
0.1% Tween-20 overnight at 4–8 °C.Membraneswerewashed and incu-
bated for 1 hour at room temperature with peroxidase-conjugated spe-
cies specific secondary antibodies. Specific reactionswere revealedwith
the Enhanced Chemiluminescence Western blotting detection reagent.
Tubulin (1:250) was used to mathematically normalize samples; then
signals were expressed as % of control.

2.6. Densitometry analysis

The intensity of each band in immunoblot assay was quantified
using a VersaDoc Imaging System (Bio-Rad). Mean densitometry data
from independent experiments were normalized to the results in con-
trol cells. The data were presented as the mean±S.E.

2.7. MC isolation

MC cells were isolated from a total of 40 CVs (24E,16TR21) as pre-
viously described [12]. Only cells taken from back-up cultures were
used after karyotype analysis. Cells were maintained in Chang medi-
um D, supplemented with 20% fetal calf serum, 2 mM L-glutamine,
100 U/ml penicillin and 100 μg/ml streptomycin, at 37° in 5% CO2/
95% air. All cell treatments with ARs ligands were performed in the
presence of adenosine deaminase (ADA).

2.8. Hypoxic treatment

Hypoxic exposure (24 h) was performed in a modular incubator
chamberflushedwith a gasmixture containing 1%O2, 5%CO2 andbalance
N2 (MiniGalaxy, RSBiotech).

2.9. Immunophenotyping

MCs isolated from 3 separate CV sampleswere immunophenotyped.
Analysis was performed using an EPICS-XL flow cytometer and EXPO32
software (Beckman Coulter). At least 10,000 events were collected per
sample [13].

2.10. Real-time RT-PCR

Quantitative real-time RT-PCRwas performed as previously reported
[11]. Total cytoplasmic RNAwas extracted fromMCs (13E, 8TR21) by the
acid guanidinium thiocyanate phenol method. For the real-time RT-PCR
of A1, A2A, A2B, A3 ARs, CD73 and VEGF the assays-on- demand™ Gene
expression Products were used. As reference gene the endogenous con-
trol human β-actin kits was used, and the probewas fluorescent-labeled
with VIC™ (Applied Biosystems, Monza, Italy).

2.11. Immunofluorescence analysis

For HIF-1α detection cells were treated with NECA for 2 h, under
hypoxia. MCs (5E, 5TR21) were washed two times with PBS, fixed in
10% paraformaldehyde for 10 min, permeabilized in a PBS solution
containing 0.1% of Triton X-100 and incubated for 30 min with PBS
plus 5% goat serum and 0.5% bovine serum albumin. The cells were
then incubated O.N. at 4 °C in a humidified chamber with anti-HIF-1α
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Abs solutions (1:50) containing 0.5% of goat serum and 0.5% of bovine
serum albumin in PBS. Excessive antibody was washed away with PBS
and rabbit antibodies were detected with fluorescein isothiocyanate- la-
beled goat anti-rabbit IgG. Coverslips were stained with 4¢,6¢,-diamino-
2-phenyl-indole, mounted in DABCO glycerol-PBS and observed on
Nikon fluorescent microscope (Eclipse 50i) as previously described [14].
Imageswere analyzed using NIS Elements BR 3.0 software (Nikon Instru-
ments Inc., Milan, Italy). Levels of hypoxic HIF-1 in euploid cells were the
basis for calculation of the additional NECA-mediated increase and for
HIF-1 staining in aneuploid cells. The mean intensity of each cell was
obtained from the cells pixels that had a higher intensity than that of
the mean background intensity. A mean of 150 cells was analyzed for
each condition at 40X magnification, at fixed time exposure.
2.12. siRNA treatment of MCs

MCswere plated in six-well plates and grown to 50–70% confluence
before transfection. Transfection of ARs siRNA, was performed at a con-
centration of 100 nM using RNAiFectTM Transfection Kit for 72 hours
[11]. A non-specific control ribonucleotide sense strand (5’-ACU CUA
UCU GCA CGC UGA CdTdT-3’) and antisense strand (5’-dTdT UGA GAU
AGA CGU GCG ACU G-3’) were used under identical conditions.
2.13. Nitrite assay for mesenchymal cells

NOS activity in MCs (5E, 5TR21) was assessed indirectly by mea-
suring nitrite (NO2-) accumulation in the cell culture media using a
colorimetric kit (Calbiochem, Milan, Italy). At the end of the treatment
period, the nitrite concentration in the conditioned media was deter-
mined according to a modified Griess method [14]. Briefly, the NADH-
dependent enzyme nitrate reductase was used to convert the nitrate to
nitrite prior to quantification of the absorbance, measured at 540 nm by
a spectrophotometric microplate reader (Fluoroskan Ascent, Labsystems,
Sweden). Sodium nitrite was used as the standard compound.
2.14. Enzyme-linked immunosorbent assay (ELISA)

The levels of VEGF secreted by the MCs (5E, 5TR21) in the medium
were determined by ELISA kits. In brief, subconfluent cells (40,000/ml)
were seeded in 24-well plates andincubated in the presence of solvent
or various concentrations of ado ligands for 24 hours. The medium
was collected, centrifuged for 5 min at 900 g to remove floating cells
and assayed for VEGF and NO content by ELISA according to the
manufacturer's instructions. The data were presented as mean±SE
from four independent experiments.
2.15. Statistical analysis

LIGAND, a weighted nonlinear least-squares curve-fitting program,
was used for computer analysis of the data from saturation experiments
[11]. Functional experiments were calculated by non-linear regression
analysis using the equation for a sigmoid concentration-response
curve (GraphPAD Prism, San Diego, CA, USA). Data sets were analyzed
using Student's t test or analysis of variance (ANOVA) and Dunnett's
test (when required). A P-value of less than 0.05 was considered statis-
tically significant. All values in the figures and text are expressed as
mean±standard error (S.E.) of independent experiments and are indi-
cated in the figure legends. Each experiment was performed by using
the CV derived from one single donors, and was performed in duplicate
(for binding and real-time PCR experiments) or in triplicate (for func-
tional experiments). The experiments were repeated at least three
times as indicated from n-values that represent the number of patients
used.
3. Results

3.1. AR proteins in E and TR21 CV

Immunoblotting was used to investigate AR expression in CV bi-
opsies from E and TR21 pregnancies. Expression of A1, A2B and
A3ARs was lower in TR21 CV with respect to E CV, while no difference
in A2AAR was observed between the two (Fig. 1A). The specificity of
the A2B antibody, recognizing a band of 50 kDa different from the
predicted molecular wheight of 36 kDa, was assessed in both
untransfected and transfected CHO cells as shown in supplemental
Fig. 1. Saturation binding experiments in CV were carried out to eval-
uate affinity (KD) and density (Bmax) of ARs. [3H]DPCPX saturation
assays revealed A1ARs with KD of 2.4±0.3 and 1.9±0.2 nM, and
Bmax of 203±21 and 107±12 fmol/mg of protein in E and TR21
samples, respectively; [3H]ZM 241385 saturation studies showed
A2AARs with KD of 2.5±0.3 and 2.8±0.3 nM, and Bmax of 78±10
and 72±9 fmol/mg of protein in E and TR21 samples, respectively;
[3H]MRE2029F20 saturation experiments detected A2BARs with KD

of 2.8±0.3 and 3.2±0.3 nM, and Bmax of 140±15, and 90±12
fmol/mg of protein in E and TR21 samples, respectively; [3H]
MRE3008F20 saturation assays revealed A3ARs with KD of 1.2±0.2
and 0.9±0.1 nM, and Bmax of 168±20 and 95±10 fmol/mg of pro-
tein in E and TR21 samples, respectively (Fig. 1B). Scatchard plot anal-
ysis revealed the presence of an high affinity binding site for each
radioligand as suggested by the linearity of the lines. Computer anal-
ysis of the data failed to show a significantly better fit to a two site
than to a one site binding model, suggesting that under our experi-
mental conditions, there was, primarily, a single class of high affinity
binding sites.

3.2. Cell morphology

Primary cultures obtained from CV exhibited a population of embry-
onalMCs, as revealed by positive immunostaining towards CD13, CD73,
CD90 and CD105, while hematopoietic and endothelial cell markers
were undetectable (CD14, CD31, CD34, CD45). Flow cytometry demon-
strated culture contamination by non-MC cells of less than 5% (Fig. 2).

3.3. AR mRNAs in CVMCs from E and A pregnancies

AR mRNAs were investigated in CVMCs from E and TR21 pregnan-
cies. The order of expression detected in both was A2B>A1>A2AAR.
A3AR was revealed after 37–38 PCR cycles, suggesting low levels of
expression. A1ARs were found to be downregulated in MCs of TR 21,
(0.51±0.05) in comparison to euploid MCs; A2BAR was reduced in
TR 21 (0.52±0.05); as for A2AARs, they were expressed at similar
levels to E in TR 21 (0.95±0.1) (Fig. 3A). CD73 expression was similar
in E and A cells (0.90±0.1) (Fig. 3B).

3.4. AR proteins in E and A MCs

Western blot analysis was used to quantify ARs in MCs from CV of E
and TR21 pregnancies. A1 and A2B ARswere found to be downregulated
in TR21 MCs with respect to E MCs. A2AARs and CD73 were not signifi-
cantly altered in TR21. A3ARswere expressed at low levels in both E and
A cells (Fig. 4).

3.5. ARs increase NO secretion in MCs

We evaluated NO production by MCs after treatment with the non-
selective agonist 5'-N-Ethylcarboxamidoadenosine (NECA) under hyp-
oxic conditions (24 h). NECA raised NO levels by 459±50% and
466±48% in E and TR21 cells, respectively. Basal NO levelswere slightly
higher in TR21 than in E cells (39±4 and 49±5 μM in E and TR 21 cells,
respectively) (Fig. 5A). The NECA effect was strongly reduced by
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1-Butyl-8-(hexahydro-2,5-methanopentalen-3a(1 H)-yl)-3,7-dihydro-
3-(3-hydroxypropyl)-1 H-purine-2,6-dione (PSB 36) and 2-(2-Furanyl)-
7-[3-(4-methoxyphenyl)propyl]-7 H-pyrazolo[4,3-e][1,2,4]triazolo
[1,5-c]pyrimidin-5-amine (SCH 442416), selective antagonists of A1

and A2A ARs, respectively, suggesting the involvement of A1 and A2A

subtypes, and reduced to a lesser extent by 8-[4-[4-(4-Chlorophenzyl)
piperazide-1-sulfonyl)phenyl]]-1-propylxanthine (PSB 603), selective
antagonist of A2B (Fig. 5A). The effect of AR siRNAs was also tested.
A1AR siRNA was the most potent at reducing NECA-induced stimu-
lation of NO levels, followed by A2A and A2BAR siRNAs (Fig. 5B).
siRNA of HIF-1α greatly reduced NECA-stimulated NO increase,
suggesting that ARs were acting through HIF-1α modulation
(Fig. 5C). After 48 and 72 h posttransfection with siRNA targeting
each AR and HIF-1, protein levels were significantly reduced
Fig. 6. ARs and HIF-1α silencing by siRNA transfection in MC. Western blot analysis using an
siRNA and cultured for 24, 48 and 72 h (A). Specificity of adenosine receptors siRNAs (B). W
extracts from MC transfected with control ribonucleotides (ctr.) or with siRNA of each AR s
(Fig. 6A); the specificity of a given siRNA to the other AR subtypes
is also shown in Fig. 6B.

We therefore evaluated HIF-1α accumulation after incubation of E
and TR21 MCs with NECA under hypoxia (2 h). NECA stimulated
HIF-1α accumulation in both cell types, confirming the involvement
of this transcription factor (Fig. 7).

3.6. ARs stimulate VEGF secretion in MCs

WetestedVEGF production byMCs after treatmentwithNECAunder
hypoxia (24 h). NECA increased VEGF levels in a dose-dependent fash-
ion by 314±32% and 330±35% in E and A cells, respectively. TR21
cells presented a lower basal level of VEGF (222±26 pg/ml in TR21 vs
404±52 pg/ml in E cells), and NECA showed a lower affinity for
ti A1, A2A, A2B and HIF-1 polyclonal antibodies of protein extracts from MC treated with
estern blot analysis using anti A1, A2A, and A2B receptor polyclonal antibodies of protein
ubtype and cultured for 72 h. Tubulin shows equal loading protein.
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stimulation of VEGF secretion in TR21with respect to E cells (EC50 245±
26, 480±50 nM in E and TR21, respectively). The NECA effect was
strongly reduced by PSB603 (300 nM), suggesting the involvement of
Fig. 7. Effect of NECA on HIF-1α accumulation in E and TR21 cells. Stimulation of HIF-1α ac
rescence analysis; bar graph data (E), expressed as mean±SE percentage of total HIF-1α sta
out NECA). Figure shows 1 representative experiment.
A2B, and to a lesser extent by the A2A antagonist SCH442416 (25 nM),
but not by PSB36 (50 nM) the A1 antagonist (Fig. 8A). The effect of AR
siRNAs was also tested. A2BAR siRNA produced the most potent
reduction of NECA-induced stimulation of VEGF, followed by A2AAR
siRNA, while A1 siRNA has no effect (Fig. 8B). Treatment with nitric
oxide synthase antagonist L-NG-Nitroarginine methyl ester (L-NAME
150 μM) did not reduce NECA-stimulated increase in VEGF, suggesting
that ARs were not acting through NO production (data not shown).
The effect of NECA on VEGF was also observed on mRNA (2.6±
0.2-fold increase) (Fig. 8C).
4. Discussion

Human reproduction is a complexprocess prone to failure, and several
mechanisms, including angiogenesis, inflammatory and immune-related
processes, have been considered as possible mediators of SA. Recently, it
has been reported that aberrant maternal inflammation associated with
SA is closely linked to deficient placental perfusion [15]. Emerging evi-
dence also suggests that Ado, a proangiogenic nucleoside and a sensor
of overactive immunity and inflammation, may be involved in determin-
ing pregnancy outcome [16–18].

In order to elucidate which ARs may affect the success of this
event, we evaluated their expression in TR21, chromosomal abnor-
malities that very often end in abortion and may therefore represent
a good model for elucidating the mechanism regulating miscarriage.

Our findings show, for the first time, a reduction in A1, A2B and A3ARs
in CV biopsies obtained from TR21, in comparison to those from euploid
pregnancies as evaluated by both western blotting and saturation bind-
ing experiments. TheA2B antibody reveals a bandof 50 kDa, substantially
higher than theoretical molecular weight of this receptor subtype. As it
has been previously demonstrated that 50–55 kDa immunoreactivity
detected in many tissues may not represent the A2BAR we evaluated its
cumulation by NECA (B,D) in CVMC E (A,B) and TR21 (C,D) by means of immunofluo-
ining (N=3 for each group); *Pb0.05 vs. the corresponding control (E and A cells with-
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Fig. 8. NECA-stimulated VEGF secretion in E (white) and TR21 cells (black). VEGF levels in CV-derived MCs treated with 1 μMNECA in the absence and in the presence of 50 nM PSB
36, 25 nM SCH 44216 and 300 nM PSB 603 (A), and with specific siRNAs of A1, A2A, and A2B ARs (B). Induction of VEGF mRNA by NECA in healthy (white) and TR21 (black) cells (C);
*Pb0.05 vs. the corresponding control (E and A cells without NECA) and **Pb0.05 vs. the corresponding NECA (N=5 for each group).
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specificity in transfected and untransfected CHO cells [19]. Our data
show that the A2B antibody was specific for A2B receptors, according to
literature data [20] and revealed a decrease in receptor density in TR21
CV. In order to quantify the affinity and density of ARs, saturation binding
studies were performed. In CV, the adenosine receptor affinities were in
the nanomolar range and the receptor densities of A1, A2B and A3 sub-
types were decreased in TR21 samples. Even though DPCPX and ZM
241385 used as A1 and A2A radiolabeled ligands can also bind A2B recep-
tors, in the range of concentrations investigated we detected a single
class of high affinity binding sites. Similar results have been observed
in a recent paper byVarani et al., 2010 in human synoviocytes expressing
all four adenosine receptors [21].We therefore went on to further inves-
tigate AR expression in CVMCs,which are routinelywithdrawn for geno-
type analysis. Accordingly, we found, also for the first time, a reduction of
A1 and A2BARs in A MCs, whilst A3 was expressed at very low levels in
both E and A samples; this suggests that it may be more relevant in
other cell types e.g. in preeclampsia, A3AR expression has been found
to be upregulated in trophoblasts, where it regulates MMP-2/9 expres-
sion [22]. As a whole, these data support the hypothesis that both A1

and A2BAR gene productsmay positively regulate normal pregnancy. In-
deed, A1AR has been reported to play an essential role in protecting the
embryo against hypoxia and intrauterine stress [23–25]. As for A2B, it is
known to be involved in increasing angiogenesis throughmodulation of
VEGF, and its genetic loss has recently been found to increase platelet
aggregation, suggesting it has a beneficial effect in vascular injury
[26–29]. A2BAR is also involved in chorionic vasoconstriction, with path-
ophysiological implications for preeclampsia (PE) and vascular diseases
[30].

Since trisomy 21 placentae are known to feature trophoblastic hypo-
plasia and hypovascularity, we investigated the potential role played by
ARs in NO and VEGF regulation in both TR21 and normal pregnancies
[31]; previously, the four ARs had been linked to the angiogenic actions
of Ado in endothelial cells, smoothmuscle,fibroblasts,monocytes,macro-
phages, mast and foam cells, all of which are recognized as important
sources of proangiogenic factors [7,11,23,32]. We found slightly higher
NO content in MCs from TR21 pregnancies than in E cells; A1 followed
by A2AARs were shown to increase NO production in an HIF-1-
dependent fashion,with A2BAR only playing aminor role, confirming pre-
vious reports [33,34].

In contrast, A2BAR appeared to be the main subtype involved in
VEGF secretion, as indicated by the affinity of NECA and the antago-
nizing effect mediated by both specific blockers and siRNA of ARs.
A2AAR also contributed to VEGF secretion according to literature
data [5].
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We found reduced VEGF in TR21 with respect to E cells; this was
reversed by NECA stimulation, albeit with a lower affinity. These
low levels of VEGF production, in addition to the higher NO content,
have previously been reported in TR21 stem cells, and may be attrib-
uted to the fact that the candidate Down syndrome region gene lies
on chromosome21 and encodes a negative regulator of VEGF–calcineurin
signaling [35–37]. Furthermore, NO production, the main vasodilator in
pregnancy, has been suggested as a compensatory response for restoring
proangiogenic conditions in hypoxic MCs.

4.1. Concluding remarks

As a whole, our data show that the Ado transduction cascade is
disturbed in TR21 by two major anomalies, namely downregulation
and reduced expression of A2B and A1ARs. Such anomalies may nega-
tively affect pregnancy to varying degrees; based on the literature, as
well as our results, pregnancy can be interpreted as a vascular phe-
nomenon whose destiny depends, among other factors, on the degree
of disruption of each of the two ARs, which may be implicated in a
range of complications, including SA, fetal malformation, fetal growth
restriction and preeclampsia [1,38,39]. Accordingly, stimulation of
ARs, particularly A1 and A2B, may turn out to improve fetoplacental
perfusion by increasing NO and VEGF. Our results also suggest that
A1 and A2BARs may be useful as biomarkers to provide an early indi-
cation of SA risk, and, last but by no means least, lay the foundations
for future studies investigating the molecular causes of miscarriage.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.bbadis.2012.07.013.
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