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Abstract

A graph is called Frobenius if it is a connected orbital regular graph of a Frobenius group. A
Frobenius map is a regular Cayley map whose underlying graph is Frobenius. In this paper, we show
that almost all low-rank Frobenius graphs admit regular embeddings and enumerate non-isomorphic
Frobenius maps for a given Frobenius graph. For some Frobenius groups, we classify all Frobenius
maps derived from these groups.As a result, we construct some Frobenius maps with trivial exponent
groups as a partial answer of a question raised by Nedela and Škoviera (Exponents of orientablemaps,
Proc. London Math. Soc. 75(3) (1997) 1–31).
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

A mapon a surface is a cellular decomposition of a closed surface into 0-cells called
vertices, 1-cells callededgesand 2-cells calledfaces. The vertices and the edges of a map
form its underlying graph. Every edge of a graph gives rise to a pair of opposite arcs
(or darts). A map isorientableif the supporting surface is orientable, andnon-orientable
otherwise. Throughout this paper, we deal with only orientable maps. Typically, a map on
a surface is constructed by a 2-cell embedding of a connected graph into a surface. Graphs
considered in this paper are finite, connected, undirected and simple.
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In a combinatorial way, anorientedmapM can be described as a triple(D; R, L), where
D = D(M) is a non-empty finite set ofdartswhich are incident vertex–edge pairs, and
R andL are two permutations ofD such thatL is an involution and the generated group
〈R, L〉 acts transitively onD. The group〈R, L〉 is called the orientedmonodromy group
ofM, and denoted by Mon(M). The permutationsRandL are called therotationand the
dart-reversing involutionofM, respectively. The orbits of the group〈R〉 are theverticesof
M, and the elements of an orbitv of 〈R〉 are the dartsemanatingfrom the vertexv, that is,v
is their initial vertex. In the cyclic decomposition of the permutationR, the cycle permuting
the darts emanating from a vertexv is called thelocal rotationRv at v. The orbits of〈L〉
and〈RL〉 are theedgesand thefacesof M, respectively. The incidence between vertices,
edges and faces is given by a non-trivial set intersection. The vertices and the edges define
theunderlying graphof M, which is always connected due to the transitive action of the
monodromy group.
On the other hands, for a given underlying graph�, its 2-cell embedding into anorientable

surface can be described by arotation Rwhich cyclically permutes the arcs initiated at
each vertex in�, because the arc-reversing involutionL is determined as a permutation
interchanging oppositely directed arcs arising from the same edge.
Given a finite groupGand a generating setSofGsuch thatS =S−1 and 1/∈ S, theCayley

graph�=C(G, S) onG relative to Shas vertex setGand edge set{{g, gs} | g ∈ G, s ∈ S}.
For any cyclic permutation� onS, one can define the Cayley mapM=CM(G, S, �) to be
a 2-cell embedding of� into an orientable surface, with the same local orientation induced
by the permutation� at every vertex.
For a graph�, every edge of� gives rise to a pair of opposite arcs. LetV (�), E(�),

A(�) and Aut(�) denote the vertex set, the edge set, the arc set and the full automorphism
group of�, respectively. A graph� is said to bevertex-transitive, edge-transitiveor arc-
transitiveif Aut (�) acts transitively onV (�),E(�) orA(�), respectively. It is well known
that Cayley graphs are vertex-transitive with the regularG-action on the vertices by left
multiplication.
Given two oriented mapsM= (D; R, L) andM′ = (D′; R′, L′), amap homomorphism

� : M → M′ is a function� : D → D′ such that

�R = R′� and �L = L′�.

Since graphs are assumed to be connected, a map homomorphism� is surjective. If it
is also one-to-one, it is called anisomorphismof the maps. Furthermore, ifM = M′,
an isomorphism of the map is anautomorphismof M. The set of all automorphisms of
M forms a group under composition, called theautomorphism groupof M and denoted
by Aut (M). By the definition, the automorphism group Aut(M) is the centralizer of the
monodromy group Mon(M) in the symmetry groupSD.
Since the monodromy group Mon(M) acts transitively and the automorphism group

Aut (M) acts semiregularly onD(M), we have|Mon (M)|� |D(M)|� |Aut (M)| for any
oriented mapM. It is well known that the first equality holds if and only if the second
equality holds, so that if one equality holds then both groups Mon(M) and Aut(M) act
regularly (i.e., transitively and semiregularly) onD(M). In this case, the mapM is said to
beregular. The corresponding embedding of the underlying graph into a surface is also said
to beregular. History of regular maps includes the discovery of Klein (1878) who described
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a 3-valent heptagonal regularmap on the orientable surface of genus 3. In its early times, the
study of regular maps was closely connected with group theory. One can see it in Coxeter
and Moser’s book[4, Chapter 8]. The present-time interest in regular maps extends to their
connection to Dyck’s triangle groups, Riemann surfaces, algebraic curves, Galois groups
and other areas. Many of these links are surveyed in the recent paper of Jones[11]. One
can also refer to McMullen and Schulte’s book[12] for more information on regular maps.
The classification problem of regular maps has been pursued along the following two main
directions:

(1) Classifying regular maps by genus[3,4,6],
(2) Classifying regular maps by underlying graphs[10,13,14].

This paper is related to the second direction. Since a connected graph� having a regular
embedding must be arc-transitive, a regular embedding of a Cayley graph has been of
particular interest formore thanahundred years.Among themanyarticles devoted toCayley
maps, let us mention at least the following few and the references therein:[2,8,9,15,16].
A Frobenius groupis a transitive permutation groupG on a setV which is not regular on
V , but has the property that the only element ofG which fixes more than one point is the
identity element. Throughout this paper, we assume that all groups considered arefinite.
It was shown by Thompson[17,18] that a finite Frobenius groupG has a nilpotent normal
subgroupK, called theFrobenius kernel, which acts regularly onV . Thus,K is the direct
product of its Sylow subgroups andG is the semidirect productK : H , whereH is the
stabilizer of a point ofV . A stabilizerH is not unique, but any two of them are conjugate

Table 1
Frobenius groups with non-p-group Frobenius kernels

H K |Aut (�)| |Aut (�)1| H K |Aut (�)| |Aut (�)1|

Z18 Z19× Z37 12654 18 Z15 Z4
2 × Z31 14880 30

Z12 Z13× Z2
5 3900 12 Z12 Z13× Z37 5772 12

Z10 Z11× Z31 3410 10 Z10 Z11× Z41 4510 10

Z8 Z2
3 × Z17 1224 8 ∗Z8 Z2

3 × Z2
5 1800 8

Z8 Z2
3 × Z41 2952 8 Z7 Z3

2 × Z29 3248 14

Z7 Z3
2 × Z43 4816 14 Z6 Z7 × Z13 546 6

Z6 Z7 × Z19 798 6 Z6 Z7 × Z2
5 1050 6

Z6 Z7 × Z31 1302 6 Z6 Z7 × Z37 1554 6
Z6 Z13× Z19 1482 6 Z5 Z11× Z4

2 1760 10
Z4 Z5 × Z2

3 180 4 Z4 Z5 × Z13 260 4
Z4 Z5 × Z17 340 4 Z4 Z5 × Z29 580 4
Z4 Z5 × Z37 740 4 Z4 Z2

3 × Z13 468 4

Z4 Z2
3 × Z17 612 4 Z3 Z2

2 × Z7 168 6

Z3 Z2
2 × Z13 312 6 Z3 Z2

2 × Z19 456 6
∗Z3 Z2

2 × Z2
5 1200 12 Z3 Z2

2 × Z31 744 6

Z3 Z2
2 × Z37 888 6 Z3 Z7 × Z13 546 6

Z3 Z7 × Z2
4 672 6 Z3 Z7 × Z19 798 6
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Table 2
Frobenius groups withp-group Frobenius kernels

H K |Aut (�)| |Aut (�)1| H K |Aut (�)| |Aut (�)1|

Z46 Z472 101614 46 Z42 Z432 77658 42
Z40 Z412 67240 40 Z36 Z372 49284 36
Z30 Z312 28830 30 Z28 Z292 23548 28
Z22 Z232 11638 22 Z18 Z192 6498 18
Z16 Z172 4624 16 Z12 Z132 2028 12
Z11 Z232 11638 22 Z10 Z112 1210 10
Z9 Z192 6498 18 Z8 Z172 2312 8
Z6 Z72 294 6 Z6 Z132 1014 6
Z5 Z112 1210 10 Z4 Z25 100 4
Z4 Z132 676 4 Z3 Z72 294 6

Table 3
Frobenius groups of rank�50 which need further investigation

|H | H K |H | H K

31 Z31 K/Z5
2�Z5

2 26 Z26 Z3
9

24 ? Z2
25 15 ? K/Z4

2�Z4
2

8 ? Z2
9 7 Z7 K/Z3

2�Z3
2

3 Z3 K/Z2
2�Z2

2

because of the vertex transitivity of the action. Such a subgroupH is called aFrobenius
complementof K in G. Gorenstein ([7, pp. 38, 339]) showed that every element ofH\{1}
induces an automorphism ofK by conjugation which fixes only the identity element ofK.
For a group-theoretic terminology not defined in this paper, we refer the reader to[7,20].
Therankof the Frobenius groupG, denoted byr(G), is the number of orbits ofH in K, that
is r(G) = 1+ (|K| − 1)/|H |. When the Frobenius kernel is not elementary abelian (that
is, it is not isomorphic toZm

p for anym�1 and any primep), Wang et al.[19] classified all
the Frobenius groupsG = K : H with 6�r(G)�50, which are listed inTables 1–3. For
a classification of Frobenius groups ofr(G)�5, we refer the reader to[5]. Fang et al.[5]
introduced a Frobenius graph as an orbital regular graph of a Frobenius group and showed
that a Frobenius graph is a Cayley graph of the Frobenius kernel. InTables 1and2, for each
Frobenius groupG = K : H , we use� to denote a Frobenius graph derived fromG.And,
by Aut (�)1, we denote the point stabilizer of the identity.
This paper is organized as follows. In Section 2, we discuss some properties of Frobenius

graphs and their embeddings into orientable surfaces as Cayley maps. In Section 3, we
prove that almost all low-rank Frobenius graphs admit regular embeddings, calledFrobe-
nius mapsin this paper. And we classify the Frobenius maps up to isomorphism. For the
results, see Theorems 3.7 and 3.11. Using these results, in Section 5, we construct Frobe-
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nius maps with trivial exponent groups, see Theorems 5.1 and 5.2, as a partial answer of a
question raised by Nedela and Škoviera in[14]. In Section 4, for some Frobenius groups,
we classify all the Frobenius maps derived from these groups, see Theorems 4.2, 4.3 and
Corollary 4.4.

2. Properties of Frobenius graphs

Given a permutation groupG on a setV , theG-action onV induces a natural action
on V × V by (x, y)g = (xg, yg) for (x, y) ∈ V × V andg ∈ G. The orbits ofG in the
action onV × V are calledorbitals. Note that the set� = {(x, x)|x ∈ V } is G-invariant
as well as the set�c = {(x, y)|x, y ∈ V, x �= y}. A G-orbit in � is called atrivial orbital
and that in�c is called anon-trivial orbital. Let � be a connected graph with vertex set
V , and letG�Aut (�). Then� is said to be aG-orbital regular graphif G is regular on
each of its orbitals in�c, and there is a non-trivialG-orbitalO such that the edge set is
E(�) = {{x, y}|(x, y) ∈ O}. A graph� is orbital regular if it is G-orbital regular for some
G�Aut (�).
Fang et al.[5] introduced a Frobenius graph as follows:

Definition 2.1. LetG be a Frobenius group on a setV. A G-Frobenius graph is defined to
be a connected graph� with vertex setV (�) = V and edge setE(�) ={{x, y}|(x, y) ∈ O}
for some non-trivialG-orbitalO in �c.

LetG = K : H be a Frobenius group on a setV and let� be aG-Frobenius graph. Since
K is regular on the vertex setV of �, we may identifyV with K in such a way thatK acts
by the left multiplication.

Example 2.1. For any prime numberp, the groupG = Zp : Zp−1 is a Frobenius group,
whereK = Zp andH = Zp−1. Here, the groupG acts onK in such a way thatK acts on
itself by translation andH acts onK by multiplication. Thus,G acts regularly on(K × K)c

and theG-Frobenius graph is isomorphic to the complete graphKp.

Clearly, every Frobenius graph is orbital regular. Fang et al. showed that almost all orbital
regular graphs are Frobenius.

Lemma 2.1(Fang et al.[5] ). Let� be a graph with n vertices and letG�Aut (�). Then
� is G-orbital regular if and only if one of the following holds:

(1) � is a G-Frobenius graph or,
(2) � = Cn, a cycle of lengthn, andG = Zn for n�3 or,
(3) � = K1,n−1, a bipartite graph andG = Zn−1 for n�3.

Let C(G, S) be a Cayley graph. By an ordered pair(g, x) ∈ G × S, we denote an arc
with initial vertexg and terminal vertexgx, and say that the arc(g, x) hascolor x. Clearly,
the number of arcs in a Cayley graphC(G, S) is equal to|G| · |S|. For elementsx, y in a
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Fig. 1. The automorphism� preserving the color of arcs.

groupG, we shall writexy to denote the conjugatey−1xy andyx to denoteyxy−1. If H is
a subgroup ofG andx ∈ G, thenxH = {xh|h ∈ H }.
LetG=K : H be a Frobenius groupwith Frobenius kernelK and Frobenius complement

H. The next lemma shows that all Frobenius graphs are Cayley graphs.

Lemma 2.2(Fang et al.[5, Theorem 1.4]). LetG = K : H be a Frobenius group with
Frobenius kernel K and Frobenius complement H. Then a G-Frobenius graph is a Cayley
graphC(K, S) for K and for some generating subset S of the form

S =
{

xH if |H | is even or|x| = 2,
xH ∪ (x−1)H if |H | is odd and|x| �= 2,

(1)

wherex ∈ K such that〈xH 〉 = K. Conversely, if x ∈ K satisfies〈xH 〉 = K, thenC(K, S)

is G-Frobenius with S defined in Eq. (1).

From now on, whenever we sayS = xH ∪ (x−1)H , it is assumed thatxH �= (x−1)H .
Jajcay characterized the Cayley graphs admitting regular Cayley maps.

Lemma 2.3(Jajcay[9, Theorem 2]). Let� = C(G, S) be a Cayley graph. Suppose that
there exists a graph automorphism� of� fixing1,acting cyclically on S and satisfying

�(�(a)−1�(ax)) = �(a)−1�(a�(x)) (2)

for anya ∈ Gandx ∈ S.Then,�admits a regularCayleymapCM(G, S, �|S).Conversely,
if � admits a regular Cayley map, then such a graph automorphism� of� exists.

One can see that the graph automorphism� in Lemma 2.3 satisfies Eq. (2) if and only if
� preserves the color of arcs, as shown inFig. 1.

3. Regular embeddings of Frobenius graphs

LetG = K : H be a Frobenius group and let� = C(K, S) be a Frobenius graph withS
defined in Eq. (1). In this section, we determine some conditions under which the Frobenius
graph� can be regularly embedded into an orientable surface and classify all of such
embeddings up to isomorphism.
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Lemma 3.1. LetG = K : H be a Frobenius group and let� = C(K, S) be a Frobenius
graph with S defined in Eq. (1).Then,H is isomorphic to a subgroup, also denoted by H, of
Aut (�).Moreover,
(1) if S = xH , H acts regularly on the arcs emanating from the identity;
(2) if S = xH ∪ (x−1)H , H acts semi-regularly on the arcs emanating from the identity.

Proof. BecauseG = K : H is a Frobenius group,H is a subgroup of Aut(K). In fact,H
acts semi-regularly onK\{1} by conjugation. For eachh ∈ H , according to the definition
of S, one can naturally extend the action ofh onK to the action ofh on� as follows: for
any arc(k, y) ∈ D(�) = K × S, h(k, y) = (kh, yh). The action preserves the adjacency
of the graph�, so thath ∈ Aut (�). It means thatH can be considered as a subgroup of
Aut (�). For anyh ∈ H , the only element inK that is fixed under the action ofh is the
identity element. Thus, ifS = xH ,H acts regularly on the arcs emanating from the identity,
and ifS = xH ∪ (x−1)H , H acts semi-regularly on the same set.�

Let G = K : H be a Frobenius group and let� = C(K, S) be a Frobenius graph with
S = xH ∪ (x−1)H , so thatK is assumed to be abelian. Define� : G → G as follows:

(i) For anyh ∈ H, �(h) = h;
(ii ) For anyk ∈ K, �(k) = k−1;
(iii ) For anyg=kh ∈ G, let �(g) = �(k)�(h) = k−1h. (3)

It is easy to see that� is a bijection on the groupG, �(H) = H , �(K) = K and�(1) = 1.
For anyg1, g2 ∈ G, let g1 = k1h1 andg2 = k2h2. Theng1g2 = k1(

h1k2)h1h2. A direct
calculation shows that�(g1g2) = k−1

1 (h1(k−1
2 ))h1h2 = �(g1)�(g2). So,� ∈ Aut (G).

Moreover, the automorphism� ∈ Aut (G) can be extended to an automorphism of the
Frobenius graph� as follows: (use the same notation� for an extended automorphism for
notational convenience). For any arc(k, y) ∈ D(�)=K×S, define�(k, y)=(�(k), �(y))=
(k−1, y−1). Clearly,� preserves the adjacency relation of�. Since� is assumed to be a
simple graph without semiedges, loops or multiple edges,� ∈ Aut (�).
Let A = Aut (�) to simplify a notation and letA1 denote the stabilizer of the identity

element 1.

Lemma 3.2. The automorphism� ∈ A satisfies the following properties:
(1) the order of� is |�| = 2;
(2) �(1, y) = (1, y−1) for anyy ∈ S;
(3) � · h = h · � for anyh ∈ H ;
(4) if |A| = 2|K||H |, thenA�K : (H × 〈�〉) andA1�H × 〈�〉;
(5) H × 〈�〉 acts transitively on the arcs emanating from the identity.

Proof. (1) and (2) follow immediately from the definition of�.
(3) For any arc(k, y), � · h(k, y) = �(kh, yh) = ((k−1)h, (y−1)h) andh · �(k, y) =

h(k−1, y−1) = ((k−1)h, (y−1)h).
(4) For anyk1, k2 ∈ K, �k2�(k1, y) = �k2(k

−1
1 , y−1) = �(k2k

−1
1 , y−1) = (k−1

2 k1, y) =
k−1
2 (k1, y). So,〈�〉�NA(K). According to (2), (3) and|A| = 2|K||H |, we haveA�K :

(H × 〈�〉) andA1�H × 〈�〉.
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(5) Given two arcs(1, xhi ) and(1, (x−1)hj ), we have(h−1
i hj ) ·�(1, xhi )= (1, (x−1)hj ).

SinceH acts transitively onxH and(x−1)H , respectively, one can get the conclusion.�

Theorem 3.3. LetG = K : H be a Frobenius group and let� = C(K, S) be a Frobenius
graph with S defined in Eq.(1).WhenS = xH ∪ (x−1)H , we assumed that K is abelian.
Then, � is arc-transitive.

Proof. Since the Frobenius graph� = C(K, S) is vertex-transitive, we only need to show
that the point stabilizerA1 acts transitively on the arcs emanating from the identity element
1. If S = xH , by Lemma 3.1,H �A1 and it acts regularly on the arcs emanating from
1; if S = xH ∪ (x−1)H , by Lemma 3.2,H × 〈�〉�A1 which acts regularly on the same
arc set. �

In the following, we divide our discussions into two cases, according to the choices ofS
in Eq. (1).
Case1. |H | is even or|x| = 2. In this case,S = xH , x ∈ K and〈xH 〉 = K.

Theorem 3.4. LetG = K : H be a Frobenius group and let� = C(K, S) be a Frobenius
graph withS = xH . If H�〈h〉 is cyclic andAut (�)�K : H , then� admits a regular

Cayley mapCM(K, S, �) if and only if� = ht |S = (x xht · · · xh(m−1)t
) for some integer t

with (t, m) = 1,wherem = |H |.

Proof. According to Lemma 2.3,� admits a regular Cayley map if and only if there exists
a graph automorphism� fixing the identity element 1 ofK, acting cyclically onS and
satisfying the condition:�(�(k)−1�(ky)) = �(k)−1�(k�(y)) for any k ∈ K andy ∈ S.
From the condition Aut(�)�K : H , if such a graph automorphism� exists, it belongs to

H. Let�=ht . Then, one of the orbits of� acting onSis {x, xht
, . . . , xh(m−1)t }. Therefore,�

acts cyclically onSif andonly if(t, m)=1.Adirect calculation shows that�(�(k)−1�(ky))=
�(k)−1�(k�(y)) = yh2t . Let� = ht |S , thenCM(K, S, �) is a regular Cayley map.�

A Cayley mapCM(G, S, �) is balancedif �(x−1) = �(x)−1 for every x ∈ S, and
antibalancedif �(x−1) = (�−1(x))−1 for everyx ∈ S. Škoviera and Širáˇn [16] showed
that a Cayley mapCM(G, S, �) is regular and balanced if and only if there exists a group
automorphism� : G → G such that�|S = �.

Corollary 3.5. The Cayley mapsCM(K, S, �) given in Theorem3.4are balanced.

Proof. Because the graph automorphism� mentioned in the proof of Theorem 3.4 is a
group automorphism, the Cayley maps given in Theorem 3.4 are all balanced.�

Thegenusof a mapM is defined as the genus of its supporting surface.

Corollary 3.6. If K is abelian and|H | is a multiple of4, then the genus of the Cayley map
CM(K, S, �) given in Theorem3.4 is g = 1

4(4− 4|K| + |K||H |).
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Proof. According toTheorem3.4, Corollary 3.5 and the assumption of|H |, one can assume
|H |=4n for some integernand�=(x1 x2 . . . x2n x−1

1 x−1
2 . . . x−1

2n ). Take an arc(1, x1) and
consider the orbit ofRL including(1, x1). BecauseK is abelian, the orbit has the following
|H | arcs:

(1, x1), (x2, x−1
2 ), (x2x

−1
3 , x3), . . . , (x2x

−1
3 · · · x2n, x−1

2n ),

(x2x
−1
3 · · · x2nx1, x−1

1 ), (x2x
−1
3 · · · x2nx1x

−1
2 , x2), . . . ,

(x2 · · · x2nx1x
−1
2 · · · x−1

2n , x2n).

Hence, the 2-cells in the Cayley mapCM(K, S, �) are all topological|H |-gons. Let
|V |, |E|, |F | denote the number of vertices, edges and faces of the map, respectively. Then,
in case of the Cayleymaps given in Theorem 3.4,|V |=|K|, |E|= 1

2(|K||H |) and|F ||H |=
|K||H |, that is|F |=|K|. From the Euler–Poincaré characteristic, 2−2g=|V |−|E|+|F |,
one can getg = 1

4(4− 4|K| + |K||H |). �

Definition 3.1. LetG=K : H be a Frobenius group and letC(K, S) be a Frobenius graph.
If a Cayley mapCM(K, S, �) is regular, it is called aFrobenius map.

Example 3.1. Consider the Frobenius groupG = Z5 : Z4, whereK = Z5 andH = Z4.
TakeS = {±1, ±2} and let� = (1#− 2#− 1#2), thenCM(K, S, �) is a Frobenius map.
In fact, it is a regular embedding of the complete graphK5 into the torus.

Recall that the Euler’s totient function� : N → N is defined as�(1) = 1 and forn�2,
�(n) is the number of positive integers less thann and relatively prime ton.

Theorem 3.7. LetG = K : H be a Frobenius group withK = P1× · · · × Pt ,wherePi are
the distinct Sylow subgroups of K, and letH�〈h〉 be cyclic, saym=|H |. Let�=C(K, S)

be a Frobenius graph withS =xH for somex ∈ K such that〈xH 〉=K. If Aut (�)�K : H

and there exists at least one Sylow subgroup, sayP1, such thatAut (P1) is abelian, then�
admits�(m) non-isomorphic Frobenius maps.

Proof. By Theorem 3.4, a Cayley mapCM(K, S, �) is regular if and only if� =
(x xht · · · xh(m−1)t

) for some integert with (t, m) = 1. Therefore, to prove the theorem,
it is sufficient to show that for any two distinct integers 1� t1 �= t2�m, with (ti , m) = 1,
i = 1,2, the Cayley mapsCM(K, S, �1) andCM(K, S, �2) are not isomorphic, where

�1 = (x xht1 · · · xh(m−1)t1
) and �2 = (x xht2 · · · xh(m−1)t2

).

Suppose thatCM(K, S, �1)�CM(K, S, �2). BecauseCM(K, S, �1) andCM(K, S, �2)
are balanced regular Cayley maps, by the results in[15, Corollary 5.3], there exists a group
automorphism� ∈ Aut (K) such that�(xhrt1

) = xh(r+j)t2 for any 0�r �m − 1 and a fixed
j with 0�j �m − 1.
SinceK =P1×· · ·×Pt and Aut(K)=Aut (P1)×· · ·×Aut (Pt ), one may assume that

x = x1 . . . xt with xi ∈ Pi, 〈xH
i 〉 = Pi and� = �1 . . . �t with �i ∈ Aut (Pi). Therefore, from

�(xhrt1
) = xh(r+j)t2 , we get�i (x

hrt1
i ) = xh(r+j)t2

i for each 1� i� t . Wheni = 1, it follows
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that �1(xhrt1
1 ) = xh(r+j)t2

1 . On the other hand, by the assumption that Aut(P1) is abelian,

we have�1(xhrt1
1 ) = (�1(x1))hrt1 = xhrt1+j t2

1 . Therefore,xhrt1+j t2
1 = xh(r+j)t2

1 . It means that
m|r(t1 − t2) for any 0�r �m − 1, we gett1 = t2. This completes the proof.�

Case2. |H | is odd and|x| �= 2. In this case,S = xH ∪ (x−1)H for somex ∈ K and
〈xH 〉 = K. In this case,K is assumed to be abelian. From the definition of� given in Eq.
(3), it is easy to see that� ∈ Aut (K).

Lemma 3.8. LetG=K : H be a Frobenius group and�=C(K, S) be a Frobenius graph
with S = xH ∪ (x−1)H . If K is abelian andH�〈h〉 is cyclic, say|H | = m, thenhi�j is a
cyclic permutation of S if and only if(i, m) = 1 andj = 1.

Proof. If j =0, clearlyhi is not a cyclic permutation ofSfor any 1� i�m; if j =1, because
m is odd, one of the orbits under the action ofhi� onS is

{x, (x−1)hi

, xh2i , . . . , xh(m−1)i
, x−1, . . . , (x−1)h(m−1)i }.

Therefore,hi� is a cyclic permutation onS if and only if xhti �= xhri
whenevert �= r, or

equivalently,(i, m) = 1. �

Theorem 3.9. LetG = K : H be a Frobenius group and let� = C(K, S) be a Frobenius
graph withS = xH ∪ (x−1)H . If K is abelian,H�〈h〉 is a cyclic group andAut (�)�K :
(H × 〈�〉) with the� given in Eq. (3), then� admits a regular Cayley mapCM(K, S, �)

if and only if� = hi�|S for some integer i with(i, |H |) = 1.

Proof. By Lemma 2.3,� admits a regular Cayley map if and only if there exists a function
� ∈ Aut (�) fixing the identity element 1, acting cyclically onSand satisfying the condition:
�(�(k)−1�(ky)) = �(k)−1�(k�(y)) for any k ∈ K andy ∈ S. Because Aut(�)�K :
(H × 〈�〉), if such a function� exists, it must belong toH × 〈�〉. From Lemma 3.8, one
can assume that� = hi� for some integeri, with (i, |H |) = 1. For anyk ∈ K, y ∈ S, a
direct calculation shows that�(�(k)−1�(ky))=yh2i =�(k)−1�(k�(y)). Let�=hi�|S , then
CM(K, S, �) is a regular Cayley map.�

By a method similar to Corollaries 3.5 and 3.6, one can get the following one.

Corollary 3.10. The FrobeniusmapsCM(K, S, �) given in Theorem3.9are all balanced.
Moreover, if |H | is even, their genera areg = 1

2(2− 2|K| + |K||H |).

Theorem 3.11.LetG = K : H be a Frobenius group with an abelian Frobenius kernel
K = P1× · · · × Pt ,wherePi are the distinct Sylow subgroups of K, andH�〈h〉, |H | = m,
is a cyclic group. Let� = C(K, S) be a Frobenius graph withS = xH ∪ (x−1)H for some
x ∈ K such that〈xH 〉=K. If Aut (�)�K : (H ×〈�〉)with the� given in Eq. (3)and there
exists at least one Sylow subgroup, sayP1, such thatAut (P1) is abelian, then� admits
�(m) non-isomorphic Frobenius maps.
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Proof. By Theorem 3.9, a Cayley mapCM(K, S, �) is regular if and only if

�=(x (x−1)ht
xh2t · · · xh(m−1)t

x−1 · · · (x−1)h(m−1)t
) for some integertwith (t, m)=1.There-

fore, to prove the theorem, it suffices to show that for any two distinct integers 1� t1 �=
t2�m, with (t1, m)=1 and(t2, m)=1, the CayleymapsCM(K, S, �1) andCM(K, S, �2)
are not isomorphic, where

�1 = (x (x−1)ht1
xh2t1 · · · xh(m−1)t1

x−1 · · · (x−1)h(m−1)t1
)

and

�2 = (x (x−1)ht2
xh2t2 · · · xh(m−1)t2

x−1 · · · (x−1)h(m−1)t2
).

Suppose thatCM(K, S, �1)�CM(K, S, �2) for some integers 1� t1, t2�mwith (t1, m)=
1 and(t2, m) = 1. SinceCM(K, S, �1) andCM(K, S, �2) are balanced regular Cayley

maps, there exists a group automorphism� ∈ Aut (K) such that�((xε)hrt1
) = (xε′

)h(r+j)t2

for any 0�r �m − 1 and a fixedj, 0�j �m − 1, whereε, ε′ = ±1 andε′ = (−1)j ε.
SinceK = P1 × · · · × Pt and Aut(K) = Aut (P1) × · · · × Aut (Pt ), one may assume that
x = x1 · · · xt with xi ∈ Pi, 〈xH

i 〉 = Pi and� = �1 · · · �t with �i ∈ Aut (Pi). Therefore, from

�((xε)hrt1
) = (xε′

)h(r+j)t2 , we get�i ((x
ε
i )hrt1

) = (xε′
i )h(r+j)t2 for each 1� i� t .Wheni = 1,

it follows that�1((xε
1)

hrt1
)= (xε′

1 )h(r+j)t2 .While by the assumption that Aut(P1) is abelian,

we have�1((xε
1)

hrt1
) = (�1(xε

1))
hrt1 = (xε′

1 )hrt1+j t2 . Therefore,(xε′
1 )hrt1+j t2 = (xε′

1 )h(r+j)t2 .
It means thatm|r(t1 − t2) for any 0�r �m − 1, implying thatt1 = t2. This completes the
proof. �

Note: FromTables 1to 3, one can see that for Frobenius groups with rank 6�r �50,
except for those listed inTable 3and the two Frobenius groups marked by a “*” inTable 1,
they satisfy the assumptions in Theorems 3.4, 3.7, 3.9 and 3.11. Therefore, the conditions
in Theorems 3.4, 3.7, 3.9 and 3.11 are not very restrictive. An interesting result is that for
each of these Frobenius graphs, its automorphism group is equal to that of the Frobenius
maps it admits.

4. Frobenius maps of some Frobenius groups

Given a Frobenius groupG = K : H with Frobenius kernelK, Lemma 2.2 says that a
graph� isG-Frobenius if and only if it is isomorphic to a Cayley graphC(K, S) for some
S =S0∪S−1

0 (possibleS0=S−1
0 ) andS0 runs over allH-orbits inK each of which generates

K. Let

	 = {S0 ∪ S−1
0 |S0 is anH -orbit inK and〈S0〉 = K}.

GivenS =S0∪S−1
0 ∈ 	, letMS denote the set of all non-isomorphic Frobenius maps with

underlying graphC(K, S).

Lemma 4.1(Fang et al.[5, Theorem 3.5]). LetG = K : H be a Frobenius group with
Frobenius kernel K, sayK = P1 × · · · × Pt , wherePi are the distinct Sylow subgroups of
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K. If, for eachi = 1, . . . , t , the normalizerNAut(K)(H) is transitive on the set of H-orbits
in Pi each of which generatesPi , then all G-Frobenius graphs are isomorphic.

Theorem 4.2. LetG=K : H be aFrobenius groupwith Frobenius kernelK=P1×· · ·×Pt

andacyclic Frobenius complementH.Assume that thereexists anS=S0∪S−1
0 ∈ 	 such that

S0 = S−1
0 andAut (C(K, S))�K : H . If for eachi = 1, . . . , t , the centralizerCAut(K)(H)

is transitive on the set of H-orbits inPi each of which generatesPi , then up to isomorphism,
MS = MS′ for any twoS, S′ ∈ 	.

Proof. By Lemma 4.1, under the assumption thatCAut(K)(H) is transitive on the set of
H-orbits inPi each of which generatesPi , we know that for any two elements in	, say
S1 andS2, C(K, S1)�C(K, S2). Consequently, Aut(C(K, S1))�Aut (C(K, S2)); and if
there exists anS = S0 ∪ S−1

0 ∈ 	 such thatS0 = S−1
0 , then for anyS

′ = S
′
0 ∪ S

′−1
0 ∈ 	, we

haveS
′
0 = S

′−1
0 .

LetCM(K, Sj , �j ) for j =1,2 be twoG-Frobenius maps withS1=xH andS2=yH for
somex, y ∈ K. LetH�〈h〉 be cyclic and let|H | = m. By Theorem 3.4, one can assume
that

�1 = (x xhr1 · · · xh(m−1)r1
) and �2 = (y yhr2 · · · yh(m−1)r2

),

for integers 0�rj �m − 1 and(rj , m) = 1, j = 1,2. SinceCAut(K)(H) is transitive on	

andS1, S2 ∈ 	, there exists a� ∈ CAut(K)(H) such that�(x)=y. It follows that�(xhjr1
)=

(�(x))hjr1=yhjr1 forany0�j �m−1.Thus, ifr1=r2, thenCM(K, S1, �1)�CM(K, S2, �2).
From Theorems 3.4 and 3.7, we haveMS1 = MS2. �

By a method similar to Theorem 4.2 and by Theorems 3.9 and 3.11, one can get the
following theorem.

Theorem 4.3. Let G = K : H be a Frobenius group with an abelian Frobenius kernel
K = P1 × · · · × Pt and a cyclic Frobenius complement H. Assume that there exists an
S = S0 ∪ S−1

0 ∈ 	 such thatS0 �= S−1
0 andAut (C(K, S))�K : (H × 〈�〉) with the�

given in Eq. (3). If for eachi = 1, . . . , t , the centralizerCAut(K)(H) is transitive on the set
of H-orbits inPi each of which generatesPi , then up to isomorphism,MS = MS′ for any
S, S′ ∈ 	.

Corollary 4.4. Let p be a prime andn = p
a1
1 · · · pat

t , wherepi are distinct primes. Let
G = K : H be a Frobenius group with cyclic Frobenius complement H and Frobenius
kernel K which is one of the following two cases:
(1) K�Zn,
(2) K�Zr

p × Zn with (p, n) = 1 andH�Zpr−1, wherep
ai

i ≡ 1(modpr − 1).
In each case, if there exists a Frobenius graphC(K, S)whose automorphism group satisfies
the conditions in Theorem4.2or Theorem4.3according to the choices of S, thenMS =MS′
up to isomorphism for anyS, S′ ∈ 	.
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Proof. By Theorems 4.2 and 4.3, in either case, we need only to show thatCAut(K)(H) acts
transitively on the set ofH-orbits inPi each of which generatesPi .
(1) SinceK is cyclic, Aut(K) is abelian and transitive on generators forK. Note thatH

is isomorphic to a subgroup of Aut(K), soCAut(K)(H) = Aut (K).
(2) SinceK�Zr

p × Zn, thenK�Zr
p × Z

p
a1
1

× · · · × Zp
at
t
and Aut(K) = Aut (Zr

p) ×
Aut (Zn). It follows that Aut(Zn) is a normal subgroup of Aut(K). LetX = H Aut (Zn),
thenX�Aut (K). Clearly, for each 1� i� t , Aut (Zn) is transitive on generators forZ

p
ai
i

andH is transitive onZr
p\{1}. Thus,X is transitive on the set ofH-orbits inZr

p andZ
p

ai
i

each of which generatesZr
p andZ

p
ai
i
respectively. On the other hand, Aut(Zn) centralizes

H, and soX�CAut(K)(H).

In either case, we have thatCAut(K)(H) satisfies the conditions in Theorems 4.2
and 4.3. �

5. Frobenius maps with trivial exponent groups

An integere is called anexponentof an orientable regular mapM if M= (D; R, L) and
Me = (D; Re, L) are isomorphic. We remake a couple of observations about exponents.
LetM be an orientable regular map of valencer. Firstly, if e is an exponent ofM, then
gcd(r, e)=1. Secondly, ife is an integer andk is a multiple ofr, thenMe =Me+k. Thirdly,
if e1 ande2 are exponents, so ise1e2. It follows that the exponents form a subgroup ofZ∗

r ,
the multiplicative group of the ring of integers moduler. We call this group theexponent
group of M and denote it by Ex(M). We say thatM has a trivial exponent group if
|Ex(M)| = 1.
The exponent group of an orientable regular map gives us information on the degree of

symmetry of the map. For example,−1 is in the exponent group ofM if and only if the
map is reflexible. Clearly, any cubic irreflexible regular map (or chiral map) has the trivial
exponent group, but non-cubic examples are less obvious. Whenp is a prime, the regular
embedding of the complete graphKp gives such an example.
Generally, for any integern, Nedela and Škoviera asked[14] for a construction of a

regular map of valencyn with trivial exponent group. Archdeacon et al.[1] constructed
such an example by using lifting techniques under the assumption that the base map has a
trivial exponent group.
FromFrobeniusmaps,weprovide examples of regularmapswith trivial exponent groups,

as a partial answer of the question raised by Nedela and Škoviera.

Theorem 5.1. LetG = K : H be a Frobenius group with a cyclic Frobenius complement
H�〈h〉,say|H |=m.Let�=C(K, S)beaFrobeniusgraphwithS=xH . If Aut (�)�K : H

and thereexists at least oneSylowsubgroupofK,sayP,such thatAut (P ) is abelian, then the
Frobenius mapCM(K, S, �) has the trivial exponent group,where�= (x xht · · · xh(m−1)t

)

for some integer t with(t, m) = 1.

Proof. If e is an exponent ofCM(K, S, �), thenCM(K, S, �)�CM(K, S, �e), which
impliese ≡ 1 (modm) by Theorem 3.7. �
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Similarly, one can obtain the following theorem.

Theorem 5.2. LetG = K : H be a Frobenius group with an abelian Frobenius kernel K
andH�〈h〉, |H | = m, and let� =C(K, S) be a Frobenius graph withS = xH ∪ (x−1)H .
If Aut (�)�K : (H × 〈�〉) with the� given in Eq. (3) and there exists at least one Sylow
subgroup of K, say P, such thatAut (P ) is abelian, then the Frobenius mapCM(K, S, �)

has the trivial exponent group,where�=(x (x−1)hi
xh2i · · · xh(m−1)i

x−1 · · · (x−1)h(m−1)i
)

for some integer i with(i, m) = 1.
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