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Abstract

A graph is called Frobenius if it is a connected orbital regular graph of a Frobenius group. A
Frobenius map is a regular Cayley map whose underlying graph is Frobenius. In this paper, we show
that almost all low-rank Frobenius graphs admit regular embeddings and enumerate non-isomorphic
Frobenius maps for a given Frobenius graph. For some Frobenius groups, we classify all Frobenius
maps derived from these groups. As a result, we construct some Frobenius maps with trivial exponent
groups as a partial answer of a question raised by Nedela and Skoviera (Exponents of orientable maps,
Proc. London Math. Soc. 75(3) (1997) 1-31).
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

A mapon a surface is a cellular decomposition of a closed surface into 0-cells called
vertices 1-cells callecedgesand 2-cells callediaces The vertices and the edges of a map
form its underlying graph Every edge of a graph gives rise to a pair of opposite arcs
(or darts). A map iorientableif the supporting surface is orientable, amon-orientable
otherwise. Throughout this paper, we deal with only orientable maps. Typically, a map on
a surface is constructed by a 2-cell embedding of a connected graph into a surface. Graphs
considered in this paper are finite, connected, undirected and simple.
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In a combinatorial way, aorientedmap.# can be described as atriglB; R, L), where
D = D(.) is a non-empty finite set adarts which are incident vertex—edge pairs, and
R andL are two permutations dd such that_ is an involution and the generated group
(R, L) acts transitively orD. The group(R, L) is called the orientedhonodromy group
of .4, and denoted by Man/). The permutation® andL are called theotation and the
dart-reversing involutiorof .#, respectively. The orbits of the groyR) are theverticesof
., and the elements of an orbibf (R) are the dartemanatingrom the vertex, thatis,v
is their initial vertex. In the cyclic decomposition of the permutafytthe cycle permuting
the darts emanating from a vertexs called thdocal rotation R, atv. The orbits of(L)
and(RL) are theedgesand thefacesof .#, respectively. The incidence between vertices,
edges and faces is given by a non-trivial set intersection. The vertices and the edges define
theunderlying graphof .#, which is always connected due to the transitive action of the
monodromy group.

Onthe other hands, for a given underlying graphts 2-cell embedding into an orientable
surface can be described byatation Rwhich cyclically permutes the arcs initiated at
each vertex inl’, because the arc-reversing involutibris determined as a permutation
interchanging oppositely directed arcs arising from the same edge.

Given afinite groups and a generating s8bf G such thats = S~1 and 1¢ S, theCayley
graphI'=%(G, S) onG relative to Shas vertex seéb and edge sdfg, gs} | g € G, s € S}.

For any cyclic permutatiop on S, one can define the Cayley magpg=%¢.4 (G, S, p) to be
a 2-cell embedding af into an orientable surface, with the same local orientation induced
by the permutatiop at every vertex.

For a graphl’, every edge of” gives rise to a pair of opposite arcs. Létl"), E(I),
A(I') and Aut(I') denote the vertex set, the edge set, the arc set and the full automorphism
group of I, respectively. A graplt” is said to bevertextransitive edgetransitiveor arc-
transitiveif Aut (I') acts transitively oV (I'), E(I") or A(I'), respectively. It is well known
that Cayley graphs are vertex-transitive with the reg@aaction on the vertices by left
multiplication.

Given two oriented maps/ = (D; R, L) and.#’'=(D’; R’, L"), amap homomorphism
VM — s afunctiony : D — D’ such that

YR=RY and yL=L".

Since graphs are assumed to be connected, a map homomornphgisurjective. If it
is also one-to-one, it is called dsomorphismof the maps. Furthermore, it/ = .4,
an isomorphism of the map is automorphisnof .#. The set of all automorphisms of
./ forms a group under composition, called gngtomorphism groupf .# and denoted
by Aut (.#). By the definition, the automorphism group Au#) is the centralizer of the
monodromy group Mofi#) in the symmetry grougp.

Since the monodromy group M@#) acts transitively and the automorphism group
Aut (.#) acts semiregularly o (.#), we havgMon (.#)| > | D (.#)| > |Aut (.#)| for any
oriented map/. It is well known that the first equality holds if and only if the second
equality holds, so that if one equality holds then both groups (Mdnand Aut(.#) act
regularly (i.e., transitively and semiregularly) &(.#). In this case, the map/ is said to
beregular. The corresponding embedding of the underlying graph into a surface is also said
to beregular. History of regular maps includes the discovery of Klein (1878) who described
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a 3-valent heptagonal regular map on the orientable surface of gdnuts®arly times, the

study of regular maps was closely connected with group theory. One can see it in Coxeter
and Moser’s book4, Chapter 8] The present-time interest in regular maps extends to their
connection to Dyck’s triangle groups, Riemann surfaces, algebraic curves, Galois groups
and other areas. Many of these links are surveyed in the recent paper of Jbh&ne

can also refer to McMullen and Schulte’s bddR] for more information on regular maps.

The classification problem of regular maps has been pursued along the following two main
directions:

(1) Classifying regular maps by geniss4,6],
(2) Classifying regular maps by underlying graph8,13,14]

This paper is related to the second direction. Since a connected Hraghing a regular
embedding must be arc-transitive, a regular embedding of a Cayley graph has been of
particular interest for more than ahundred years. Among the many articles devoted to Cayley
maps, let us mention at least the following few and the references thi2e9,15,16]

A Frobenius grougs a transitive permutation group on a setV which is not regular on

V, but has the property that the only elementoivhich fixes more than one point is the
identity element. Throughout this paper, we assume that all groups considerf@dtare

It was shown by Thompsdi 7,18]that a finite Frobenius group has a nilpotent normal
subgroupK, called theFrobenius kernelwhich acts regularly ofv. Thus,K is the direct
product of its Sylow subgroups artél is the semidirect produdX’ : H, whereH is the
stabilizer of a point ofV. A stabilizerH is not unique, but any two of them are conjugate

Table 1
Frobenius groups with nop-group Frobenius kernels

H K |Aut ()] Aut()g]  H K |Aut (I)| |Aut (I')1]
718 Z19 x 737 12654 18 715 7% x I3 14880 30
712 713 %X Zg 3900 12 712 713 x 737 5772 12
710 711 x 731 3410 10 Z10 711 X Z41 4510 10
Zg 73 x 717 1224 8 *Zsg 75 x 73 1800 8
Zg 75 x Iny 2952 8 77 73 x Zz9 3248 14
77 73 x 743 4816 14 Zs Z7 x 713 546 6
Ze Z7 x Z19 798 6 Zg Z7 x 72 1050 6
Zg 77 x 731 1302 6 Zg 77 x 737 1554 6
Zs Z13 % 719 1482 6 Zs Z11x 7% 1760 10
Zy Zsx 73 180 4 Zs Zs x 713 260 4
Z4 75 x 717 340 4 Z4 75 x Z29 580 4
Z4 Zs x Z37 740 4 Z4 7% x 713 468 4
Z4 73 x 717 612 4 73 75 x 77 168 6
Z3 75 x 713 312 6 Z3 73 x Z19 456 6
*73 75 x 72 1200 12 73 75 x 73 744 6
Z3 75 x Z37 888 6 Z3 Z7 x 713 546 6
73 Z7x 72 672 6 73 Z7 x 719 798 6
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Table 2
Frobenius groups with-group Frobenius kernels

H K [Aut (I)] |Aut (I')1] H K [Aut (I)| [Aut (I')1]
746 2472 101614 46 242 2432 77658 42
Za0 Zyp2 67240 40 736 2372 49284 36
Z30 Z312 28830 30 728 Zygp 23548 28
722 2232 11638 22 718 2192 6498 18
716 Zl72 4624 16 712 2132 2028 12
711 2232 11638 22 Z10 lez 1210 10
Zg Zyg 6498 18 Zg Zyp 2312 8
Zg 24 294 6 Zg 2132 1014 6
Zs 74142 1210 10 Zy Zos5 100 4
Z4 2132 676 4 73 Z32 294 6
Table 3

Frobenius groups of rank 50 which need further investigation

|H| H K |H| H K
31 731 K/73=73 26 726 z3
2 4 ~ 74
24 ? 75 15 ? K/73=7}
? 73 7 Z7 K/Z3=73
Z3 K/75=75

because of the vertex transitivity of the action. Such a subgkbigcalled aFrobenius
complemenbf K in G. Gorenstein[{7, pp. 38, 339)] showed that every element &f\ {1}
induces an automorphism Bfby conjugation which fixes only the identity elementkaf

For a group-theoretic terminology not defined in this paper, we refer the reafle2@d
Therankof the Frobenius grou@, denoted by (G), is the number of orbits dfl in K, that
isr(G) =1+ (|K| — 1)/|H|. When the Frobenius kernel is not elementary abelian (that
is, it is not isomorphic ta’; for anym >1 and any prime), Wang et al[19] classified all

the Frobenius group§ = K : H with 6<r(G) <50, which are listed iTables 1-3For

a classification of Frobenius groupsmafz) <5, we refer the reader {6]. Fang et al[5]
introduced a Frobenius graph as an orbital regular graph of a Frobenius group and showed
that a Frobenius graph is a Cayley graph of the Frobenius keriiables 1land2, for each
Frobenius grouy = K : H, we usel” to denote a Frobenius graph derived frémAnd,

by Aut(I');, we denote the point stabilizer of the identity.

This paper is organized as follows. In Section 2, we discuss some properties of Frobenius
graphs and their embeddings into orientable surfaces as Cayley maps. In Section 3, we
prove that almost all low-rank Frobenius graphs admit regular embeddings, Eailes
nius mapsn this paper. And we classify the Frobenius maps up to isomorphism. For the
results, see Theorems 3.7 and 3.11. Using these results, in Section 5, we construct Frobe-
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nius maps with trivial exponent groups, see Theorems 5.1 and 5.2, as a partial answer of a
question raised by Nedela and Skovier4lid]. In Section 4, for some Frobenius groups,

we classify all the Frobenius maps derived from these groups, see Theorems 4.2, 4.3 and
Corollary 4.4.

2. Properties of Frobenius graphs

Given a permutation grou@ on a setV, the G-action onV induces a natural action
onV x V by (x, y)® = (x8, y8) for (x,y) € V x V andg € G. The orbits ofG in the
action onV x V are calledorbitals. Note that the setl = {(x, x)|x € V} is G-invariant
as well as the sed® = {(x, y)|x, y € V,x # y}. A G-orbitin 4 is called atrivial orbital
and that in4¢ is called anon-trivial orbital. Let I' be a connected graph with vertex set
V, and letG <Aut (I'). ThenTI is said to be &-orbital regular graphif G is regular on
each of its orbitals irM¢, and there is a non-trivigb-orbital O such that the edge set is
EI) ={{x, y}|(x, y) € O}. AgraphI is orbital regularif it is G-orbital regular for some
G <Aut(I).

Fang et al[5] introduced a Frobenius graph as follows:

Definition 2.1. Let G be a Frobenius group on a 8&tA G-Frobenius graph is defined to
be a connected graghwith vertex setV (I') = V and edge seE (I') = {{x, y}|(x, y) € O}
for some non-trivialG-orbital O in A°.

LetG =K : H be a Frobenius group on a déiand letl” be aG-Frobenius graph. Since
K is regular on the vertex sét of I', we may identifyV with K in such a way thaK acts
by the left multiplication.

Example 2.1. For any prime numbep, the groupG =7, : Z,_ is a Frobenius group,
whereK = 7, andH = Z, 1. Here, the groui§s acts onK in such a way thak acts on
itself by translation an#i acts orK by multiplication. ThusG acts regularly otk x K)¢
and theG-Frobenius graph is isomorphic to the complete graph

Clearly, every Frobenius graph is orbital regular. Fang et al. showed that almost all orbital
regular graphs are Frobenius.

Lemma 2.1 (Fang et al.[5]). LetI be a graph with n vertices and lé&t < Aut (I"). Then
I' is G-orbital regular if and only if one of the following holds

(1) I'is a G-Frobenius graph qr
(2) I =C,, acycle of lengtlu, andG = 7,, forn >3 or,
(3) I' = K1.4—1, a bipartite graph ands = Z,,_1 forn > 3.

Let (G, S) be a Cayley graph. By an ordered p@it x) € G x S, we denote an arc
with initial vertexg and terminal vertegx, and say that the aig, x) hascolor x. Clearly,
the number of arcs in a Cayley graghiG, S) is equal to|G| - |S|. For elements, y in a
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axr g (am)

Fig. 1. The automorphism preserving the color of arcs.

groupG, we shall writex” to denote the conjugate 1xy and” x to denoteyxy 2. If H is
a subgroup o6 andx € G, thenx” = {x"|h € H}.

LetG=K : H be aFrobenius group with Frobenius kerdelnd Frobenius complement
H. The next lemma shows that all Frobenius graphs are Cayley graphs.

Lemma 2.2 (Fang et al.[5, Theorem 1.4]. LetG = K : H be a Frobenius group with
Frobenius kernel K and Frobenius complement H. Then a G-Frobenius graph is a Cayley
graph% (K, S) for K and for some generating subset S of the form

S xH if |[H| is even orjx| =2, )
T 1x"uH®  if |H|is odd and|x| # 2,

wherex € K such that(x) = K. Converselyif x € K satisfiesx?) = K, then% (K, S)
is G-Frobenius with S defined in E¢).

From now on, whenever we say=x" U (x 1)#  itis assumed that” # (x~1)#.
Jajcay characterized the Cayley graphs admitting regular Cayley maps.

Lemma 2.3 (Jajcay[9, Theorem 2]. LetI = %(G, S) be a Cayley graph. Suppose that
there exists a graph automorphismof I" fixing 1, acting cyclically on S and satisfying

a(a(a)ta(ax)) = a(a) Lo(ac(x)) )

foranya € G andx € S. Then I admits aregular Cayley map.# (G, S, o|s). Conversely
if I" admits a regular Cayley maphen such a graph automorphisstof I" exists

One can see that the graph automorphisim Lemma 2.3 satisfies Eq. (2) if and only if
o preserves the color of arcs, as showifrig. 1

3. Regular embeddings of Frobenius graphs

Let G = K : H be a Frobenius group and |[Et= ¢(K, S) be a Frobenius graph with
defined in Eq. (1). In this section, we determine some conditions under which the Frobenius
graphI" can be regularly embedded into an orientable surface and classify all of such
embeddings up to isomorphism.
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Lemma 3.1. Let G = K : H be a Frobenius group and lét = ¢(K, S) be a Frobenius
graph with S defined in Eq1). Then H is isomorphic to a subgroyplso denoted by Hof
Aut (I'). Moreover

(1) if S =x, H acts regularly on the arcs emanating from the identity

(2) if S =x" U (x~1), H acts semi-regularly on the arcs emanating from the identity

Proof. BecauseG = K : H is a Frobenius group is a subgroup of AutK). In fact,H
acts semi-regularly o'\ {1} by conjugation. For each € H, according to the definition
of S, one can naturally extend the actiontobn K to the action oh on I" as follows: for
any arc(k,y) € D(I') = K x S, h(k, y) = (K", y"). The action preserves the adjacency
of the graphl’, so that: € Aut (I'). It means thaH can be considered as a subgroup of
Aut (I'). For anyh € H, the only element irK that is fixed under the action ¢fis the
identity element. Thus, i§ = x, H acts regularly on the arcs emanating from the identity,
andif S =x U (x 1) ¥ H acts semi-regularly on the same sefl

Let G = K : H be a Frobenius group and [Et= ¢ (K, S) be a Frobenius graph with
S=x"u "1 sothalk is assumed to be abelian. Defifie G — G as follows:

(iy Foranyh e H, p(h)=h,
(i) For anyk € K, (k) =k %;
(i)  For anyg=kh € G, letf(g) = p(k)p(h) =k 1h. 3)

Itis easy to see thdtis a bijection on the grou@, f(H) = H, f(K) = K andf(1) = 1.
For anygi, g2 € G, let g1 = kyh1 andgo = kpho. Thengigo = kl(hlkz)hlhz. A direct
calculation shows that(g1g2) = ki *("*(k; 1) h1h2 = B(g1)B(g2). So,f € Aut (G).

Moreover, the automorphisif € Aut (G) can be extended to an automorphism of the
Frobenius grapli” as follows: (use the same notatigrior an extended automorphism for
notational convenience). Forany &cy) € D(I')=K x S, definef(k, y)=(p(k), f(y))=
(k~1, y=1). Clearly, § preserves the adjacency relationlafSincel is assumed to be a
simple graph without semiedges, loops or multiple edfesAut (I).

Let A = Aut (I') to simplify a notation and le; denote the stabilizer of the identity
element 1.

Lemma 3.2. The automorphisnfi € A satisfies the following properties
(1) the order offfis || = 2;

(2) pLy) = y Hforanyy e S;

(3) p-h=h-pforanyh € H,

(4) if |A|=2|K||H|,thenA=K : (H x (f)) andA1=~H x (f);

(5) H x (p) acts transitively on the arcs emanating from the identity.

Proof. (1) and (2) follow immediately from the definition ¢t

(3) For any arc(k, y), § - h(k,y) = BGk", y") = (kD" (H") and i - Bk, y) =
Rt y™h = (D, HM.

(4) For anyky, k2 € K, PkaB(ke, y) = Bratky ', y=1) = Blhoky ™, y ™) = (kg 'k, y) =
kz_l(kl, v). S0,{f) <Na(K). According to (2), (3) andA| = 2|K||H|, we haveA ~K :
(H x (p)) andA1=H x (f3).
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(5) Given two arcgl, x") and(1, (x~H"7), we have(h; 1h;) - f(1, x") = (1, (x~1)").
SinceH acts transitively onr” and(x 1), respectively, one can get the conclusiofl

Theorem 3.3. LetG = K : H be a Frobenius group and lét = ¢ (K, S) be a Frobenius
graph with S defined in Eq1). WhenS = x# U (x~1)#, we assumed that K is abelian.
Then I' is arc-transitive

Proof. Since the Frobenius gragh= % (K, S) is vertex-transitive, we only need to show
that the point stabilizeA 1 acts transitively on the arcs emanating from the identity element
1. If S =x", by Lemma 3.1,H < A; and it acts regularly on the arcs emanating from
1;if S=x" U xHH, by Lemma 3.2H x (f) <A1 which acts regularly on the same
arc set. J

In the following, we divide our discussions into two cases, according to the choi&s of
in Eq. ().
Casel. |H| is even ofix| = 2. In this caseS = x”, x € K and(x") = K.

Theorem 3.4.LetG = K : H be a Frobenius group and ldt = ¢ (K, S) be a Frobenius
graph with S = x#. If H=(h) is cyclic andAut (I~ K : H, thenI" admits a regular
Cayley mags.# (K, S, p) if and only if p = h'|s = (x x" - x"™ ") for some integer t
with (¢, m) = 1, wherem = |H|.

Proof. According to Lemma 2.3 admits a regular Cayley map if and only if there exists
a graph automorphisma fixing the identity element 1 oK, acting cyclically onS and
satisfying the conditions(a(k) 1o (ky)) = o(k) Lo(ka(y)) for anyk € K andy € S.
From the condition Autl") =K : H, if such a graph automorphisenexists, it belongs to
H. Leto = 4'. Then, one of the orbits efacting onSis {x, x"', ..., x"" ). Thereforeg
acts cyclically orsifand only if (¢, m)=21. A direct calculation shows tha(o(k)_la(ky))=
a(k)_la(ka(y)) = yhzr. Letp =h'|s, then¥.# (K, S, p) is a regular Cayley map.[]

A Cayley map%./#(G, S, p) is balancedif p(x~1) = p(x)~! for everyx € S, and
antibalancedif p(x~1) = (p~1(x))~! for everyx e S. Skoviera and Sir[16] showed
that a Cayley ma@g.Z (G, S, p) is regular and balanced if and only if there exists a group
automorphismx : G — G such thatx|s = p.

Corollary 3.5. The Cayley map®.# (K, S, p) given in Theoren3.4 are balanced

Proof. Because the graph automorphismmentioned in the proof of Theorem 3.4 is a
group automorphism, the Cayley maps given in Theorem 3.4 are all balancked.

Thegenusof a map.# is defined as the genus of its supporting surface.

Corollary 3.6. If Kis abelian and H| is a multiple of4, then the genus of the Cayley map
€M (K, S, p)givenin Theoren3.4is g = }1(4 —4|K |+ |K||H]).
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Proof. Accordingto Theorem 3.4, Corollary 3.5 and the assumptioB¢fone can assume
|H|=4nfor some integenandp=(x1 x2...x2, x; > x;*...x; ). Take an ar¢l, x) and
consider the orbit oRL including (1, x1). Becaus« is abelian, the orbit has the following
|H| arcs:

-1 -1 -1 -1
(1? -xl)5 (-x23 x2 )7 (x2x3 ) -x3)5 ey (x2x3 cX2n, xzn )1

1 1

- -1 - -1
(x2xg "+ XonX1, Xq ), (X2X3 "+ X2nX1Xy T, X2), - -,

-1 -1
(X2 - - X2nX1X5 ~ -+ - X7, X21).

Hence, the 2-cells in the Cayley m&p# (K, S, p) are all topologicall H|-gons. Let

V|, |E|, |F| denote the number of vertices, edges and faces of the map, respectively. Then,
in case of the Cayley maps givenin Theorem 84 =|K |, |E|= %(|K| |H|)and|F||H|=

|K||H]|, thatis| F|=|K|. From the Euler—Poincércharacteristic, 2 2¢g = |V | — |E| + | F|,

one can get = 3(4— 4/K| + |K||H]). O

Definition 3.1. LetG=K : H be a Frobenius group and létK, S) be a Frobenius graph.
If a Cayley mapg.4 (K, S, p) is regular, it is called &robenius map

Example 3.1. Consider the Frobenius group = 75 : Z4, whereK = Zs and H = Z4.
TakeS = {£1, +2} and letp = (1# — 2# — 1#2), then¥./% (K, S, p) is a Frobenius map.
In fact, it is a regular embedding of the complete gr&fhinto the torus.

Recall that the Euler’s totient functigh: N — N is defined ag(1) = 1 and forn>2,
¢(n) is the number of positive integers less theand relatively prime ta.

Theorem 3.7. LetG = K : H be a Frobenius group witlk = P1 x - -- x P;, whereP; are
the distinct Sylow subgroups of &nd letH = (k) be cyclic saym = |H|. Let' =% (K, S)
be a Frobenius graph wit = x for somex € K suchthatx”)=K.If Aut (I ~K : H
and there exists at least one Sylow subgr@gy P1, such thatAut (P1) is abelian thenl”
admits¢ (m) non-isomorphic Frobenius maps.

Proof. By Theorem 3.4, a Cayley mag.# (K, S, p) is regular if and only ifp =
(x " ~--xh('"_l)’) for some integet with (¢, m) = 1. Therefore, to prove the theorem,
it is sufficient to show that for any two distinct integers #; # r, <m, with (¢;, m) = 1,
i =1, 2, the Cayley map¥.#(K, S, p;) and¢.# (K, S, p») are notisomorphic, where

(m—=1rq (m—=Dyry
. xh . xh ) .

pr=(x 2" ) and pp=(x x"*..

Suppose that.# (K, S, p1) =%6.#(K, S, p,). Becaus&.# (K, S, p1) and€¢.# (K, S, p»)
are balanced regular Cayley maps, by the resulsSnCorollary 5.3] there exists a group
automorphismy € Aut (K) such that(x"") = x"“™2 for any 0<r <m — 1 and a fixed
jwith0<j<m — 1.

SinceK = Py x --- x Py and Aut(K) = Aut (P1) x - - - x Aut (P), one may assume that
x=x1...x Withx; € P;, (x/1) = P, anda = a3 ... o, with o; € Aut (P;). Therefore, from

(r+j) (r+j) . . .
a(xy = """ we geto; (x"*) = x""" for each Ki <. Wheni = 1, it follows
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that oy (x*) = x1""""?. On the other hand, by the assumption that @Rjp is abelian,

t rt t1+jt t1+jt (r+j)t.
we havexy (x™) = (aq(x1))"™* = ¥ Thereforex* "2 = xi""""2 It means that

m|r(t1 — t2) for any 0<r <m — 1, we getr; = r». This completes the proof.[

Case2. |H| is odd andx| # 2. In this cases = x" U (x~1)# for somex € K and
(xy = K. In this caseK is assumed to be abelian. From the definitiorf @fiven in Eq.
(3), itis easy to see th#te Aut (K).

Lemma 3.8. LetG = K : H be a Frobenius group anfi=%(K, S) be a Frobenius graph
with § = x# U (x~1) . If K is abelian andH = (k) is cyclic say|H| = m, thenhif/ is a
cyclic permutation of S if and only {f, m) = 1andj = 1.

Proof. If j=0, clearlyh’ is nota cyclic permutation @for any 1<i <m; if j=1, because
mis odd, one of the orbits under the actiomf on Sis
—l)/’li’ thi xh(m—l)i

-1 -1 h(m—l)i
{x, (x X L@ ;-

g e sy N

Therefore i’ § is a cyclic permutation o§if and only if " # x"" whenever #r,or
equivalently,(i, m) =1. O

Theorem 3.9. LetG = K : H be a Frobenius group and ldt = ¢ (K, S) be a Frobenius
graph withS = x# U (x~1H)# . If K is abelian H =~ (k) is a cyclic group andut (I') ~K :
(H x (f)) with the f given in Eq (3), thenI” admits a regular Cayley map.# (K, S, p)
if and only ifp = h' |5 for some integer i witlii, |H|) = 1.

Proof. By Lemma 2.3]" admits a regular Cayley map if and only if there exists a function
g € Aut (I') fixing the identity element 1, acting cyclically &and satisfying the condition:
o(a(k) Yo(ky)) = o(k) ta(ka(y)) for anyk € K andy € S. Because Autl’)~K :

(H x (f8)), if such a functions exists, it must belong téf x (f). From Lemma 3.8, one
can assume that = k' for some integeft, with (i, |H|) = 1. Foranyk € K,y € S, a
direct calculation shows thata (k) Lo (ky)) = y"* = (k) ~La(ka(y)). Let p=h' B|s, then

€. (K, S, p)isaregular Cayley map.(]

By a method similar to Corollaries 3.5 and 3.6, one can get the following one.

Corollary 3.10. The Frobenius maps.# (K, S, p) given in Theoren3.9are all balanced.
Moreover if |H| is eventheir genera areg = %(2 —2|K|+ |K||H]).

Theorem 3.11.Let G = K : H be a Frobenius group with an abelian Frobenius kernel
K = P1 x --- x P;,whereP; are the distinct Sylow subgroups of&d H =~ (h), |H| =m,

is a cyclic group. Lef” = €(K, S) be a Frobenius graph witl§ = x# U (x~1)# for some

x € K suchthatix”) =K. If Aut (I~ K : (H x (f)) with the given in Eq (3) and there
exists at least one Sylow subgroay P1, such thatAut (P1) is abelian thenI" admits

¢ (m) non-isomorphic Frobenius maps
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Proof. By Theorem 3.9, a Cayley ma@g.# (K, S, p) is regular if and only if
p=(x (DI Y =1 (1Y for some integetrwith (7, m)=1. There-
fore, to prove the theorem, it suffices to show that for any two distinct integers %
2 <m,with (11, m)=1and(t2, m) =1, the Cayley map®.# (K, S, p1) and€¢.Z (K, S, p»)
are not isomorphic, where

_ t 2t (m—1)r _ _ (m—1)r
P1=(x (X 1)h1xh 1._.th 1X 1()C l)hm 1

)
and

—1\h'2 h2/2 /,l(m—l)tz 1 -1 h(m—l)tz

pr=(x (x )" x" ".-x X (x7T) ).

Supposethat.# (K, S, p1) =64 (K, S, py) for some integers< 11, 2 <m with (11, m)=

1 and(t, m) = 1. Since¥.% (K, S, p;) andé.# (K, S, p,) are balanced regular Cayley
maps, there exists a group automorphisea Aut (K) such that((x¢)""*) = (xs’)h(rﬂ.”2
for any O<r<m — 1 and a fixed, 0<j<m — 1, wheres, ¢’ = £1 ande’ = (—1)’s.
SinceK = Py x --- x P, and Aut(K) = Aut (Py) x --- x Aut (P;), one may assume that
x=x1---x Withx; € P;, (xl.H) = P;andoa=o1 - - - o With o; € Aut (P;). Therefore, from
a((x*)"™y = ()" we geto (x)Y™) = (x£)"""? for each Ki<r.Wheni =1,

it follows thatoy ((x$)""*) = (x£)"" ™2 While by the assumption that AuPy) is abelian,
we haves ((x5)""™) = (a1 (xH))"™* = (x£)"™"2 . Therefore (xs )" = (x¢)h""2,

It means thatn|r (11 — r2) for any 0<r <m — 1, implying thatr; = ¢>. This completes the
proof. O

Note From Tables 1to 3, one can see that for Frobenius groups with rark-650,
except for those listed ifiable 3and the two Frobenius groups marked by a “*Tiable 1,
they satisfy the assumptions in Theorems 3.4, 3.7, 3.9 and 3.11. Therefore, the conditions
in Theorems 3.4, 3.7, 3.9 and 3.11 are not very restrictive. An interesting result is that for
each of these Frobenius graphs, its automorphism group is equal to that of the Frobenius
maps it admits.

4. Frobenius maps of some Frobenius groups

Given a Frobenius grou@ = K : H with Frobenius kerneK, Lemma 2.2 says that a
graphI" is G-Frobenius if and only if it is isomorphic to a Cayley graphk, S) for some
S=50U Sgl (possibleSy = So‘l) andSp runs over alH-orbits inK each of which generates
K. Let

A={SU Sal|So is anH-orbit in K and (So) = K}

GivenS = SpU SO‘1 € A, let.Z s denote the set of all non-isomorphic Frobenius maps with
underlying grapt¢' (K, S).

Lemma 4.1 (Fang et al.[5, Theorem 3.5]. LetG = K : H be a Frobenius group with
Frobenius kernel KsayK = P1 x --- x P;, whereP; are the distinct Sylow subgroups of
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K. If, foreachi =1, ..., ¢, the normalizetNaytx)(H) is transitive on the set of H-orbits
in P; each of which generate’, then all G-Frobenius graphs are isomorphic

Theorem 4.2. LetG=K : H be a Frobenius group with Frobenius kerié= Py x - - - x P;
and a cyclic Frobenius complement H. Assume that there exiStséaUSgl € Asuchthat
So= Sal andAut (4(K, S))=K : H.Ifforeachi =1, ...,1, the centralizelCautx)(H)
is transitive on the set of H-orbits if; each of which generatd3, then up to isomorphism
M s = Mg forany twoS, S’ € A.

Proof. By Lemma 4.1, under the assumption tii&ftx)(H) is transitive on the set of
H-orbits in P; each of which generated, we know that for any two elements i, say
S1 and Sy, ¢(K, S1) =% (K, S2). Consequently, Aut¢ (K, S1)) =Aut (¢(K, S2)); and if
there exists as = SoU Sy € 4 such thatSo = S5 %, then for anys’ = S, U S5 € 4, we
havesy = S5 .

Let%./ (K, S;, p;) for j =1, 2 be twoG-Frobenius maps withiy = x* andS, = y* for
somex, y € K. Let H=(h) be cyclic and le{tH| = m. By Theorem 3.4, one can assume
that

h'l J(m=Drq p(m=Drp
PR x .

) and py=(y Y-y )

pr=(x x
for integers &<r; <m — Land(r;,m) =1, j =1, 2. SinceCau(x)(H) is transitive onA
andsy, S, € 4, there exists & € Cautx)(H) such that(x) = y. It follows thata (x""*)

()" =y"" forany 0< j <m—1.Thus, ifry=r, then6.# (K, S1. py) =64 (K, S2. p»).
From Theorems 3.4 and 3.7, we havé, = #s,. U

By a method similar to Theorem 4.2 and by Theorems 3.9 and 3.11, one can get the
following theorem.

Theorem 4.3.Let G = K : H be a Frobenius group with an abelian Frobenius kernel
K = P x --- x P, and a cyclic Frobenius complement H. Assume that there exists an
S=SoU Syt e Asuch thatSy # Syt and Aut (4(K, $) =K : (H x (f)) with the
given in Eq (3).If for eachi =1, ..., ¢, the centralizetCautx)(H) is transitive on the set

of H-orbits in P; each of which generate, then up to isomorphism# s = .# ¢ for any

S, S e A.

Corollary 4.4. Let p be a prime and = p{*--- p/", where p; are distinct primes. Let

G = K : H be a Frobenius group with cyclic Frobenius complement H and Frobenius
kernel K which is one of the following two cases

1) K=27,,

(2) K=7', x Z, with (p,n) =1land H =7 1, wherep! = 1(modp” — 1).

In each casgf there exists a Frobenius grafh( K , S) whose automorphism group satisfies
the conditions in Theoredh2or Theoren®.3according to the choices of ®en.#s=.# ¢

up to isomorphism for any, S’ € A.
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Proof. By Theorems 4.2 and 4.3, in either case, we need only to showWijak)(H) acts
transitively on the set dfl-orbits in P; each of which generate3.

(1) SinceK is cyclic, Aut(K) is abelian and transitive on generators KoNote thatH
is isomorphic to a subgroup of AUK'), soCaut(x)(H) = Aut (K).

(2) SlnceKNZ’ X 2y, thenKNZ’ X 7 i X X VA Pt and Aut(K) = Aut(Z’) X
Aut (Z,). It foIIows that Aut(Z,) is a normal subgroup of AUK). Let X = H Aut (Z,,),
then X <Aut (K). Clearly, for each Xi <t, Aut(Z,) is transitive on generators fat i

andH is transitive onZ”, »\1} Thus, X is transitive on the set dfi-orbits in z, andZ
each of which generatex?él‘7 andeia, respectively. On the other hand, Aut,) centrallzes
H, and SoX < Caut(k)(H).

In either case, we have tha&lauk)(H) satisfies the conditions in Theorems 4.2
and4.3. O

5. Frobenius maps with trivial exponent groups

An integereis called arexponenbf an orientable reqgular mag if .# = (D; R, L) and
¢ = (D; R¢, L) are isomorphic. We remake a couple of observations about exponents.
Let .# be an orientable regular map of valerrcd=irstly, if e is an exponent of#, then
gcd(r, ¢) = 1. Secondly, ikis an integer anll is a multiple ofr, then.#¢ =.4¢**. Thirdly,
if e7 andep are exponents, so igey. It follows that the exponents form a subgroupZ;t
the multiplicative group of the ring of integers moduléNe call this group thexponent
group of .# and denote it by Ex#). We say that# has a trivial exponent group if
|EX(.4)| = 1.

The exponent group of an orientable regular map gives us information on the degree of
symmetry of the map. For examplel is in the exponent group of/ if and only if the
map is reflexible. Clearly, any cubic irreflexible regular map (or chiral map) has the trivial
exponent group, but non-cubic examples are less obvious. \Wiea prime, the regular
embedding of the complete grajh, gives such an example.

Generally, for any integen, Nedela and Skoviera ask¢ti4] for a construction of a
regular map of valency with trivial exponent group. Archdeacon et fl] constructed
such an example by using lifting techniques under the assumption that the base map has a
trivial exponent group.

From Frobenius maps, we provide examples of regular maps with trivial exponent groups,
as a partial answer of the question raised by Nedela and Skoviera.

Theorem 5.1. Let G = K : H be a Frobenius group with a cyclic Frobenius complement
H =~ (h),say|H|=m.LetI'=% (K, S) be aFrobenius graph witl=x".If Aut (N =K : H

and there exists atleast one Sylow subgroup,eB§ P, such thafAut (P) is abelianthen the
Frobenius mags.# (K, S, p) has the trivial exponent grouprherep = (x x - - xh"")

for some integer t withiz, m) = 1.

Proof. If eis an exponent o%.# (K, S, p), then6 .4 (K, S, p)=€.# (K, S, p¢), which
impliese = 1 (modm) by Theorem 3.7. [
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Similarly, one can obtain the following theorem.

Theorem 5.2. Let G = K : H be a Frobenius group with an abelian Frobenius kernel K
andH =~ (h), |H| =m, and letl'’ = (K, S) be a Frobenius graph witli = x? U (x 1)#.
If Aut(I')=K : (H x {f5)) with thef given in Eq (3) and there exists at least one Sylow
subgroup of Ksay R, such thatAut (P) is abelian then the Frobenius ma.Z (K, S, p)

has the trivial exponent groyptherep=(x (x~ 11" xh? .. xh™ 0 p =1 (=1
for some integer i withii, m) = 1.
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