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1. Introduction

Differential and integral equations of fractional order play a very important role in describing some real world problems.
For example some problems in physics, mechanics and other fields can be described with the help of differential and integral
equations of fractional order (cf. [10,11,13,14,16–19]).

The theory of differential and integral equations of fractional order has recently received a lot of attention and now
constitutes a significant branch of nonlinear analysis. Numerous research papers and monographs have appeared devoted to
differential and integral equations of fractional order (cf. [1,5,7,8,10–20], for example). These papers contain various types
of existence results for equations of fractional order [5,7,8,11,12].

The aim of this paper is to study the existence of solutions of a nonlinear quadratic Volterra integral equation of frac-
tional order in the space of real functions defined, continuous and bounded on an unbounded interval. Moreover, we will
investigate an important property of the solutions which is called the local attractivity of solutions. This property is a gener-
alization of the global attractivity of solutions introduced in [12] and is also a variant of the property of asymptotic stability
of solutions considered in [3,4,6].

It is worthwhile mentioning that up to now integral equations of fractional order have only been studied in the space of
real functions defined on a bounded interval.

The result obtained in this paper generalizes several ones obtained earlier by many authors. Also we hope that the con-
cept of local attractivity considered here may be a stimulant for further investigations concerning local and global attractivity
of solutions of nonlinear integral equations of other types.

* Corresponding author.
E-mail address: jbanas@prz.rzeszow.pl (J. Banaś).
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2. Notation, definitions and auxiliary facts

In this section we collect some definitions and results which will be needed later.
First we recall a few facts concerning fractional calculus [14–16]. Denote by L1(a,b) the space of real functions defined

and Lebesgue integrable on the interval (a,b), which is equipped with the standard norm. Let x ∈ L1(a,b) and let α > 0 be
a fixed number. The Riemann–Liouville fractional integral of order α of the function x(t) is defined by the formula

Iαx(t) = 1

�(α)

t∫
0

x(s)

(t − s)1−α
ds, t ∈ (a,b),

where �(α) denotes the gamma function.
It may be shown that the fractional integral operator Iα transforms the space L1(a,b) into itself and has some other

properties (see [13–16]).
Next we present some facts concerning measures of noncompactness [2].
Let (E,‖ · ‖) be an infinite dimensional Banach space with the zero element θ . Denote by B(x, r) the closed ball centered

at x and with radius r. The symbol Br stands for the ball B(θ, r). If X is a subset of X we write X , Conv X in order to denote
the closure and convex closure of X , respectively. Moreover, we denote by ME the family of all nonempty and bounded
subsets of E and by NE its subfamily consisting of all relatively compact sets.

We use the following definition of the concept of a measure of noncompactness [2].

Definition 1. A mapping μ :ME → R+ = [0,∞) is said to be a measure of noncompactness in E if it satisfies the following
conditions:

1o The family kerμ = {X ∈ ME : μ(X) = 0} is nonempty and kerμ ⊂ NE .
2o X ⊂ Y ⇒ μ(X) � μ(Y ).
3o μ(X) = μ(X).
4o μ(Conv X) = μ(X).
5o μ(λX + (1 − λ)Y ) � λμ(X) + (1 − λ)μ(Y ) for λ ∈ [0,1].
6o If (Xn) is a sequence of closed sets from ME such that Xn+1 ⊂ Xn (n = 1,2, . . .) and if limn→∞ μ(Xn) = 0, then the

intersection X∞ = ⋂∞
n=1 Xn is nonempty.

The family kerμ described in 1o is said to be the kernel of the measure of noncompactness μ. Let us observe that the
intersection set X∞ from 6o belongs to kerμ. In fact, since μ(X∞) � μ(Xn) for every n then we have that μ(X∞) = 0. This
simple observation will be essential later.

Other facts concerning measures of noncompactness and their properties may be found in [2].
In what follows we will work in the Banach space BC(R+) consisting of all real functions defined, continuous and

bounded on R+ . This space is furnished with the standard norm

‖x‖ = sup
{∣∣x(t)∣∣: t � 0

}
.

We will use a measure of noncompactness in the space BC(R+) which was introduced in [2]. In order to define this
measure let us fix a nonempty bounded subset X of the space BC(R+) and a positive number T . For x ∈ X and ε � 0 denote
by ωT (x, ε) the modulus of continuity of the function x on the interval [0, T ], i.e.

ωT (x, ε) = sup
{∣∣x(t) − x(s)

∣∣: t, s ∈ [0, T ], |t − s| � ε
}
.

Further, let us put

ωT (X, ε) = sup
{
ωT (x, ε): x ∈ X

}
,

ωT
0 (X) = lim

ε→0
ωT (X, ε), ω0(X) = lim

T →∞ωT
0 (X).

If t is a fixed number from R+ , let us denote

X(t) = {
x(t): x ∈ X

}
and

diam X(t) = sup
{∣∣x(t) − y(t)

∣∣: x, y ∈ X
}
.

Finally, consider the function μ defined on the family MBC(R+) by the formula

μ(X) = ω0(X) + lim sup diam X(t). (2.1)

t→∞
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It can be shown that the function μ is a measure of noncompactness in the space BC(R+). The kernel kerμ of this
measure consists of nonempty and bounded sets X such that functions from X are locally equicontinuous on R+ and the
thickness of the bundle formed by functions from X tends to zero at infinity. This property will permit us to characterize
solutions of the integral equation considered in the next section.

Now, let us assume that Ω is a nonempty subset of the space BC(R+) and Q is an operator defined on Ω with values
in BC(R+).

Consider the following operator equation:

x(t) = (Q x)(t), t � 0. (2.2)

Definition 2. We say that solutions of Eq. (2.2) are locally attractive if there exists a ball B(x0, r) in the space BC(R+) such
that for arbitrary solutions x(t) and y(t) of Eq. (2.2) belonging to B(x0, r) ∩ Ω we have that

lim
t→∞

(
x(t) − y(t)

) = 0. (2.3)

In the case when the limit (2.3) is uniform with respect to the set B(x0, r) ∩ Ω , i.e. when for each ε > 0 there exists T > 0
such that

∣∣x(t) − y(t)
∣∣ � ε (2.4)

for all x, y ∈ B(x0, r) ∩ Ω and for t � T , we will say that solutions of Eq. (2.2) are uniformly locally attractive.

Observe that the concept of uniform local attractivity of solutions, which is defined above, is equivalent to the concept
of asymptotic stability of solutions introduced in the paper [3] (cf. also [4]).

Finally, let us recall the definition of the concept of global attractivity of solutions introduced in the paper [12].

Definition 3. The solution x = x(t) of Eq. (2.2) is said to be globally attractive if (2.3) holds for each solution y = y(t) of
Eq. (2.2).

In other words we may say that solutions of Eq. (2.2) are globally attractive if for arbitrary solutions x(t) and y(t) of that
equation condition (2.3) is satisfied.

Observe that global attractivity of solutions imply local attractivity. The converse implication is not valid and we will
show this later.

3. Main result

In this section we will investigate the following quadratic Volterra integral equation of fractional order:

x(t) = p(t) + f (t, x(t))

�(α)

t∫
0

u(t, s, x(s))

(t − s)1−α
ds, (3.1)

where t ∈ R+ and α is a fixed number, α ∈ (0,1).
Eq. (3.1) will be considered under the following assumptions:

(i) The function p : R+ → R is continuous and bounded on R+ .
(ii) The function f : R+ × R → R is continuous and there exists a function m : R+ → R+ being continuous on R+ and such

that
∣∣ f (t, x) − f (t, y)

∣∣ � m(t)|x − y|
for any t ∈ R+ and for all x, y ∈ R.

(iii) The function u(t, s, x) = u : R+ × R+ × R → R is continuous. Moreover, there exist a function n : R+ → R+ being con-
tinuous on R+ and a function Φ : R+ → R+ being continuous and nondecreasing on R+ with Φ(0) = 0 and such
that

∣∣u(t, s, x) − u(t, s, y)
∣∣ � n(t)Φ

(|x − y|)
for all t, s ∈ R+ such that s � t and for all x, y ∈ R.

For further purposes let us define the function u1 : R+ → R+ by putting

u1(t) = max
{∣∣u(t, s,0)

∣∣: 0 � s � t
}
.

Obviously the function u1 is continuous on R+ .
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In what follows we will assume additionally that the following conditions are satisfied:

(iv) The functions a,b, c,d : R+ → R+ defined by the formulas

a(t) = m(t)n(t)tα,

b(t) = m(t)u1(t)t
α,

c(t) = n(t)
∣∣ f (t,0)

∣∣tα,

d(t) = u1(t)
∣∣ f (t,0)

∣∣tα
are bounded on R+ and the functions a(t), c(t) vanish at infinity i.e. limt→∞ a(t) = limt→∞ c(t) = 0.

Keeping in mind assumption (iv) we may define the following finite constants:

A = sup
{

a(t): t ∈ R+
}
,

B = sup
{

b(t): t ∈ R+
}
,

C = sup
{

c(t): t ∈ R+
}
,

D = sup
{

d(t): t ∈ R+
}
.

Now we formulate the last assumption:

(v) There exists a positive solution r0 of the inequality

‖p‖ + (
1/�(α + 1)

)[
ArΦ(r) + Br + CΦ(r) + D

]
� r.

Moreover, AΦ(r0) + B < �(α + 1).

Now, let us consider the operators F , U , V defined on the space BC(R+) by the formulas:

(F x)(t) = f
(
t, x(t)

)
,

(U x)(t) = 1

�(α)

t∫
0

u(t, s, x(s))

(t − s)1−α
ds,

(V x)(t) = p(t) + (F x)(t)(U x)(t).

Then we have the following lemma.

Lemma 1. Under the above assumptions the operator V transforms the ball Br0 in the space BC(R+) into itself, where r0 is a number
appearing in assumption (v). Moreover, all solutions of Eq. (3.1) belonging to the space BC(R+) are fixed points of the operator V .

Proof. Observe that in view of our assumptions, for any function x ∈ BC(R+) the function F x is continuous on R+ . We
show that the same assertion holds also for the operator U . To do this take an arbitrary function x ∈ BC(R+) and fix T > 0
and ε > 0. Next assume that t1, t2 ∈ [0, T ] are such that |t2 − t1| � ε. Without loss of generality we can assume that t1 < t2.
Then, taking into account our assumptions we get

∣∣(U x)(t2) − (U x)(t1)
∣∣ = 1

�(α)

∣∣∣∣∣
t1∫

0

u(t2, s, x(s))

(t2 − s)1−α
ds +

t2∫
t1

u(t2, s, x(s))

(t2 − s)1−α
−

t1∫
0

u(t1, s, x(s))

(t1 − s)1−α
ds

∣∣∣∣∣

� 1

�(α)

t1∫
0

∣∣∣∣u(t2, s, x(s))

(t2 − s)1−α
− u(t1, s, x(s))

(t2 − s)1−α

∣∣∣∣ds

+ 1

�(α)

t1∫
0

∣∣∣∣u(t1, s, x(s))

(t2 − s)1−α
− u(t1, s, x(s))

(t1 − s)1−α

∣∣∣∣ds + 1

�(α)

t2∫
t1

|u(t2, s, x(s))|
(t2 − s)1−α

ds

� 1

�(α)

t1∫ |u(t2, s, x(s)) − u(t1, s, x(s))|
(t2 − s)1−α

ds
0
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+ 1

�(α)

t1∫
0

∣∣u(
t1, s, x(s)

)∣∣[ 1

(t1 − s)1−α
− 1

(t2 − s)1−α

]
ds

+ 1

�(α)

t2∫
t1

|u(t2, s, x(s))|
(t2 − s)1−α

ds � 1

�(α)

t1∫
0

ωT
1

(
u, ε; ‖x‖) 1

(t2 − s)1−α
ds

+ 1

�(α)

t1∫
0

[∣∣u(
t1, s, x(s)

) − u(t1, s,0)
∣∣ + ∣∣u(t1, s,0)

∣∣] ·
[

1

(t1 − s)1−α
− 1

(t2 − s)1−α

]
ds

+ 1

�(α)

t2∫
t1

|u(t2, s, x(s)) − u(t2, s,0)| + |u(t2, s,0)|
(t2 − s)1−α

ds

�
ωT

1 (u, ε; ‖x‖)
�(α)

· tα2 − (t2 − t1)
α

α

+ 1

�(α)

t1∫
0

[
n(t1)Φ

(∣∣x(s)
∣∣) + u1(t1)

][ 1

(t1 − s)1−α
− 1

(t2 − s)1−α

]
ds

+ 1

�(α)

t2∫
t1

n(t2)Φ(|x(s)|) + u1(t2)

(t2 − s)1−α
ds

�
ωT

1 (u, ε; ‖x‖)
�(α + 1)

tα1 + n(t1)Φ(‖x‖) + u1(t1)

�(α + 1)

[
tα1 − tα2 + (t2 − t1)

α
]

+ n(t2)Φ(‖x‖) + u1(t2)

�(α + 1)
(t2 − t1)

α

� 1

�(α + 1)

{
tα1 ωT

1

(
u, ε; ‖x‖) + (t2 − t1)

α
[
n(t1)Φ

(‖x‖) + u1(t1)
]

+ (t2 − t1)
α
[
n(t2)Φ

(‖x‖) + u1(t2)
]}

, (3.2)

where we denoted

ωT
1

(
u, ε; ‖x‖) = sup

{∣∣u(t2, s, y) − u(t1, s, y)
∣∣: s, t1, t2 ∈ [0, T ], s � t1, s � t2, |t2 − t1| � ε, |y| � ‖x‖}.

Obviously, in view of the uniform continuity of the function u(t, s, y) on the set [0, T ] × [0, T ] × [−‖x‖,‖x‖] we have that
ωT

1 (u, ε; ‖x‖) → 0 as ε → 0.
In what follows let us denote

n(T ) = max
{
n(t): t ∈ [0, T ]},

u1(T ) = max
{

u1(t): t ∈ [0, T ]}.
Then, keeping in mind the estimate (3.2) we obtain

ωT (U x, ε) � 1

�(α + 1)

{
T αωT

1

(
u, ε; ‖x‖) + 2εα

[
n(T )Φ

(‖x‖) + u1(T )
]}

.

From the above inequality we infer that the function U x is continuous on the interval [0, T ] for any T > 0. This yields the
continuity of U x on R+ .

Finally we deduce that the function V x is continuous on R+ .
Next, let us take an arbitrary function x ∈ BC(R+). Then, using our assumptions, for a fixed t ∈ R+ we have

∣∣(V x)(t)
∣∣ �

∣∣p(t)
∣∣ + 1

�(α)

[∣∣ f
(
t, x(t)

) − f (t,0)
∣∣ + ∣∣ f (t,0)

∣∣]
t∫

0

|u(t, s, x(s)) − u(t, s,0)| + |u(t, s,0)|
(t − s)1−α

ds

� ‖p‖ + m(t)|x(t)| + | f (t,0)|
�(α)

t∫
n(t)Φ(|x(s)|) + u1(t)

(t − s)1−α
0
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� ‖p‖ + m(t)‖x‖ + | f (t,0)|
�(α)

[
n(t)Φ

(‖x‖) + u1(t)
] t∫

0

ds

(t − s)1−α

� ‖p‖ + 1

�(α + 1)

[
m(t)n(t)tα‖x‖Φ(‖x‖) + m(t)u1(t)t

α‖x‖ + n(t)
∣∣ f (t,0)

∣∣tαΦ
(‖x‖) + ∣∣ f (t,0)

∣∣u1(t)t
α
]

= ‖p‖ + 1

�(α + 1)

[
a(t)‖x‖Φ(‖x‖) + b(t)‖x‖ + c(t)Φ

(‖x‖) + d(t)
]
. (3.3)

Hence, in view of assumption (iv) we infer that the function V x is bounded on R+ . This assertion in conjunction with the
continuity of V x on R+ allows us to conclude that V x ∈ BC(R+). Moreover, from the estimate (3.3) we obtain

‖V x‖ � ‖p‖ + 1

�(α + 1)

[
A‖x‖Φ(‖x‖) + B‖x‖ + CΦ

(‖x‖) + D
]
.

Linking this estimate with assumption (v) we deduce that there exists r0 > 0 such that the operator V transforms the
ball Br0 into itself.

Finally, let us notice that the second assertion of our lemma is obvious in the light of the fact that the operator V
transforms the space BC(R+) into itself. The proof is complete. �

Now we are prepared to formulate our main existence result.

Theorem 1. Under assumptions (i)–(v) Eq. (3.1) has at least one solution x = x(t) which belongs to the space BC(R+). Moreover,
solutions of Eq. (3.1) are uniformly locally attractive.

Proof. Let us take a nonempty set X ⊂ Br0 , where Br0 is a ball in the space BC(R+) described in Lemma 1. Then, for x, y ∈ X
and for an arbitrarily fixed t ∈ R+ , in view of assumptions (ii)–(iv) we obtain

∣∣(V x)(t) − (V y)(t)
∣∣ �

∣∣∣∣∣
f (t, x(t))

�(α)

t∫
0

u(t, s, x(s))

(t − s)1−α
ds − f (t, y(t))

�(α)

t∫
0

u(t, s, y(s))

(t − s)1−α
ds

∣∣∣∣∣

� 1

�(α)

∣∣ f
(
t, x(t)

) − f
(
t, y(t)

)∣∣
t∫

0

|u(t, s, x(s))|
(t − s)1−α

ds + | f (t, y(t))|
�(α)

t∫
0

|u(t, s, x(s)) − u(t, s, y(s))|
(t − s)1−α

ds

� 1

�(α)
m(t)

∣∣x(t) − y(t)
∣∣

t∫
0

|u(t, s, x(s)) − u(t, s,0)| + |u(t, s,0)|
(t − s)1−α

ds

+ 1

�(α)

[∣∣ f
(
t, y(t)

) − f (t,0)
∣∣ + ∣∣ f (t,0)

∣∣]
t∫

0

n(t)Φ(|x(s) − y(s)|)
(t − s)1−α

ds

� m(t)|x(t) − y(t)|
�(α)

t∫
0

n(t)Φ(|x(s)|) + u1(t)

(t − s)1−α
ds + [m(t)|y(t)| + | f (t,0)|]n(t)

�(α)

t∫
0

Φ(|x(s) − y(s)|)
(t − s)1−α

ds

� m(t)n(t)(|x(t)| + |y(t)|)
�(α)

t∫
0

Φ(|x(s)|)
(t − s)1−α

ds + m(t)u1(t)

�(α)

∣∣x(t) − y(t)
∣∣

t∫
0

ds

(t − s)1−α

+ m(t)n(t)|y(t)|
�(α)

t∫
0

Φ(|x(s)| + |y(s)|)
(t − s)1−α

ds + n(t)| f (t,0)|
�(α)

t∫
0

Φ(|x(s)| + |y(s)|)
(t − s)1−α

ds

� 2m(t)n(t)r0Φ(r0)

�(α)

t∫
0

ds

(t − s)1−α
+ m(t)u1(t)

�(α)
diam X(t)

t∫
0

ds

(t − s)1−α

+ m(t)n(t)r0Φ(2r0)

�(α)

t∫
0

ds

(t − s)1−α
+ n(t)| f (t,0)|Φ(2r0)

�(α)

t∫
0

ds

(t − s)1−α

= 2a(t)
r0Φ(r0) + a(t)

r0Φ(2r0) + c(t)
Φ(2r0) + b(t)

diam X(t).

�(α + 1) �(α + 1) �(α + 1) �(α + 1)
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From the above estimate we derive the following inequality:

diam(V X)(t) � 2a(t)

�(α + 1)
r0Φ(r0) + a(t)

�(α + 1)
r0Φ(2r0) + c(t)

�(α + 1)
Φ(2r0) + b(t)

�(α + 1)
diam X(t).

Hence, by assumption (iv) we get

lim sup
t→∞

diam(V X)(t) � k lim sup
t→∞

diam X(t), (3.4)

where we denoted

k = AΦ(r0) + B

�(α + 1)
.

Obviously, in view of assumption (v) we have that k < 1.
Further, let us take arbitrary numbers T > 0 and ε > 0. Next, fix arbitrarily a function x ∈ X and t1, t2 ∈ [0, T ] such that

|t1 − t2| � ε. Without loss of generality we may assume that t1 < t2. Then, taking into account our assumptions and using
the previously obtained estimate (3.2) we get

∣∣(V x)(t2) − (V x)(t1)
∣∣ �

∣∣p(t2) − p(t1)
∣∣ + ∣∣(F x)(t2)(U x)(t2) − (F x)(t1)(U x)(t2)

∣∣ + ∣∣(F x)(t1)(U x)(t2) − (F x)(t1)(U x)(t1)
∣∣

� ωT (p, ε) + ∣∣ f
(
t2, x(t2)

) − f
(
t1, x(t1)

)∣∣ · 1

�(α)

t2∫
0

|u(t2, s, x(s))|
(t2 − s)1−α

ds

+ | f (t1, x(t1))|
�(α + 1)

{
T αωT

1 (u, ε; r0) + 2εα
[
n(T )Φ(r0) + u1(T )

]}

� ωT (p, ε) + | f (t2, x(t2)) − f (t2, x(t1))| + | f (t2, x(t1)) − f (t1, x(t1))|
�(α)

·
t2∫

0

|u(t2, s, x(s)) − u(t2, s,0)| + |u(t2, s,0)|
(t2 − s)1−α

ds

+ | f (t1, x(t1)) − f (t1,0)| + | f (t1,0)|
�(α + 1)

{
T αωT

1

(
u, ε; ‖x‖) + 3εα

[
n(T )Φ(r0) + u1(T )

]}

� ωT (p, ε) + m(t2)|x(t2) − x(t1)| + ωT
1 ( f , ε)

�(α)

t2∫
0

n(t2)Φ(|x(s)|) + u1(t2)

(t2 − s)1−α

+ m(t1)|x(t1)| + | f (t1,0)|
�(α + 1)

{
T αωT

1

(
u, ε; ‖x‖) + 3εα

[
n(T )Φ(r0) + u1(T )

]}

� ωT (p, ε) + [m(t2)ω
T (x, ε) + ωT

1 ( f , ε)]tα2 [n(t2)Φ(r0) + u1(t2)]
�(α + 1)

+ m(T )r0 + f (T )

�(α + 1)

{
T αωT

1

(
u, ε; ‖x‖) + 3εα

[
n(T )Φ(r0) + u1(T )

]}

� ωT (p, ε) + [m(t2)n(t2)tα2 Φ(r0) + m(t2)u1(t2)tα2 ]ωT (x, ε)

�(α + 1)

+ ωT
1 ( f , ε)T α[n(T )Φ(r0) + u1(T )]

�(α + 1)

+ m(T )r0 + f (T )

�(α + 1)

{
T αωT

1 (u, ε; r0) + 3εα
[
n(T )Φ(r0) + u1(T )

]}

� ωT (p, ε) + AΦ(r0) + B

�(α + 1)
ωT (x, ε) + ωT

1 ( f , ε)T α[n(T )Φ(r0) + u1(T )]
�(α + 1)

+ m(T )r0 + f (T )

�(α + 1)

{
T αωT

1 (u, ε; r0) + 2εα
[
n(T )Φ(r0) + u1(T )

]}
, (3.5)

where we denoted

ωT
1 ( f , ε) = sup

{∣∣ f (t2, x) − f (t1, x)
∣∣: t1, t2 ∈ [0, T ], |t2 − t1| � ε, x ∈ [−r0, r0]

}
,

m(T ) = max
{
m(t): t ∈ [0, T ]},
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f (T ) = max
{∣∣ f (t,0)

∣∣: t ∈ [0, T ]}.
Moreover, let us mention that other notations used in the above estimate were introduced earlier.

Now, keeping in mind the uniform continuity of the function u = u(t, s, x) on the set [0, T ] × [0, T ] × [−r0, r0] and the
uniform continuity of the function f = f (t, x) on the set [0, T ] × [−r0, r0], from the estimate (3.5) we derive the following
one:

ωT
0 (V X) � kωT

0 (X).

Hence we get

ω0(V X) � kω0(X). (3.6)

Now observe, that linking (3.4) and (3.6) and keeping in mind the definition of the measure of noncompactness μ given by
the formula (2.1), we derive the following inequality:

μ(V X) � kμ(X). (3.7)

In the sequel let us put B1
r0

= Conv V (Br0), B2
r0

= Conv V (B1
r ) and so on. Observe that B1

r0
⊂ Br0 , which is a simple

consequence of Lemma 1. Further notice that this sequence is decreasing i.e. Bn+1
r0

⊂ Bn
r0

for n = 1,2, . . . . Also the sets of
this sequence are closed, convex and nonempty. Moreover, in view of (3.7) we get

μ
(

Bn
r0

)
� knμ(Br0 ),

for any n = 1,2, . . . . We can also easily calculate that μ(Br0) = 4r0. Combining this fact with the above inequality we obtain

lim
n→∞μ

(
Bn

r0

) = 0.

Hence, taking into account Definition 1 we infer that the set Y = ⋂∞
n=1 Bn

r0
is nonempty, bounded, closed and convex. More-

over, the set Y is a member of the kernel kerμ of the measure of noncompactness μ (cf. remarks made after Definition 1).
In particular we have that

lim sup
t→∞

diam Y (t) = lim
t→∞ diam Y (t) = 0. (3.8)

Let us also observe that the operator V transforms the set Y into itself.
In what follows we show that V is continuous on the set Y .
To prove this let us fix a number ε > 0 and take arbitrary functions x, y ∈ Y such that ‖x − y‖ � ε. Using (3.8) and the

fact that V Y ⊂ Y we deduce that there exists T > 0 such that for an arbitrary t � T we get

∣∣(V x)(t) − (V y)(t)
∣∣ � ε. (3.9)

Further, let us assume that t ∈ [0, T ]. Then, applying the imposed assumptions and evaluating similarly as above, we
obtain

∣∣(V x)(t) − (V y)(t)
∣∣ � m(t)|x(t) − y(t)|

�(α)

t∫
0

n(t)Φ(|x(s)|) + u1(t)

(t − s)1−α
ds + [m(t)|y(t)| + | f (t,0)|]n(t)

�(α)

t∫
0

Φ(|x(s) − y(s)|)
(t − s)1−α

ds

� [m(t)n(t)Φ(r0) + m(t)u1(t)]ε
�(α)

t∫
0

ds

(t − s)1−α
+ [m(t)n(t)r0 + | f (t,0)|n(t)]Φ(ε)

�(α)

t∫
0

ds

(t − s)1−α

= a(t)Φ(r0) + b(t)

�(α + 1)
ε + a(t)r0 + c(t)

�(α + 1)
Φ(ε) � AΦ(r0) + B

�(α + 1)
ε + Ar0 + C

�(α + 1)
Φ(ε). (3.10)

Now, combining (3.9) and (3.10) and assumption (iv) we conclude that the operator V transforms continuously the set Y
into itself.

Finally, let us observe that taking into account all the facts concerning the set Y and the operator V : Y → Y which were
established above, in view of the classical Schauder fixed point principle we deduce that V has at least one fixed point x
in the set Y . In view of Lemma 1 the function x = x(t) is a solution of the quadratic fractional integral equation (3.1).
Moreover, keeping in mind the fact that Y ∈ kerμ and the characterization of sets belonging to kerμ (cf. remarks made
after formula (2.1) defining the measure μ) we conclude that all solutions of Eq. (3.1) are uniformly locally attractive in the
sense of Definition 2. This completes the proof. �
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4. An example and remarks

In this section we provide an example illustrating the main existence result contained in Theorem 1.

Example. Consider the following quadratic Volterra integral equation of fractional order:

x(t) = te−t2/2 + t + t2x(t)

�(2/3)

t∫
0

e−3t−s 3
√

x2(s) + 1
10t8/3+1

(t − s)1/3
ds, (4.1)

where t ∈ R+ .
Observe that the above equation is a special case of Eq. (3.1). Indeed, if we put α = 2/3 and

p(t) = te−t2/2,

f (t, x) = t + t2x,

u(t, s, x) = e−3t−s 3
√

x2 + 1

10t8/3 + 1
,

then we can easily check that the assumptions of Theorem 1 are satisfied. In fact, we have that the function p(t) is contin-
uous and bounded on R+ . Moreover, ‖p‖ = p(1) = e−1/2 = 0.60653 . . . . Thus assumption (i) is satisfied.

Further observe that the function f (t, x) satisfies assumption (ii) with m(t) = t2 and | f (t,0)| = f (t,0) = t . Next, let us
notice that the function u(t, s, x) satisfies assumption (iii), where n(t) = e−3t , Φ(r) = 3√

r2 and u(t, s,0) = 1/(10t8/3 + 1).
Thus u1(t) = u(t, s,0). To check that assumption (iv) is satisfied let us observe that the functions a,b, c,d appearing in that
assumption take the form:

a(t) = t8/3e−3t,

b(t) = t8/3/
(
10t8/3 + 1

)
,

c(t) = t5/3e−3t,

d(t) = t5/3/
(
10t8/3 + 1

)
.

Thus, it is easily seen that a(t) → 0 as t → ∞ and A = a(8/9) = (8/9)8/3e−8/3 = 0.0507543 . . . . Further we have that the
function b(t) is bounded on R+ and B = 0.1. It is also easy to check that c(t) → 0 as t → ∞. Moreover, we have that
C = c(5/9) = (5/9)5/3e−5/3 = 0,0709235 . . . . Also we see that d(t) → 0 as t → ∞ and D = d((1/6)3/8) = 0.1223733 . . . .

Finally, let us note that the inequality from assumption (v) has the form

e−1/2 + 1

�(5/3)

[
Ar5/3 + Br + Cr2/3 + D

]
� r.

Let us write this inequality in the form

�(5/3)e−1/2 + Ar5/3 + Br + Cr2/3 + D � r�(5/3). (4.2)

Denoting by L(r) the left-hand side of this inequality, i.e.

L(r) = �(5/3)e−1/2 + Ar5/3 + Br + Cr2/3 + D

and keeping in mind the above established values of the constants A, B, C, D, for r = 1 we obtain

L(1) = �(5/3)e−1/2 + A + B + C + D = �(5/3)0.60653 . . . + 0.344051 . . . .

Hence, taking into account that �(5/3) > 0.8856 (cf. [9]), we obtain that the number r0 = 1 is a solution of the inequal-
ity (4.2).

Now, based on Theorem 1 we infer that Eq. (4.1) has a solution in the space BC(R+) belonging to the ball B1. Moreover,
solutions of Eq. (4.1) are uniformly locally attractive in the sense of Definition 2. That means that for arbitrary solutions x(t)
and y(t) of Eq. (4.1) belonging to B1 we have that

lim
t→∞

(
x(t) − y(t)

) = 0

uniformly with respect to the ball B1.
In what follows we compare the result contained in Theorem 1 with the result on existence and global attractivity of

solutions contained in the paper [12]. First of all let us observe that the result of Theorem 1 remains true if we take the
limit case of Eq. (3.1) with α = 1.
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Further, let us notice that in the paper [12] the authors studied, among other, the following quadratic Volterra integral
equation:

x(t) = g
(
t, x(t)

) + x(t)

t∫
0

u
(
t, s, x(s)

)
ds, (4.3)

where t ∈ R+ .
To simplify our considerations we will investigate a special case of Eq. (4.3) having the form

x(t) = x(t)

t∫
0

u
(
t, s, x(s)

)
ds. (4.4)

We note that Eq. (4.4) is a special limit case of Eq. (3.1), where f (t, x) = x and α = 1.
Observe that the main assumption concerning Eq. (4.4) imposed in [12] is

lim
t→∞

t∫
0

∣∣u(
t, s, x(s)

)∣∣ds = 0 (4.5)

uniformly with respect to x ∈ BC(R+).
On the other hand the essential part of assumptions (iii) and (iv) formulated in Theorem 1 and adapted to Eq. (4.4)

(where m(t) ≡ 1, α = 1) has the form

∣∣u(t, s, x) − u(t, s, y)
∣∣ � n(t)Φ

(|x − y|),
where n : R+ → R+ is a continuous function and Φ : R+ → R+ is a continuous and nondecreasing function. Moreover, we
require additionally that n(t) → 0 as t → ∞ and the function u1(t) = max{|u(t, s,0)|: 0 � s � t} is bounded on R+ .

Observe that these assumptions do not imply that condition (4.5) is satisfied. Indeed, we have

t∫
0

∣∣u(
t, s, x(s)

)∣∣ds � tn(t)Φ
(‖x‖) + tu1(t).

In the light of the assumptions formulated in Theorem 1 and mentioned above we cannot infer that condition (4.5) is
satisfied.

This shows that the result obtained in this paper is more general than the result from [12].
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[4] J. Banaś, B. Rzepka, On existence and asymptotic stability of solutions of a nonlinear integral equation, J. Math. Anal. Appl. 284 (2003) 165–173.
[5] J. Banaś, B. Rzepka, Monotonic solutions of a quadratic integral equation of fractional order, J. Math. Anal. Appl. 322 (2) (2007) 1371–1379.
[6] T.A. Burton, B. Zhang, Fixed points and stability of an integral equation: Nonuniqueness, Appl. Math. Lett. 17 (2004) 839–846.
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