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Abstract

Let | - || be a norm on R". Averaging ||(g1x1, ..., &nXy)| over all the 2" choices of € = (e1,...,&) €
{—1, +1}", we obtain an expression [|x|| which is an unconditional norm on R”. Bourgain, Lindenstrauss
and Milman [J. Bourgain, J. Lindenstrauss, V.D. Milman, Minkowski sums and symmetrizations, in: Geo-
metric Aspects of Functional Analysis (1986/1987), Lecture Notes in Math., vol. 1317, Springer, Berlin,
1988, pp. 44-66] showed that, for a certain (large) constant n > 1, one may average over nn (random)
choices of € and obtain a norm that is isomorphic to ||| - [|. We show that this is the case for any 1 > 1.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let (E, | - ||) be a normed space, and let vy, ..., v, € E \ {0}. Define a norm ||| - || on R" as
follows:

el = 3 eixiv

, €]
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where the expectation is over the choice of n independent random signs ¢, ..., &,. This is an
unconditional norm; that is,

llGer 22, x| = ([ (Bl beal - )]

The following theorem states that it is sufficient to average O (n), rather than 2", terms in (1),
in order to obtain a norm that is isomorphic to || - || (and in particular approximately uncondi-
tional).

Theorem. Let N = (1 +&)n, £ >0, and let

{eij |1<i<n, 1< j< N}

be a collection of independent random signs. Then

n
E el-jxiv,-

N
1
n
Piva € R" c) llxll < )

< c<s>|||x|||} >1—e 8,

j=1lli=1
where
c&2, 0<&<l, ”
C 0<&<C
J— 1 — ’ )
C(é:) - Cv 1 <$ < C ) C(%‘) - { 1 + C”/Ez, C// g 5,

1 _C//szv C//gé,
andc,c’,C,C’, > 0 are universal constants (such that 1 — 2c 1+ <O).
de,d,C,C',C" >0 iversal (such that 1 —C'/C" > ¢, 1+ C'/C"* < C)

This extends a result due to Bourgain, Lindenstrauss and Milman [3], who considered the case
of large & (¢ > C”); their proof makes use of the Kahane—Khinchin inequality. Their argument
yields the upper bound for the full range of &, so the innovation is in the lower bound for small &.

With the stated dependence on &, the corresponding result for the scalar case dim E = 1 was
proved by Rudelson [6], improving previous bounds on c¢(£) in [1,2,4]; see below. This is one of
the two main ingredients of our proof, the second one being Talagrand’s concentration inequal-
ity [8] (which, as shown by Talagrand, also implies the Kahane—Khinchin inequality).

2. Proof of Theorem

Let us focus on the case £ < 1; the same method works (in fact, in a simpler way) for £ > 1.
Denote ||x|Iy = % Z;V:] | Z?:l &ijx;vi|l; this is a random norm depending on the choice

of &;;. Let Sﬂl = {x e R": ||x|| = 1} be the unit sphere of (R”, || - ||); we estimate

P{vx e §jiy's c&* <llxlly < C}

>1-P{are sy, lixlly > C}

—P{(¥yeSiy" Iyliv <C) A (@x e Siyt lixlly < &)} 2)
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Upper bound. Let us estimate the first term
P{ax e sji L lxlly > C}.

Remark. As we mentioned, the needed estimate follows from the argument in [3]; for complete-
ness, we reproduce a proof in the similar spirit.

Theorem. (See Talagrand [8].) Let wy, ..., w, € E be vectors in a normed space (E, || - ||), and
let g1, ..., ey be independent random signs. Then for any t > 0

n n
P Zeiwi Zsiwi
i=1 i=1

where c1, C1 > 0 are universal constants, and

—-E

> t} < Cre /o, 3)

n
o =0%(wi,..., wy) = sup{ > o) ' peE*, |ol* < 1}.
i=1

Remark. Talagrand has proved (3) with the median Med || }"/_, &;w;|| rather than the expec-
tation; one can however replace the median by the expectation according to the proposition in
Milman and Schechtman [5, Appendix V].
For x = (x, ..., x,) € R", denote
az(x) = oz(xlvl, e, XpUpn).
Claim 1. o is a norm on R" and o (x) < Ca||x||| for any x € R".
Proof. The first statement is trivial. For the second one, note that

llxll = EH D eixivi| > E“P(Z Sixivi>‘ =]E‘ D eipxiv)

Now, by the classical Khinchin inequality,

DV ZE[Y ezt 307 )

(see Szarek [7] for the optimal constant Cp = \/E). Therefore

x> C5' sup ([ eiv)?=Cylo). O
lol*<1

By the claim and Talagrand’s inequality, for every (fixed) x € Sﬂml

|

o el <1

n
E EiXi
i=1

> t} <C exp(—cztz).
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Together with a standard argument (based on the exponential Chebyshev inequality), this implies
(for ¢ large enough)

{ Z Zgl,x,

j=1

> } < exp(—C3t2N).
In particular, for t = C3 > /4/c3 the left-hand side is smaller than 127N <62V,
The following fact is well known, and follows for example from volume estimates (cf. [5]).

Claim 2. For any 0 > 0, there exists a 0-net Ny with respect to || - || on SIH I of cardinality
#Ny < (3/0)".

For now we only use this for §# = 1/2. By the above, with probability greater than 1 — 27V,
we have: ||x]|y < C3 simultaneously for all x € ./\fl/z.

Representing an arbitrary unit vector x € S\Illl-ml as
o
x=Y ax®, ja | <1721 x® e N,

we deduce: [|x||ny < 2C3, and hence finally,

P{ax e st lxlly > €} <27V )
(for C =2C3).
Lower bound. Now we turn to the second term

P{(Vy € Si5L ylly < C) A @x € S5t llxlly < cg2)).

For o¢ (that we choose later), let us decompose SlrllH_Hl =U WV, where

U:{xESl’ﬁ_T”1 ‘a(x)}oo}, V:{xeSﬁml |G()C)<O'()}.

Recall the following result (mentioned in the introduction); we use the lower bound that is due
to Rudelson [6].

Theorem. (See [1,2,4,6].) Let N = (1+&)n, 0 < & < 1, and let
{eij | 1<i<n, 1<j< N}

be a collection of independent random signs. Then

Zeuyz

i=1

PiVy e R", csé? |yl < Z
jl

c4|y|} > 1 — e 4,

where cy, c:‘, C4 > 0 are universal constants, and | - | is the standard Euclidean norm.
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Remark. By the Khinchin inequality (4), this is indeed the scalar case of Theorem 1 for
0<& <.

Thence with probability > 1 — e~ the following inequality holds for all x € U (simulta-
neously):

llxlly = sup — EijXivi || = 8lj(p(xlvl
uwu*<1N Z nwn*<1Nj 1o
n
> sup g’ | Y oxiv)? = caElo (x) > cat’op. (6)
lol*<1 i=1

Now let us deal with vectors x € V. Let Np be a 9-net on S”| I (Where 6 will be also chosen later).
For x’ € N such that ||x — x'|| <0, o(x") < 0g + C20 by Claim 1. Therefore by Talagrand’s
inequality (3),

IP){

and hence definitively

n
} : ’

EjX; Vi
i=1

< 1/2} < Crexp(—ci/(4(o0 + C29)2)),

n
.. / .
EijX; Vi

i=1

N/2
<1/4t <oVlerexp( —— /
4(cg + C20)?

I e G I

Let o9 = C»0, and choose 0 <8 < 1/(8C) so that

SE

c1
SYeTE —log(2y/C1) > log2 +1og(3/6).

Then the probability above is not greater than 2~V (6/3)N < 2=V /#Aj (by Claim 2). Therefore
with probability > 1 — 2~V we have

llx'llxy = 1/4 for x’ € Ny such that ||x — x’|] < 6 for some x € V.

Using the upper bound (5), we infer:

llxlly = llx" v = llx" — x|y >1/4 = C/8C
=1/4-1/8=1/8, xeV. )

The juxtaposition of (2) and (5)—(7) concludes the proof.
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Remark. Another way to conclude the proof for x € V would be to choose a §-net Ny C V
for V such that #Np < (3/6)". This simplifies the condition on o¢ and § and avoids the use of
Claim 1; on the other hand, the argument above illustrates the robustness of the method.
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