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Abstract

Let ‖ · ‖ be a norm on R
n. Averaging ‖(ε1x1, . . . , εnxn)‖ over all the 2n choices of −→ε = (ε1, . . . , εn) ∈

{−1,+1}n, we obtain an expression |||x||| which is an unconditional norm on R
n. Bourgain, Lindenstrauss

and Milman [J. Bourgain, J. Lindenstrauss, V.D. Milman, Minkowski sums and symmetrizations, in: Geo-
metric Aspects of Functional Analysis (1986/1987), Lecture Notes in Math., vol. 1317, Springer, Berlin,
1988, pp. 44–66] showed that, for a certain (large) constant η > 1, one may average over ηn (random)
choices of −→ε and obtain a norm that is isomorphic to ||| · |||. We show that this is the case for any η > 1.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let (E,‖ · ‖) be a normed space, and let v1, . . . , vn ∈ E \ {0}. Define a norm ||| · ||| on R
n as

follows:

|||x||| = E

∥∥∥∑
εixivi

∥∥∥, (1)
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where the expectation is over the choice of n independent random signs ε1, . . . , εn. This is an
unconditional norm; that is,

∣∣∣∣∣∣(x1, x2, . . . , xn)
∣∣∣∣∣∣ = ∣∣∣∣∣∣(|x1|, |x2|, . . . , |xn|

)∣∣∣∣∣∣ .

The following theorem states that it is sufficient to average O(n), rather than 2n, terms in (1),
in order to obtain a norm that is isomorphic to ||| · ||| (and in particular approximately uncondi-
tional).

Theorem. Let N = (1 + ξ)n, ξ > 0, and let

{εij | 1 � i � n, 1 � j � N}

be a collection of independent random signs. Then

P

{
∀x ∈ R

n c(ξ) |||x||| � 1

N

N∑
j=1

∥∥∥∥∥
n∑

i=1

εij xivi

∥∥∥∥∥ � C(ξ)|||x|||
}

� 1 − e−c′ξn,

where

c(ξ) =
⎧⎨
⎩

cξ2, 0 < ξ < 1,

c, 1 � ξ < C′′,
1 − C′/ξ2, C′′ � ξ,

C(ξ) =
{

C, 0 < ξ < C′′,
1 + C′′/ξ2, C′′ � ξ,

and c, c′,C,C′,C′′ > 0 are universal constants (such that 1 − C′/C′′2 � c, 1 + C′/C′′2 � C).

This extends a result due to Bourgain, Lindenstrauss and Milman [3], who considered the case
of large ξ (ξ � C′′); their proof makes use of the Kahane–Khinchin inequality. Their argument
yields the upper bound for the full range of ξ , so the innovation is in the lower bound for small ξ .

With the stated dependence on ξ , the corresponding result for the scalar case dimE = 1 was
proved by Rudelson [6], improving previous bounds on c(ξ) in [1,2,4]; see below. This is one of
the two main ingredients of our proof, the second one being Talagrand’s concentration inequal-
ity [8] (which, as shown by Talagrand, also implies the Kahane–Khinchin inequality).

2. Proof of Theorem

Let us focus on the case ξ < 1; the same method works (in fact, in a simpler way) for ξ � 1.
Denote |||x|||N = 1

N

∑N
j=1 ‖∑n

i=1 εij xivi‖; this is a random norm depending on the choice

of εij . Let Sn−1
|||·||| = {x ∈ R

n: |||x||| = 1} be the unit sphere of (Rn, ||| · |||); we estimate

P
{∀x ∈ Sn−1

|||·||| , cξ2 � |||x|||N � C
}

� 1 − P
{∃x ∈ Sn−1

|||·||| , |||x|||N > C
}

− P
{(∀y ∈ Sn−1, |||y|||N � C

) ∧ (∃x ∈ Sn−1, |||x|||N < cξ2)}. (2)
|||·||| |||·|||
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Upper bound. Let us estimate the first term

P
{∃x ∈ Sn−1

|||·||| , |||x|||N > C
}
.

Remark. As we mentioned, the needed estimate follows from the argument in [3]; for complete-
ness, we reproduce a proof in the similar spirit.

Theorem. (See Talagrand [8].) Let w1, . . . ,wn ∈ E be vectors in a normed space (E,‖ · ‖), and
let ε1, . . . , εn be independent random signs. Then for any t > 0

P

{∣∣∣∣∣
∥∥∥∥∥

n∑
i=1

εiwi

∥∥∥∥∥−E

∥∥∥∥∥
n∑

i=1

εiwi

∥∥∥∥∥
∣∣∣∣∣ � t

}
� C1e

−c1t
2/σ 2

, (3)

where c1,C1 > 0 are universal constants, and

σ 2 = σ 2(w1, . . . ,wn) = sup

{
n∑

i=1

ϕ(wi)
2
∣∣∣ ϕ ∈ E∗, ‖ϕ‖∗ � 1

}
.

Remark. Talagrand has proved (3) with the median Med‖∑n
i=1 εiwi‖ rather than the expec-

tation; one can however replace the median by the expectation according to the proposition in
Milman and Schechtman [5, Appendix V].

For x = (x1, . . . , xn) ∈ R
n, denote

σ 2(x) = σ 2(x1v1, . . . , xnvn).

Claim 1. σ is a norm on R
n and σ(x) � C2|||x||| for any x ∈ R

n.

Proof. The first statement is trivial. For the second one, note that

|||x||| = E

∥∥∥∑
εixivi

∥∥∥ � E

∣∣∣ϕ(∑
εixivi

)∣∣∣ = E

∣∣∣∑ εiϕ(xivi)

∣∣∣, ‖ϕ‖∗ � 1.

Now, by the classical Khinchin inequality,√∑
y2
i � E

∣∣∣∑ εiyi

∣∣∣ � C−1
2

√∑
y2
i (4)

(see Szarek [7] for the optimal constant C2 = √
2). Therefore

|||x||| � C−1
2 sup

‖ϕ‖∗�1

√∑
ϕ(xivi)2 = C−1

2 σ(x). �

By the claim and Talagrand’s inequality, for every (fixed) x ∈ Sn−1
|||·|||

P

{∥∥∥∥∥
n∑

εixi

∥∥∥∥∥ � t

}
� C1 exp

(−c2t
2).
i=1
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Together with a standard argument (based on the exponential Chebyshev inequality), this implies
(for t large enough)

P

{
1

N

N∑
j=1

∥∥∥∥∥
n∑

i=1

εij xi

∥∥∥∥∥ � t

}
� exp

(−c3t
2N

)
.

In particular, for t = C3 �
√

4/c3 the left-hand side is smaller than 12−N < 6−n2−N .
The following fact is well known, and follows for example from volume estimates (cf. [5]).

Claim 2. For any θ > 0, there exists a θ -net Nθ with respect to ||| · ||| on Sn−1
|||·||| of cardinality

#Nθ � (3/θ)n.

For now we only use this for θ = 1/2. By the above, with probability greater than 1 − 2−N ,
we have: |||x|||N � C3 simultaneously for all x ∈ N1/2.

Representing an arbitrary unit vector x ∈ Sn−1
|||·||| as

x =
∞∑

k=1

akx
(k), |ak| � 1/2k−1, x(k) ∈ N1/2,

we deduce: |||x|||N � 2C3, and hence finally,

P
{∃x ∈ Sn−1

|||·||| , |||x|||N > C
}

� 2−N (5)

(for C = 2C3).

Lower bound. Now we turn to the second term

P
{(∀y ∈ Sn−1

|||·||| , |||y|||N � C
) ∧ (∃x ∈ Sn−1

|||·||| , |||x|||N < cξ2)}.
For σ0 (that we choose later), let us decompose Sn−1

|||·||| = U � V , where

U = {
x ∈ Sn−1

|||·|||
∣∣ σ(x) � σ0

}
, V = {

x ∈ Sn−1
|||·|||

∣∣ σ(x) < σ0
}
.

Recall the following result (mentioned in the introduction); we use the lower bound that is due
to Rudelson [6].

Theorem. (See [1,2,4,6].) Let N = (1 + ξ)n, 0 < ξ < 1, and let

{εij | 1 � i � n, 1 � j � N}
be a collection of independent random signs. Then

P

{
∀y ∈ R

n, c4ξ
2 |y| � 1

N

N∑
j=1

∣∣∣∣∣
n∑

i=1

εij yi

∣∣∣∣∣ � C4|y|
}

� 1 − e−c′
4ξn,

where c4, c
′ ,C4 > 0 are universal constants, and | · | is the standard Euclidean norm.
4
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Remark. By the Khinchin inequality (4), this is indeed the scalar case of Theorem 1 for
0 < ξ < 1.

Thence with probability � 1 − e−c′
4ξn the following inequality holds for all x ∈ U (simulta-

neously):

|||x|||N � sup
‖ϕ‖∗�1

1

N

N∑
j=1

∣∣∣∣∣ϕ
(

n∑
i=1

εij xivi

)∣∣∣∣∣ = sup
‖ϕ‖∗�1

1

N

N∑
j=1

∣∣∣∣∣
n∑

i=1

εijϕ(xivi)

∣∣∣∣∣
� sup

‖ϕ‖∗�1
c4ξ

2

√√√√ n∑
i=1

ϕ(xivi)2 = c4ξ
2σ(x) � c4ξ

2σ0. (6)

Now let us deal with vectors x ∈ V . Let Nθ be a θ -net on Sn−1
|||·||| (where θ will be also chosen later).

For x′ ∈ Nθ such that |||x − x′||| � θ , σ(x′) � σ0 + C2θ by Claim 1. Therefore by Talagrand’s
inequality (3),

P

{∥∥∥∥∥
n∑

i=1

εix
′
ivi

∥∥∥∥∥ < 1/2

}
� C1 exp

(−c1/
(
4(σ0 + C2θ)2)),

and hence definitively

P

{
1

N

N∑
j=1

∥∥∥∥∥
n∑

i=1

εij x
′
ivi

∥∥∥∥∥ < 1/4

}
� 2N

{
C1 exp

(
− c1

4(σ0 + C2θ)2

)}N/2

= exp

{
−

(
c1

8(σ0 + C2θ)2
− log(2

√
C1)

)
N

}
.

Let σ0 = C2θ , and choose 0 < θ < 1/(8C) so that

c1

32C2
2θ2

− log(2
√

C1) > log 2 + log(3/θ).

Then the probability above is not greater than 2−N(θ/3)N < 2−N/#Nθ (by Claim 2). Therefore
with probability � 1 − 2−N we have

|||x′|||N � 1/4 for x′ ∈Nθ such that |||x − x′||| < θ for some x ∈ V .

Using the upper bound (5), we infer:

|||x|||N � |||x′|||N − |||x′ − x|||N � 1/4 − C/8C

= 1/4 − 1/8 = 1/8, x ∈ V. (7)

The juxtaposition of (2) and (5)–(7) concludes the proof.
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Remark. Another way to conclude the proof for x ∈ V would be to choose a θ -net Nθ ⊂ V

for V such that #Nθ � (3/θ)n. This simplifies the condition on σ0 and θ and avoids the use of
Claim 1; on the other hand, the argument above illustrates the robustness of the method.
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