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a b s t r a c t

Let I : C → M be a reflection of a category C with pullbacks into a full subcategory M
of C. We introduce an additional structure on C involving a pullback-preserving functor
U : C → S, which allows us to prove that the reflection I is: (a) semi-left-exact if and only
if it makes all connected components connected in an appropriate sense; (b) a reflection
with stable units if and only if certain pullbacks of connected components are connected.
This was previously done in the case where S is the category of sets.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Semi-left-exact reflections and reflections with stable units were originally introduced by Cassidy et al. [1] as reflections
that preserve certain pullbacks. We describe an additional structure on a reflection I : C → M, involving a pullback-
preserving functor U : C → S, which allows us to simplify these preservation conditions by reducing them to the
preservation of very special pullbacks (see Theorems 2.1 and 2.2 below). Furthermore, we show under stronger assumptions
that every simple reflection, in the sense of [1] again, is semi-left-exact (Theorem2.3). As suggested by topological examples,
and in agreement with the terminology of categorical Galois theory, the pullbacks used in Theorem 2.1 are called connected
components (see also Definition 2.1), while Theorem 2.2 in fact uses their pullbacks. For the special case where S is the
category of sets, these results were obtained in [3], and applied to reflections of: (i) varieties of universal algebras into
subvarieties of idempotent algebras; (ii) (the category of) compact Hausdorff spaces into Stone spaces. The case considered
here allows us to findmany other examples, including the reflection of categories into preorders and orders, as briefly shown
at the end of the paper.

2. Ground structure and connected components

Consider an adjunction H ⊢ I : C → M, with unit η : 1C → HI , such that the category C has pullbacks and the right
adjoint H is a full inclusion of M in C, that is, I is a reflection of a category with pullbacks into a full subcategory. Our ground
structure also involves a category S equipped with a class E of its morphisms, a functor U : C → S, and a class T of objects
in M. We will assume that this structure satisfies the following conditions:

(a) U preserves pullbacks;
(b) E is pullback stable and closed under composition in S, and if f ′f is in E so is f ′, provided f is in E ;1

(c) every map U(ηC ) : U(C) → UHI(C) belongs to E , C ∈ C;
(d) a morphism g : N → M in M is an isomorphismwhenever UH(g) is in E and there exists f : A → UH(N) in E such that,

for every morphism c : T → M in M with T in T , there exists a commutative diagram of the form

E-mail address: xarez@ua.pt.
1 This is the case if E is the left-hand class of a stable (pre)factorisation system (in the sense of [1]).
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A

A ×UH(M) UH(T )

UH(N) UH(M)

UH(T )

pr1 UH(c)

f UH(g)
✲ ✲

✲
pr2

❄ ❄

UH(T )

❄

❳❳❳❳③
l

✘✘✘✘✘✘✿

(1)

with l in E .

Definition 2.1. Consider any morphism µ : T → HI(C) from an object T ∈ T into HI(C), for some C ∈ C. The connected
component of the morphism µ is the pullback Cµ = C ×HI(C) T in the following pullback square:

C

Cµ

HI(C) .

T

π
µ

1 µ
ηC

π
µ

2

✲

✲

❄ ❄

(2)

Theorem 2.1. I ⊣ H is semi-left-exact if and only if HI(Cµ) ∼= T , for every connected component Cµ.

Proof. If I ⊣ H is semi-left-exact, then I(C×HI(C)M)must be isomorphic to I(M) in the pullback square of the unitmorphism
ηC : C → HI(C) with a morphism h : M → HI(C), whereM is in M. In particular, I(C ×HI(C) M) ∼= I(T ) ifM ∼= T .

Suppose now that every connected component is connected, that is, I(Cµ) ∼= T for every µ : T → HI(C), C ∈ C, T ∈ T ,
and consider the diagram

pr2

C ×HI(C) M

Chν

HI(C ×HI(C) M) M

T

pr1 ν

ηC×HI(C)M HI(π2)

✲ ✲

✲

❄ ❄

HI(Chν)

❄HI(pr1)

❳❳❳❳❳❳❳③

ηCgν

✘✘✘✘✘✘✘✿HI(pr2)

C HI(C) HI(C)

π1 h

ηC 1HI(C)

✲ ✲
❄ ❄

HI(π1)

❄

(3)

where π1, π2, pr1, and pr2 are suitable pullback projections, and h and ν arbitrary morphisms in M with T in T . We have to
show that HI(π2) is an isomorphism.

The upper rectangle νpr2 = HI(π2)ηC×HI(C)Mpr1 in diagram (3) is a pullback square; therefore the outer rectangle in
diagram (3) is in fact a pullback square of the form of (2), and Chν is the connected component associated with hν : T →

HI(C). Then, as conditions (a)–(d) above hold, I(π2) is an isomorphism sinceHI(Chν) ∼= T , for anymorphisms h : M → HI(C),
withM ∈ M, and ν : T → M , with T ∈ T . �

Theorem 2.2. I ⊣ H has stable units if and only if HI(Cµ ×T Dν) ∼= T , for every pair of connected components Cµ, Dν , and T ∈ T ,
where Cµ ×T Dν (= C ×(ηC ,µ) T ×(ν,ηD) D) is the pullback object in any pullback of the form

Cµ

Cµ ×T Dν

T ,

Dν

p1 π ν
2

π
µ

2

p2

✲

✲

❄ ❄

(4)

where π
µ

2 and π ν
2 are the second projections in pullback diagrams of the form (2).
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Proof. If I ⊣ H has stable units then the functor I preserves the pullback diagrams (4), since the right corner at the bottom
is T ∈ M; therefore, HI(Cµ ×T Dν) ∼= T because HI(πµ

2 ) : HI(Cµ) ∼= T ∼= HI(Dν) : HI(π ν
2 ), for every pair of connected

components Cµ, Dν .
Suppose now that every pullback (4) of two connected components with respect to the same object T is connected, that

is, HI(Cµ ×T Dν) ∼= T for every pair of morphisms µ : T → HI(C) and ν : T → HI(D), with C,D ∈ C, and T ∈ T , and
consider the diagram

π2
C ×HI(C) D

HI(C ×HI(C) D) HI(D)

ηD

HI(π2)

D

✲

✲

❄

❄

C HI(C) HI(C)

π1

HI(h)

ηC 1HI(C)

✲ ✲
❄

HI(π1)

❄

❍❍
❍❍❍❥

ηC×HI(C)D

CHI(h)ν
✲

π
HI(h)ν
1

CHI(h)ν ×T Dν

❄

p1

Dν

❄

π ν
1

✲
p2

❍❍❍
❍❍❍❍❥

w

(5)

in the notation above; in particular, the morphisms p1 and p2 are the pullback projections in diagram (4) with µ = HI(h)ν.
We have to prove again that HI(π2) is an isomorphism. The morphism w is the unique morphism which makes diagram (5)
commute; it is well defined since

HI(h)ηDπ
ν
1 p2 = HI(h)νπ ν

2 p2 = HI(h)νπ
HI(h)ν
2 p1 = ηCπ

HI(h)ν
1 p1.

UHI(π2) is obviously in E , for UHI(π2)U(ηC×HI(C)D) = U(ηD)U(π2) and U(ηC×HI(C)D), and U(ηD) and U(π2) are all in E

by the assumptions. Then, I(π2) is an isomorphism if the outer rectangle in the following diagram is a pullback square, for
every morphism ν : T → HI(D), T ∈ T (cf. diagram (1)):

C ×HI(C) D

CHI(h)ν ×T Dν

✲ ✲
HI(π2)

HI(D) .
❄

T

ν

p2 ✲ Dν

π ν
2 ✲

❄HI(w)

ηCHI(h)ν×Dν

HI(C ×HI(C) D)

w

ηC×HI(C)D

❄

HI(CHI(h)ν ×T Dν)
❳❳❳❳❳③ ✘✘✘✘✘✿

HI(π ν
2 p2)

(6)

Proving that the outer rectangle in diagram (6) is a pullback square is a straightforward calculation. �

Theorem 2.3. In addition to conditions (a)–(d) used above, assume that:

(e) the map IT ,C : C(T , C) → M(T , I(C)) is a surjection, for all objects C ∈ C and T ∈ T .

Then the reflection I ⊣ H is semi-left-exact if and only if it is simple.
Proof. Suppose that I ⊣ H is a simple reflection, that is, I(w) is an isomorphism in every pullback diagram of a unit
morphism ηB : B → HI(B) with HI(f ) : HI(A) → HI(B), where w is ⟨f , ηA⟩ : A → B ×HI(B) HI(A). Consider the pullback
square (2) in Definition 2.1, and let w : T → Cµ be the unique morphism such that π

µ

1 w = ν and π
µ

2 w = 1T , where ν is
such that HI(ν) = µ (ν exists by (e) in the statement). The composite I(πµ

2 )I(w) is the isomorphism 1T . Hence, I(π
µ

2 ) is an
isomorphism, and we can apply Theorem 2.1. �

New examples:

1. Let I ⊣ H be any reflection from the category Ĉ = SetCop
of presheaves into a full subcategory M, such that its unit

η : 1Ĉ → HI is a surjection componentwise. The functor U is the identity functor 1Ĉ : Ĉ → S = Ĉ, and E is the class of
morphisms which are surjections componentwise. If, furthermore, every hom-functor C(−, C) is in M,2 C(C, C) is a finite

2 It is known that, provided X is any cocomplete category, any faithful functor T : C → X determines an adjunction G ⊢ F : Ĉ → X such that the
(E, M)-factorisation of its unit ϕ = µη produces a full reflection H ⊢ I : Ĉ → M, with C(−, C) ∈ M for each C ∈ C (see [2]), where M is determined by
the presheaves S : Cop

→ Set for which ϕS belongs to M, the class of morphisms which are injections componentwise.
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set for each C ∈ C (e.g., C = ∆ the category of positive ordinals), and T = {C(−, C) | C ∈ C}, then conditions (a), (b) and
(c) obviously hold. Condition (d) holds as well, as we are going to show. The following diagram is a pointwise instance of
diagram (1) of condition (d), as regards the present example, where c is determined by cC (1C ) = m ∈ M(C):

A(C)

A(C) ×M(C) C(C, C)

N(C) M(C) .

C(C, C)

pr1,C cC

fC gC
✲ ✲

✲pr2,C

❄ ❄

C(C, C)

❄uC

❳❳❳❳③
lC

✘✘✘✘✘✿eC

Suppose that gC is not an injectivemap, that is, gC (n1) = m = gC (n2)with n1 ≠ n2. Then, there will be distinct a1, a2 ∈ A(C)
such that n1 = fC (a1), n2 = fC (a2), and uC lC (a1, 1C ) = n1, uC lC (a2, 1C ) = n2, which implies lC (a1, 1C ) ≠ lC (a2, 1C ) and
eC (lC (a1, 1C )) = eC (lC (a2, 1C )) = 1C . This is a contradiction, because eC being a surjection between finite sets must also be
an injection.

Note further that such a reflection H ⊢ I : Ĉ → M is semi-left-exact if and only if it is simple, as follows from Theo-
rem 2.3: the map IC(−,C),A : Ĉ(C(−, C), A) → M(C(−, C), I(A)) is a surjection, by the Yoneda lemma.

2. Parentheses will be used to describe various obvious reflections, which satisfy conditions (a)–(d) above. H ⊢ I : Cat →

(Pre)Ord is a reflection from the category of small categories into the category of (pre)ordered sets, such that I(C) is the
(pre)order in which all morphisms in the same hom-set, and, just in the case M = Ord, objects A, B for which both hom-
sets C(A, B) and C(B, A) are non-empty, are identified. U : Cat → (R)Graphs is the forgetful functor into the category of
(reflexive) graphs. T = {T }, where T = 2 is the (pre)order with two objects and one non-identity morphism. E is the class
of all graph morphisms which are simultaneously surjections on the nodes and on the arrows.
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