JOURNAL OF MULTIVARIATE ANALYSIS 15, 228-236 (1984)

A Test for the Independence of Two Gaussian Processes

C. S. WITHERS

Applied Mathematics Diuision, DSIR, Wellington, New Zealand Communicated by M. M. Rao

A bivariate Gaussian process with mean 0 and covariance

$$
\Sigma(s, t, \rho) = \begin{pmatrix} \Sigma_{11}(s, t) & \rho \Sigma_{12}(s, t) \\ \rho \Sigma_{21}(s, t) & \Sigma_{22}(s, t) \end{pmatrix}
$$

is observed in some region Ω of R', where $\{\Sigma_{ij}(s, t)\}\$ are given functions and ρ an unknown parameter. A test of $H_0: \rho = 0$, locally equivalent to the likelihood ratio test, is given for the case when Ω consists of p points. An unbiased estimate of ρ is given. The case where Ω has positive (but finite) Lebesgue measure is treated by spreading the p points evenly over Ω and letting $p \to \infty$. Two distinct cases arise, depending on whether $A_{2,p}$, the sum of squares of the canonical correlations associated with $\Sigma(s, t, 1)$ on Ω^2 , remains bounded. In the case of primary interest as $p \to \infty$, $A_{2,p} \to \infty$, in which case $\hat{\rho}$ converges to p and the power of the one-sided and two-sided tests of H_0 tends to 1. (For example, this case occurs when $\Sigma_{ij}(s, t) \equiv$ $\mathcal{L}_{1,1}(s, t)$. © 1984 Academic Press, Inc.

1. INTRODUCTION AND SUMMARY

Suppose that a zero mean bivariate Gaussian process $Z = (X, Y)'$ is observed in some region Ω in R^r , with covariance positive definite of the form

$$
\Sigma(s,t,\rho)=EZ(s) Z(t)'=\begin{pmatrix} \Sigma_{11}(s,t) & \rho\Sigma_{12}(s,t) \\ \rho\Sigma_{21}(s,t) & \Sigma_{22}(s,t) \end{pmatrix},
$$

where $\{\Sigma_{ij}(s, t)\}\$ are known functions and ρ is an unknown real parameter.

We wish to test whether the processes $X(t)$ and $Y(t)$ are independent—that is to test the hypothesis $H_0: \rho = 0$, and to estimate ρ .

Received June 27, 1980; revised March 28, 1983.

AMS 1980 subject classifications: primary 62El5, secondary 60G 15.

Key words and phrases: Gaussian process, independence, canonical correlations, parametric test, quadratic forms in normal random variables.

Copyright $© 1984$ by Academic Press, Inc. All rights of reproduction in any form reserved. In Section 2 we consider the "finite" case where Ω consists of p points

$$
\Omega_p = \{t_{ip}, 1 \leqslant i \leqslant p\} \qquad \text{in} \quad R^r.
$$

Thus we observe $\mathbf{Z}' = (\mathbf{X}', \mathbf{Y}')$ where $X_i = X(t_{ip}), Y_i = Y(t_{ip}).$ A test of H_0 locally equivalent to the likelihood ratio test is to accept H_0 when $T_p = [\partial \ln f(\mathbf{Z}, \rho)/\partial \rho]_{\rho=0}$ is close to zero, where $f(z, \rho)$ is the density of Z in R^{2p} . Since $\mathbb{Z} \sim N_{2p}(0, C(\rho))$ where

$$
C(\rho) = \begin{pmatrix} \Sigma_{11\rho} & \rho \Sigma_{12\rho} \\ \rho \Sigma_{21\rho} & \Sigma_{22\rho} \end{pmatrix}
$$

and Σ_{ijp} is the $p \times p$ matrix with (α, β) element $\Sigma_{ij}(t_{\alpha p}, t_{\beta p})$, it follows (Lemma 2.1) that

$$
T_p = \mathbf{X}' R_p \mathbf{Y} \qquad \text{where} \quad R_p = \Sigma_{11p}^{-1} \Sigma_{12p} \Sigma_{22p}^{-1}.
$$
 (1.1)

In Theorem 2.1 we show that the distribution of T_p is determined by ρ and the canonical correlations of Z: these may be written in he form $\{|\rho| \lambda_{i\rho},\}$ $1 \leq i \leq p$, where $\{\lambda_{ip}\}\$ are the positive roots of $|C(-\lambda^{-1})| = 0$ and $|\cdot|$ denotes the determinant. Equivalently, $\{\lambda_{i,j}\}$ are the square roots of the eigenvalues of $A_nA'_n$ or of A'_nA_n , where $A_n = \sum_{n=1}^{n+1} \sum_{n=1}^{n} \sum_{n=1}^{n}$. In fact, Theorem 2.1 shows that

$$
T_p = \sum_{1}^{p} \lambda_{ip} (M_i^2 - N_i^2)/2 + \rho \sum_{1}^{p} \lambda_{ip}^2 (M_i^2 + N_i^2)/2
$$
 (1.2)

where $\{M_i, N_i\}$ are independent N(0, 1) random variables (r.v.s).

It follows that the null distribution of T_p is symmetric about 0, and that an unbiased estimate of ρ is

$$
\hat{\rho}_p = A_{2,p}^{-1} T_p \qquad \text{where} \quad A_{2,p} = \sum_{1}^{p} \lambda_{i,p}^2 = \text{trace } A_p A_p'.
$$
 (1.3)

In Theorem 2.2 we show how to express the distribution of T_p as a power series in ρ , and determine the slope of the power curve near $\rho = 0$ for the one- and two-sided tests of H_0 based on T_n .

A solution for the case when Ω , the domain of observation of Z, has a positive (but bounded) Lebesgue measure may be obtained by choosing ${t_{in}}$, $1 \leq i \leq p$ to be evenly distributed over Ω and allowing p to increase to ∞ . (For example, if $r = 1$ and $\Omega = [0, 1]$ one could choose $t_{in} = i/p$.) Two distinct situations arise, depending on whether $A_{2,p}$ remains bounded or not. Section 3 deals with the situation where $A_{2,p}$ remains bounded and $\lambda_{i,p} \rightarrow \lambda_i$ as $p \to \infty$. Theorem 3.1 shows that T_p converges to a r.v.

$$
T = \sum_{1}^{\infty} \lambda_i (M_i^2 - N_i^2)/2 + \rho \sum_{1}^{\infty} \lambda_i^2 (M_i^2 + N_i^2)/2,
$$
 (1.4)

with properties analogous to T_p . In particular the powers of the tests of H_0 are less than 1, and $\hat{\rho}_p$ does not converge to ρ .

However, in the situation where $A_{2,p} \to \infty$ as $p \to \infty$, dealt with in Section 4, T_p satisfies the Central Limit Theorem (C.L.T), $\hat{\rho}_p$ converges to ρ , and a test of H_0 may be constructed, with power at a given value of ρ arbitrarily close to 1. (In particular this situation occurs when $\Sigma_{ii} \equiv \Sigma_{11}$, as in the case of elliptical Brownian motion.)

Finally Section 5 illustrates an alternative method for obtaining $\{\lambda_i\}$ in the case where Ω is arbitrarily but $\Sigma_{11}(s, t)$, $\Sigma_{22}(s, t)$ have known eigenvalues and eigenfunctions. This approach also enables the construction of $\Sigma_{12}(s, t)$ such that the $\{\lambda_i\}$ have specified properties (such as $A_{2,\infty}$ being finite or infinite).

2. THE FINITE CASE

Suppose that $Z(t)$ is observed at only the p points in Ω_p .

LEMMA 2.1. T_n is given by (1.1).

Proof. $-2 \ln f(T, \rho) = \ln |C(\rho)| + 2p \ln(2\pi) + T/C(\rho)^{-1}Z$. Let $\Sigma = \Sigma = a^2 \Sigma, \Sigma^{-1} \Sigma$ $C^{11} = \Sigma^{-1}$ $C^{22} = \Sigma^{-1}$ and $C^{21} = (C^{12})'$. $-\rho \sum_{2p}^{-1} \sum_{2p}^{\infty} \sum_{1,2}^{-1}$. Then $|C(\rho)| = |\sum_{1,2}| \sum_{2p}$, (see for example De Groot [1, pp. 54-55], so that its derivative vanishes at $\rho = 0$. Also $C(\rho)^{-1} = (C^{ij})$ (e.g., Problem 2.7 of [3]) which has derivative $-C(\rho)^{-1} dC(\rho)/d\rho C(\rho)^{-1}$ equal to $-(\frac{0}{R'_n} - \frac{R_p}{0})$ when $\rho = 0$. The result follows.

The next result gives the Fourier transform and the Laplace transform of the density T_n .

THEOREM 2.1. T_p can be written in the form (1.2). Hence if

$$
Re(\lambda)(\pm\lambda_{ip}+\rho\lambda_{ip}^2)<2, \qquad 1\leqslant i\leqslant p,\tag{2.1}
$$

then $E \exp(\lambda T_p/2) = D_p(\lambda, \rho)^{-1/2}$ where

$$
D_p(\lambda, \rho) = D_{p,\rho}(\lambda) D_{p,-\rho}(-\lambda),
$$

\n
$$
D_{p,\rho}(\lambda) = \prod_{i=1}^p \{1 - \lambda(\lambda_{ip} + \rho \lambda_{ip}^2)/2\} = |I - \lambda(K_p + \rho K_p^2)/2|.
$$

and

$$
K_p = (A_p A_p')^{1/2}.
$$

Proof. From the singular value decomposition (e.g., [3, p. 42]), $A_p =$ UAV where $U'U = V'V = I_p$, $A = \text{diag}(v_1,..., v_p)$, and $v_i = \lambda_{ip}$. Set $x = \sum_{11p}^{-1/2} X$, $y = \sum_{22p}^{-1/2} Y$, $u = U'x$, $v = Vy$. Then

$$
T_p = x'A_p y = u'Av = \sum_{1}^{p} v_i u_i v_i.
$$

Also, $\{(u_i, v_i)'\}$ are independently distributed as $\{N_2(0, L_i)\}\$ where $L_i = (\frac{1}{\omega v_i}, \frac{\rho v_i}{1}) = HP_iH$, $H = 2^{-1/2}(\frac{1}{1} - \frac{1}{1})$ and $P_i = (\frac{1+\rho v_i}{0} - \frac{0}{1-\rho v_i})$. Hence $v_i u_i v_i = a_i M_i^2 + b_i N_i^2$ where $a_i = (v_i + \rho v_i^2)/2$, $b_i = (-v_i + \rho v_i^2)/2$ and $(M_i, N_i)' = P_i^{-1/2} H(u_i, v_i)' \sim N_2(0, I)$. This proves (1.2). That is, T_p has the weighted chi-square form

$$
T_p = \sum_{i}^{p} (a_i(\rho) M_i^2 - a_i(-\rho) N_i^2)
$$
 (2.2)

where $\{\alpha_i(\rho) = (\lambda_{ip} + \rho \lambda_{ip}^2)/2\}$ are the eigenvalues of $(K_p + \rho K_p^2)/2$. The rest follows from $E \exp(\lambda N_1^2/2) = (1 - \lambda)^{-1/2}$ for $Re(\lambda) < 1$ as is easily proved by contour integration. \blacksquare

Two approximate methods for finding the distribution of indefinite quadratic forms of normal r.v.'s such as T_p are given in Section 29.7 of Johnson and Kotz [2]. These methods require $\{a_i(\rho)\}\)$, so that $\{\lambda_{in}\}\$ must be calculated. There are also various methods for inverting the characteristic function of T_p , $D_p(2it, \rho)^{-1/2}$, or its Laplace transform $D_p(-2t, \rho)^{-1/2}$, or of obtaining similarly the distributions of T_p^+ , T_p^- and convoluting these, where T_p^+ , T_p^- are the positive and negative parts of T_p , that is the components of (2.2) associated with the positive (or negative) values of $\{a_i(\rho), -a_i(-\rho)\}\$.

From Theorem 2.1 it is easy to verify

COROLLARY 2.1.
$$
ET_p = pA_{2,p}
$$
, and $var(T_p) = A_{2,p} + p^2 A_{4,p}$ where

$$
A_{n,p} = \sum_{i=1}^p \lambda_{ip}^n = \text{trace}(A_p A_p')^{n/2} = \text{trace}(A_p A_p)^{n/2}.
$$

Let z_{α} denote the $1 - \alpha$ quantile of $F(x, 0)$, the null distribution of T_p . The one- and two-sided $1 - \alpha$ level tests of H_0 are: "accept $H_0 \Leftrightarrow T_p < z_\alpha$ " and "accept $H_0 \Leftrightarrow |T_n| < z_{\alpha/2}$." We now consider the power of these tests near $\rho = 0.$

THEOREM 2.2. (a) The density of T_p satisfies

$$
f(x, \rho) = f(x, 0) \{1 + \rho x + \rho^{2} (x^{2} + A_{2, p})/2\} + O(\rho^{3}).
$$

(b) The one-sided test has power

$$
\alpha+\rho\int_{z_\alpha}xf(x,0)\,dx+\rho^2\left(\alpha A_{2,p}+\int_{z_\alpha}x^2f(x,0)\,dx\right)+O(\rho^3).
$$

(c) The two-sided test has power

$$
\alpha + \rho^2 \left\{ \int_{z_{\alpha/2}} x^2 f(x,0) \, dx + \alpha A_{2,p}/2 \right\} + O(\rho^4).
$$

Proof. Dropping the subscript p, there exists $\lambda_0 > 0$ such that

$$
D_{\rho}(\lambda)^{-1/2} = D_0(\lambda)^{-1/2} \exp \left\{ \frac{1}{2} \sum_{1}^{\infty} p_j(\lambda) \rho^j / j \right\} \quad \text{for} \quad |\text{Re }\lambda| < \lambda_0,
$$

where

$$
p_j(\lambda) = \sum_{i=1}^{p} C_i(\lambda)^j
$$
 and $C_i(\lambda) = \lambda \lambda_i^2 (2 - \lambda \lambda_i)^{-1}$.

Hence $D(\lambda, \rho)^{-1/2} = D(\lambda, 0)^{-1/2} \{1 + \rho L_1(\lambda) + \rho^2 L_2(\lambda) + O(\rho^3)\}\$ where $L_1(\lambda) = (p_1(\lambda) - p_1(-\lambda))/2$ and $L_2(\lambda) = (p_2(\lambda) + p_2(-\lambda))/4 + L_1(\lambda)^2/2$. Also, $p_{\ell}(\lambda) = -2\partial \ln D_{\nu}(\lambda) - A_{\ell}$ and $p_{\nu}(\lambda) = 4\partial^2 \ln D_{\nu}(\lambda) - 4\lambda^{-1}p_{\nu}(\lambda) + A_{\nu}$ where $\hat{d}^i = (\partial/\partial \lambda)^i$. Set $D = D(1, 0)$, $Y = T/2$ and let E, denote E when $p=0$ Then $D^{-1/2} = F$, $exp(\lambda Y)$, $D^{-1/2}L(\lambda) = 2\partial D^{-1/2} = 2F$, $Y exp(\lambda Y)$, and $D^{-1/2}L(1) = 2\frac{2}{D} - \frac{1}{2}L(1) = \frac{1}{2}D^{-1/2} + \frac{1}{2}D^{-1/2}/2 = E(2V^2 + A^{-1/2})$ exp(l) Then (a) follows, and hence (b) and (c), using the symmetry of $f(x, 0)$, with ρ^3 for ρ^4 in (c). To replace ρ^3 by ρ^4 in (c), note $T_p = U + \rho V$ where $(U, V) = L^{-1}(-U, V)$ so that $|T_p|$ has distribution expandable in powers of ρ^2 .

3. THE INFINITE CASE: $A_{2,n}$ BOUNDED

Suppose that as $p \to \infty$, $\lambda_{in} \to \lambda_i$, $i \geq 1$ where $A_2 = \sum_{i=1}^{\infty} \lambda_i^2 < \infty$.

THEOREM 3.1. As p $\sim T$, $^{\perp}T$ given by (1.4). The sum T converges in probability. If also $A = \sum_{i=1}^{\infty} 1$ (contract $T = \sum_{i=1}^{\infty} T^+ + T^- = \sum_{i=1}^{\infty} T_i + T$ \mathbb{R}^n

$$
T^{+} = \sum a_{i}^{+} M_{i}^{2}, \qquad T^{-} = \sum a_{i}^{-} N_{i}^{2},
$$

$$
T_{+} = \sum_{1}^{\infty} a_{i}(\rho) M_{i}^{2}, \qquad T_{-} = -\sum_{1}^{\infty} a_{i}(-\rho) N_{i}^{2},
$$

 ${a_i^+}$ and ${a_i^-}$ are the positive and negative values of ${a_i(\rho), -a_i(-\rho)}$ and $a_i(\rho) = (\lambda_i + \rho \lambda_i^2)/2$; these sums converge with probability one.

Proof. Suppose that λ satisfies (2.1). Then as $p \to \infty$,

$$
D_p(\lambda, \rho) \to D_{\infty}(\lambda, \rho) = \prod_{1}^{\infty} (1 - \lambda a_i(\rho))(1 + \lambda a_i(-\rho))
$$

which is finite. Convergence in probability follows.

If $A_1 < \infty$, $T^+ \ge 0 \ge T^-$ and $\infty > ET^+ \ge ET^- > -\infty$, so that T^+ , $T^$ converge with probability 1. The same is true for T_+ , T_- since these differ from T^+ , T^- by only a fixed finite number of terms.

The analogs of the rest of Theorem 2.1, Corollary 2.1, and Theorem 2.2 also hold. Thus the distribution of T may be determined from $\{\lambda_i\}$. These values depend on the choice of ${t_i, \ldots}$, but may be obtained independently of them as follows. Let $\mu_p(\cdot)$ be the measure putting weight p^{-1} at $t_{i,p}$, $1 \leq i \leq p$. Suppose μ_p converges weakly to a measure μ on Ω . (The natural choice for μ is Lebesgue measure on Ω .) Then when the operators $\{S_{ij}\}, A, R$ given by

$$
S_{ij}f(s) = \int \Sigma_{ij}(s,t)f(t) d\mu(t),
$$

where \int is over Ω ,

$$
A = S_{11}^{-1/2} S_{12} S_{22}^{-1/2}, \qquad R = S_{11}^{-1} S_{12} S_{22}^{-1},
$$

are well-defined, clearly $\{\lambda_i^{-2}\}$ are the eigenvalues of AA', $A_n = \sum_{i=1}^{\infty} \lambda_i^n$ is the trace of the operator $(AA')^{n/2}$, and $T = \int X(t) RY(t) d\mu(t)$.

It is not actually necessary to obtain $\{\lambda_i\}$ in order to get $E \exp(\lambda T/2) =$ $D_{\infty}(\lambda, \rho)^{-1/2}$, since when $\Lambda_1 < \infty$, $D_{\infty}(\lambda, \rho) = D_{\infty,\rho}(\lambda)D_{\infty,-\rho}(-\lambda)$ where $D_{\infty,\rho}(\lambda) = \prod_{i=1}^{\infty} \{1 - \lambda(\lambda_i + \rho \lambda_i^2)/2\}$ may be determined from $D_{\infty,\rho}(\lambda) =$ $\exp\{-\int_0^{\lambda} d\lambda \int B_o(t, t, \lambda) d\mu(t)\}$, where $B_o(s, t, \lambda)$ is the resolvent of the operator B, $=$ $((A \Lambda)^{1/2} + \rho \Lambda \Lambda^2)^2$, (see for example, Withers [4]), or from because $D_p = \left(\frac{k}{2} + \frac{m}{2} + \frac{m}{2} + \frac{m}{2}\right)$, (i) $\frac{m}{2}$ is known and v_i, v, are the $D_{\infty,\rho}(\lambda) = D(v_1) D(v_2)$ if $D(\lambda) = \prod_{i=1}^{\infty} (1 - \lambda \lambda_i)$ is known and v_1, v_2 are the roots of $1 - \lambda (v + \rho v^2)/2 = 0$.

4. THE INFINITE CASE: $A_{2,p}$ UNBOUNDED

THEOREM 4.1. Suppose that $\{\lambda_{jp}\}\$ are uniformly bounded but $\Lambda_{2,p}\to\infty$ $\sum_{i=1}^{\infty}$ $\sum_{i=1}^{\in$ as $p \rightarrow \infty$. Then $p_p \rightarrow p$, $\frac{p-2i}{p}$, $\frac{p}{2i}$,

$$
|\rho-\hat{\rho}_p| \leqslant \Phi^{-1}(1-\alpha/2) \Lambda_{2,p}^{-1}(A_{2,p}+\hat{\rho}_p^2 A_{4,p})^{1/2}.
$$

As $p \to \infty$, $A_{2n}^{-1/2}T_p \to^{\mathbb{L}} \infty$ if $p > 0$, N(0, 1) if $p = 0$, and $-\infty$ if $p < 0$.

Proof. By Theorem 2.1, Corollary 2.1, and Lyapounov's Theorem, the C.L.T. holds for T_n since

$$
\sum_{1}^{p} (a_i(\rho)^4 + a_{ip}(-\rho)^4) / (A_{2,p} + \rho^2 A_{4,p})^2 \to 0 \quad \text{as} \quad p \to \infty
$$

Hence

$$
\Lambda_{2,p}(\hat{\rho}_p-\rho)(\Lambda_{2,p}+\rho^2\Lambda_{4,p})^{-1/2}\xrightarrow{L} N(0,1),
$$

and

$$
A_{2,p}^{-1/2}T_p = \rho A_{2,p}^{1/2} + 0_p(1). \quad \blacksquare
$$

Thus by taking p suitably large one may decide—with negligible error whether $p = 0$, and if it is not, obtain its value. For example, if p is chosen so that $(10^{-3}/3.291)^2 \ge (A_{2,p} + \hat{\rho}_p^2 A_{4,p}) A_{2,p}^{-2}$ then with probability greater or equal to .999 + $o(1)$, ρ must lie between ρ_p - .001 and ρ_p + .001. (Here $o(1)$ is a term which tends to zero as $p \to \infty$. Typically for each n, $A_{n,p}/p$ is a power series in p^{-1} so that this term can be improved to $O(p^{-s})$ for any desired $\zeta > 0$, by the method of Withers [5].)

EXAMPLE 4.1. $\Sigma_{ij}(s, t) \equiv \sigma_{ij} C(s, t)$ where $\sigma_{12} C \neq 0$. In this case $\sigma_{21} = \sigma_{12}$ and $A_p = \sigma I_p$ where $\sigma = \sigma_{12}(\sigma_{11}\sigma_{22})^{-1/2}$, and $A_{n,p} = \sigma^n p$. Hence with probability $1 - \alpha + O(p^{-1/2})$,

$$
|\rho-\hat{\rho_p}| \leqslant \varPhi^{-1}(1-\alpha/2)\,\sigma^{-1}p^{-1/2}(1+\hat{\rho_p^2}\sigma^2)^{1/2}
$$

where

$$
\hat{\rho}_p = \sigma^{-2} p^{-1} T_p, \qquad T_p = \sigma_0 \mathbf{X}' C_p^{-1} \mathbf{Y},
$$

$$
\sigma_0 = (\sigma_{11} \sigma_{22})^{-1/2} \sigma, \qquad \text{and} \qquad (C_p)_{\alpha, \beta} = C(t_{\alpha p}, t_{\beta p}).
$$

EXAMPLE 4.1. Suppose $r = 1$, $\Omega = [a, b]$, $C(s, t) = min(s, t)$. Then

$$
\mathbf{X}' C_p^{-1} \mathbf{Y} = c^{-1} X_1 Y_1 + d^{-1} \sum_{1}^{p} X_i D_i
$$

where $c=a+d, d=(b-a)/p, D_1=Y_1-Y_2, D_i=-Y_{i-1}+2Y_i-Y_{i+1}$ for $1 < i < p, D_p = -Y_{p-1} + Y_p.$

 $F = Z(\epsilon)$ and $G = \epsilon$. $G = \epsilon$ and Limit Theorem for T, may still be $\sum_{i=1}^{n}$ proved under suitable conditions (such as when T_i is strong-mixing) proved under suitable conditions (such as when T_n is strong-mixing); however the confidence interval in Theorem 4.1 is no longer consistent, and a consistent estimate for var T_p is more difficult to obtain.

5. FOURIER METHODS

In some applications it may be desirable to try a variety of $\Sigma_{12}(s, t)$ or $\{\Sigma_{ij}(s,t)\}\)$. Fourier expansions provide a way to construct a covariance for $Z(t)$ with given values of $\{\lambda_i\}$, and hence to make Λ_i or Λ_i finite or infinite as desired.

Alternatively, when $\{\Sigma_{ij}(s, t)\}\$ are given and the eigenvalues $\{\theta_{1i}, \theta_{2i},...\}$ and eigenfunctions $\{\phi_{1i}(t), \phi_{2i}(t),...\}$ of $\Sigma_{ii}(s, t)$ (w.r.t. the measure μ on Ω) are known for $i = 1$ and 2, (including the solutions of $S_{ii} \phi = \theta^{-1} \phi$ with $\theta = \infty$), then the Fourier expansions provide an alternative way of calculating $\{\lambda_i\}$.

We illustrate this with the following example—the case when the marginals $X(t)$, $Y(t)$ are Brownian motion.

EXAMPLE 5.1. Take $r = 1$, $\Omega = [0, b]$, $\Sigma_{ii}(s, t) = \sigma_{ii} \min(s, t)$, $i = 1, 2$, and μ Lebesgue measure. Then the eigenfunctions and eigenvalues of $\Sigma_{ii}(s, t)$ are $\{\phi_i(t), \theta_i/\sigma_{ii}, j \ge 1\}$ where $\theta_i = (j - \frac{1}{2})^2 \pi^2/b^2$ and $\phi_i(t) = (2/b)^{1/2} \sin \theta_i^{1/2} t$. Choose ${q_i}$ such that $\sum_{i=1}^{\infty} q_i^2 < \infty$ and set

$$
\Sigma_{12}(s,t)=\sum_{1}^{\infty}\phi_i(s)\,\phi_i(t)\,q_i.
$$

Then $\Sigma(s, t, \rho)$ will be a covariance $\Leftrightarrow \max_i \rho^2 q_i^2 \leq \sigma_{1}, \sigma_{22},$ since $\Sigma(s, t, \rho) = \sum_{i=1}^{\infty} \phi_i(s) \phi_i(t) \tau_i$ where $\tau_i = \begin{pmatrix} \sigma_{11} & \rho q_i \\ \rho q_i & \sigma_{22} \end{pmatrix} = EX(s) X(t)'$ where $X(s) = \sum_{i=1}^{\infty} \phi_i(s) X_i$ and $\{X_i\}$ are independent r.v.'s with means 0 and covariance $\{\tau_i\}$.

Also $\{\lambda_i\} = {\vert q_i \vert \theta_i(\sigma_{11} \sigma_{22})^{-1/2}}$ and so $A_2 < \infty \Leftrightarrow \sum_{i=1}^{\infty} q_i^2 i^4 < \infty$. This clearly fails for Example 4.1.1 with $a = 0$, since that example corresponds to the choice $q_i \equiv \sigma_{12}/\theta_i$.

However for a choice such as $q_i = \sigma_{12}/\theta_i^2$, A_2 is finite and so is A_1 ; this choice yields

$$
\Sigma_{12}(s,t) = \sigma_{12} \int_0^b \min(s, u) \min(u, t) du = \sigma_{12}(stb - st^2/2 - s^3/6)
$$

for $s \le t$;

also $\{\lambda_i\} = \{\alpha \theta_i^{-1}\}\$ where $\alpha = |\sigma_{12}| (\sigma_{11} \sigma_{22})^{-1/2}$, so that the Laplace transform/characteristic function of T is given by Section 3 in terms of $D(\lambda) = \prod_{i=1}^{\infty} (1 - \lambda \lambda_i) = \cosh(\alpha \lambda)^{1/2} b$.

236 C. S. WITHERS

REFERENCES

- [1] DEGROOT, M. H. (1970). Optimal Statistical Decisions. McGraw-Hill, New York.
- [21 JOHNSON, NORMAN L., AND KOTZ, SAMUEL (1970). Continuous Univariate Distributions-2. Houghton Miflin, Boston.
- [3] RAO, C. R. (1973). Linear Statistical Inference. Wiley, New York.
- [4] WITHERS, C. S. (1975). Fredholm theory for arbitrary measure spaces. Bull. Austral. Math. Soc. 12 283-292.
- [S] WITHERS, C. S. (1983). Accurate confidence intervals for distributions with one parameter. Ann. Inst. Statist. Math. A 35, 49-61.