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A Test for the Independence
of Two Gaussian Processes
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A bivariate Gaussian process with mean 0 and covariance

Zu(sit)  pZyy(s, t))

Z(s, I,P)z(pz;u(s, ) 2, {)

is observed in some region 2 of R", where {Z (s, ¢)} are given functions and g an
unknown parameter. A test of H,:p =0, locally equivalent to the likelihood ratio
test, is given for the case when £ consists of p points. An unbiased estimate of p is
given. The case where 2 has positive (but finite) Lebesgue measure is treated by
spreading the p points evenly over 2 and letting p » oo. Two distinct cases arise,
depending on whether A, ,, the sum of squares of the canonical correlations
associated with Z(s, 7, 1) on 27, remains bounded. In the case of primary interest as
p— o, A,,—= o, in which case § converges to p and the power of the one-sided
and two-sided tests of H tends to 1. (For example, this case occurs when 2 (s, £} =
Z,(5,1).)  © 1984 Academic Press, Inc.

1. INTRODUCTION AND SUMMARY

Suppose that a zero mean bivariate Gaussian process Z = (X, Y)' is
observed in some region £ in R’, with covariance positive definite of the
form

2ty pZia(s, t))
PEyi(s, 1) Zy(st) /)’
where {Z;(s, £)} are known functions and p is an unknown real parameter.

We wish to test whether the processes X(¢) and Y(¢) are independent—that
is to test the hypothesis H,:p =0, and to estimate p.

(s, t,p) = EZ(s) Z(t) = (
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In Section 2 we consider the “finite” case where £ consists of p points

Q,={t,, 1 <i<p} in R".

Thus we observe Z' = (X', Y’) where X, =X(t;,), Y;=Y(;,)- A test of H,
locally equivalent to the likelihood ratio test is to accept H, when
T,=2Inf(Z,p)/op],_, is close to zero, where f(z, p) is the density of Z in

R*. Since Z ~ N,,(0, C(p)) where

z pr
C(p)=( 1ip lZp)
p221p 222[7
and X, is the p X p matrix with (a,f) element Z,(¢,,,1;,), it follows
(Lemma 2.1) that

T,=X'R,Y  where R,=X[,Z,,,Z5;.. (L.1)

In Theorem 2.1 we show that the distribution of T, is determined by p and
the canonical correlations of Z: these may be written in he form {|p|4,,,
1<i<p}, where {4,} are the positive roots of |[C(—4~')|=0 and |-|
denotes the determinant. Equivalently, {4,,} are the square roots of the eigen-
values of 4,A; or of 4,4, where 4,=X7,}/>2,,,£5,/*. In fact, Theorem 2.1
shows that

P 4
Tp=.?l.-p(Mf~N?)/2 +p;i?p(M?+N?)/2 (1.2)

where {M;, N;} are independent N(O, 1) random variables (r.v.s).
It follows that the null distribution of T, is symmetric about 0, and that an
unbiased estimate of p is
p,=45,T, where A

2,ptp

P
=:A§,p:traceApA;,. (1.3)

2.p

In Theorem 2.2 we show how to express the distribution of T, as a power
series in p, and determine the slope of the power curve near p =0 for the
one- and two-sided tests of H, based on T,.

A solution for the case when £, the domain of observation of Z, has a
positive (but bounded) Lebesgue measure may be obtained by choosing {;,,
1 <i<p} to be evenly distributed over £2 and allowing p to increase to co.
(For example, if r=1 and 2= [0, 1] one could choose t,=i/p.) Two
distinct situations arise, depending on whether A, , remains bounded or not.

Section 3 deals with the situation where 4, ,.remains bounded and 4, ,— 4,
as p— oo0. Theorem 3.1 shows that T, converges to a r.v.

T=3 A(M}—ND/2+p X A2M? + ND)/2, (1.4)
1 1
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with properties analogous to T,. In particular the powers of the tests of H,
are less than 1, and §, does not converge to p.

However, in the situation where A4, ,— o as p— oo, dealt with in
Section 4, T, satisfies the Central Limit Theorem (C.L.T), §, converges to p,
and a test of H, may be constructed, with power at a given value of p
arbitrarily close to 1. (In particular this situation occurs when Z;;=X,,, as
in the case of elliptical Brownian motion.)

Finally Section 5 illustrates an alternative method for obtaining {4;} in the
case where 2 is arbitrarily but Z'|,(s, ), £';,(s, t) have known eigenvalues
and eigenfunctions. This approach also enables the construction of X', (s, ¢)
such that the {4;} have specified properties (such as 4, . being finite or
infinite).

2. THE FINITE CASE

Suppose that Z(r) is observed at only the p points in £2,.

LEMMA 2.1. T, is given by (1.1).

Proof. —2In f(Z,p) = In |[C(p) + 2p In2n) + Z'C(p)~'Z. Let
=2 =P L5, Cl=Er), C¥=ZX7], and CY=(CY) =

ii ijp~ Jip®
—p)J{z:,EleZl‘_;. Then |C(p) =|Z,.,||Z,,,|> (see for example De Groot [1,
pp. 54-55], so that its derivative vanishes at p = 0. Also C(p) ™' = (CY) (e.g.,
Problem 2.7 of [3]) which has derivative —C(p) " dC(p)/dp C(p)~' equal to
—( ,?‘; o) when p = 0. The result follows. 1

The next result 'gives the Fourier transform and the Laplace transform of
the density 7,.

THEOREM 2.1. T, can be written in the form (1.2). Hence if
Re(A)(£4,, +pA},) < 2, 1<igp, (2.1)
then E exp(1T,/2) = D (4, p)~'/* where
Dy, p) =D, ,(A) D, _,(—4),
Dy = [T 41 =4lhs + p13)/2) == MK, + oK),

and

K,=(4,4,)"
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Proof. From the singular value decomposition (e.g., [3, p.42]), 4,=
UAV  where U’U viv=I, A=diagQ,,.,v,), and v;=4;,. Set
x=X72X, y=Z5%Y, u_U’x,v—Vy Then

p
! ! _
T,=x'A,y=u'Av=> vuy,

1

Also, {(u;,v;)’} are independently distributed as {N,(0,L;)} where
Li=(\, *)=HPH, H=2""2(} ) and P;=('*"" [,,). Hence
viuv;=a;M?+ b;N?  where a;=;+pv})/2, b;=(-v;+pv})/2 and
(M,;,N,) = P7"2H(u;, v;)' ~ N,(0,I). This proves (1.2). That is, T, has
the weighted chi-square form

T,= Epj (aip) M} — a(—p) N}) 2.2)

where {a,(p) = (A, + pA},)/2} are the eigenvalues of (K, + pK})/2. The rest
follows from Eexp(/lNz/Z)— (1=24)""2 for Re(A) < 1 as is easily proved
by contour integration. [l

Two approximate methods for finding the distribution of indefinite
quadratic forms of normal r.v.’s such as 7, are given in Section 29.7 of
Johnson and Kotz [2]. These methods require {a;(p)}, so that {4,,} must be
calculated. There are also various methods for inverting the characteristic
function of T, D,(2it, p)~"2, or its Laplace transform D,(—2¢,p)~ "%, or of
obtaining similarly the distributions of 77, T, and convoluting these, where
T;,T, are the positive and negative parts of T, that is the components of
(2.2) associated with the positive (or negative) values of {a;(p), —a,(—p)}.

From Theorem 2.1 it is easy to verify

COROLLARY 2.1. ET,=pA, ,, and var(T,) = A, , + p*A, , where

P
=" Al =trace(d,4,)"* = trace(4,4,)".
1
Let z, denote the 1 — a quantile of F(x, 0), the null distribution of T,. The
one- and two-sided 1 — a level tests of H, are: “accept Hy < T, < z,” and
“accept Hy<>|T,| < z,,,.” We now consider the power of these tests near
p=0.

THEOREM 2.2. (a) The density of T, satisfies

S, p)=f(x, 0{1 + px + p*(x* + A4, ,)/2} + O(p>).
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(b) The one-sided test has power

atp| ¥f(x0)dx+p? (mz,p +j x¥f (%, 0) dx) +0(p%).
(c) The two-sided test has power

a+p? jj X3 (x, 0) dx + aAz‘p/2§ +0(p%).

Za/2

Progf. Dropping the subscript p, there exists 4, > 0 such that

el

D,(1)~"2 = Dy(1) " exp 3%32 pj(l)pj/js for |Rei| <Ay,

where
p
pA)=3CY and CA)=AA}(2-A2)""
1

Hence D(4,p)~'* = D(,0)™"*{1 + pL,(A) + p°L,(A) + O(p’)} where
L(A)=(p,(A) — pi(=4))/2 and L,(1)= (p,(A) + po(=A))/4 + L,(A)/2.
Also, p,(A)=—281n Dy(A) — A, and p,(1) =437 In Dy(A) — 44" 'p,(1) + 4,,
where &' = (8/0A)". Set D=D(,0), Y=T,/2 and let E, denote E when
p=0. Then D~Y?=E,exp(AY), D~ '’L (A)=20D""?=2E,Y exp(AY),
and D~'2L,(1)=28°D~" + A,D~V*/2 = Ej(2Y* + 4,/2) exp(AY). Then
(a) follows, and hence (b) and (c), using the symmetry of f(x, 0), with p* for
p* in (c). To replace p’ by p* in (c), note T,=U+pV where
(U, V)="(=U,¥) so that |T,| has distribution expandable in powers
ofp?. |

3. THE INFINITE CASE: 4, , BOUNDED
Suppose that as p— o0, 4;,—> 4;, i > 1 where 4, =7 A} < co.

THEOREM 3.1. As p— o0, Tp—>L T, given by (1.4). The sum T converges
in probability. If also A, =Y A, < o, then T="T* + T~ ="T, +T_
where

TH=>a}M;}, T =>a; N},

T.=Y alp)Mi, T_=-Y a(-p)N;,
1

1
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{a}} and {a[} are the positive and negative values of {a,(p), —a,(—p)} and
a,(p) = (A; + pA})/2; these sums converge with probability one.

Proof. Suppose that A satisfies (2.1). Then as p — oo,

D, p)~ Doo(hp) =] | (1 = Aa(p))(1 + Aa(~p))

which is finite. Convergence in probability follows.

If A,<00, T* >20>T" and oo > ET* > ET™ > —o0, so that T+, T~
converge with probability 1. The same is true for T, T_ since these differ
from T+, T~ by only a fixed finite number of terms. [

The analogs of the rest of Theorem 2.1, Corollary 2.1, and Theorem 2.2
also hold. Thus the distribution of T may be determined from {4,;}. These
values depend on the choice of {t; ,}, but may be obtained independently of
them as follows. Let u,(-) be the measure putting weight p~' at ¢, ,
1 i< p. Suppose u, converges weakly to a measure 4 on £. (The natural
choice for u is Lebesgue measure on £2.) Then when the operators {S;}, A, R

given by
Sy ()= [ Zyfs, 0/ (1) duz),

where | is over £,
_ Q-2 ~1 _ -l -1
A——Sll 812822 ’ R—Sll SIZSZZ ’

are well-defined, clearly {1; %} are the eigenvalues of AA’, A4, =3 A7 is the
trace of the operator (AA')"?, and T = [ X(¢) RY() du(?).

It is not actually necessary to obtain {4;} in order to get E exp(AT/2) =
D (4, p)~ "%, since when A, < oo, D (A, p)=D, (1) Dy _,(—)) where
D A)=T1F {1 —A(; +pA})/2} may be determined from D, ()=
exp{— [ dA [ B,(1,t,4) du(t)}, where B,(s,t,1) is the resolvent of the
operator B, = ((AA’)"* + pAA’)/2, (see for example, Withers [4]), or from
D, ,(A)=D(v) D(v,) if D(A)=T]7 (1 —44;) is known and v,, v, are the
roots of 1 —A(v +pv?)/2 =0,

4. THE INFINITE CASE: A, , UNBOUNDED

THEOREM 4.1. Suppose that {A;,} are uniformly bounded but A, ,~ o
as p— oo. Then p,-" p, (T,— ET,)(var T,)~ " 5" N(0, 1) as p- oo, and
an asymptotically 1 — a level confidence region for p is given by

lp =Bl S P71~ af2) A5, (A5, + p A0 )"

Asp— o0, 45, *T,-»" 0 if p>0,N(0,1) if p=0, and —c0 if p < 0.
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Proof. By Theorem '2.1, Corollary 2.1, and Lyapounov’s Theorem, the
C.L.T. holds for T, since

P
Z (‘h(ﬂ)d +a[p(—p)4)/(A2,p +PZA4.p)2‘*O as p— .
1

Hence
A, (B, —P) A, , + P74, )P N(O, 1),
and

AT, =pay}+0,(1). 1

2,p p 2,p

Thus by taking p suitably large one may decide—with negligible error—
whether p =0, and if it is not, obtain its value. For example, if p is chosen so
that (107°/3.291)* > (4, , + f24,,) A, then with probability greater or
equal to .999 + o(1), p must lie between §, —.001 and g, 4 .001. (Here o(1)
is a term which tends to zero as p— oo. Typically for each n, 4, ,/p is a
power series in p~' so that this term can be improved to O(p~*) for any
desired ¢ > 0, by the method of Withers [5].)

ExampLE 4.1. X (s,t)=0,,C(s, t) where 0,,C # 0. In this case 0,, = 7,
and A,=ol, where 0=0,,(0,,0,,) "% and A,,=0"p. Hence with
probability 1 —a + O(p~'"?),

P =B, < D' (1 —a/2) 5~ 'p= V(1 + fo?)"”

where

A

p,=0"p 'T,, T,=0,X'C;'Y,

0o=(0110:) 0, and  (Cplaiy=Cllaplyy):
ExAMPLE 4.1. Suppose r=1, 2= [a, b], C(s, t) = min(s, ¢). Then

P
X’C;'Y:c“’X1Y1+d‘ISX,.DI.
1
where c=a+d, d=(b—a)/p,D,=Y,-Y,, D;=—Y,_ +2Y,—Y,;,, for
I<i<p,D,=-Y, ,+7%,.

For Z(-) non-Gaussian, a Central Limit Theorem for 7, may still be
proved under suitable conditions (such as when T, is strong-mixing);
however the confidence interval in Theorem 4.1 is no longer consistent, and a
consistent estimate for var 7, is more difficult to obtain.
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5. FOURIER METHODS

In some applications it may be desirable to try a variety of X ,(s,¢) or
{Z (s, t)}. Fourier expansions provide a way to construct a covariance for
Z(¢) with given values of {4;}, and hence to make A, or A, finite or infinite
as desired.

Alternatively, when {X,(s, )} are given and the eigenvalues {8,;, 8,;,...}
and eigenfunctions {¢,,(t), ¢,,(¢),...} of Z,(s,t) (w.r.t. the measure x on 2)
are known for i=1 and 2, (including the solutions of S;¢ =6"'¢ with
0= o0), then the Fourier expansions provide an alternative way of
calculating {4;}.

We illustrate this with the following example—the case when the
marginals X(¢), Y(¢) are Brownian motion.

ExampLE 5.1. Take r=1, 2=[0,b], Z,(s,t)=0,min(s,t), i=1,2,
and 4 Lebesgue measure. Then the eigenfunctions and eigenvalues of X;(s, ¢)
are {9,(t), 0;/6,;,j > 1} where 6, = (j — 3)* n*/b” and ¢,(t) = (2/b)"/* sin 6}"*¢.
Choose {g;} such that ' ¢? < oo and set

20, r)=§¢,-(s>¢.»(t) a

Then ZX(s,t,p) will be a covariance <> max,;p’q;<0,,0,,, since
IG5, 6p)= Y0 05)9i1)1, where 1= (Zy 24)=EX(s)X(t)  where
X(s)=>'?¢(s)X; and {X;} are independent r.v.’s with means 0 and
covariance {t;}.

Also {4;} = {|q;| 0,(0,,6,2)""*} and so A, < © <« Y ¥ q}i* < 0o. This
clearly fails for Example 4.1.1 with a =0, since that example corresponds to
the choice g,=0,,/9;.

However for a choice such as g, =0,,/67, 4, is finite and so is 4,; this
choice yields

b
Z(s, =04, JO min(s, «) min(u, £) du = 0 ,(stb — st*/2 — 5°/6)
for s<t;

also {4,} = {af;'} where a=|0,,](0,,6,,)""% so that the Laplace
transform/characteristic function of T is given by Section 3 in terms of
D) =[1% (1 — A4;) = cosin{al)"? b}.
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