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A Test for the Independence 
of Two Gaussian Processes 
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Communicated by M. M. Rao 

A bivariate Gaussian process with mean 0 and covariance 

is observed in some region B of R’, where (C,(s, t)} are given functions and p an 
unknown parameter. A test of H,: p = 0, locally equivalent to the likelihood ratio 
test, is given for the case when D consists of p points. An unbiased estimate of p is 
given. The case where R has positive (but finite) Lebesgue measure is treated by 
spreading the p points evenly over R and letting p--t co. Two distinct cases arise, 
depending on whether n,,P, the sum of squares of the canonical correlations 
associated with C(s, I, 1) on a*, remains bounded. In the case of primary interest as 
P--t a, AZ$ --t co, in which case p̂  converges to p and the power of the one-sided 
and two-sided tests of H, tends to 1. (For example, this case occurs when C,j(s, t) = 
x,,(S, t).) 0 1984 Academic Press, Inc. 

1. INTRODUCTION AND SUMMARY 

Suppose that a zero mean bivariate Gaussian process Z = (X, Y)’ is 
observed in some region R in R’, with covariance positive definite of the 
form 

where {Zjj(s, t)} are known functions and p is an unknown real parameter. 
We wish to test whether the processes X(f) and Y(t) are independent-that 

is to test the hypothesis H,:p = 0, and to estimatep. 
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In Section 2 we consider the “finite” case where J2 consists of p points 

0, = {lip, 1 < i <P} in R’. 

Thus we observe Z’ = (X’, Y’) where Xi = x(t,), Yi = Y(tip). A test of iYO 
locally equivalent to the likelihood ratio test is to accept H, when 
Tp = 18 WW pY~Plp~o is close to zero, wheref(z, p) is the density of Z in 
RZP. Since Z w N,,(O, C@)) where 

C@)= LllP P;12p) 

( Pi*,, **P 

and ~ijp is the p X p matrix with (a, p) element ~ij(t,p, fBp), it follows 
(Lemma 2.1) that 

T,=X’R,Y where R, = Z;l~Z,2pZ;2~. (1.1) 

In Theorem 2.1 we show that the distribution of T, is determined by p and 
the canonical correlations of Z: these may be written in he form {IpI A,, 
1 < i&p}, where {A,} are the positive roots of IC(-n-l)] = 0 and (a 1 
denotes the determinant. Equivalently, {ni,} are the square roots of the eigen- 
values of A,AI, or of ALA, where A, = C,~‘*Z,,,Z~~‘*. In fact, Theorem 2.1 
shows that 

T, = 5 &p(M; - N3/2 + p f nf(M: + Nf)/2 (1.2) 
1 

where (Mi, Nj} are independent N(0, 1) random variables (r.v.s). 
It follows that the null distribution of TP is symmetric about 0, and that an 

unbiased estimate of p is 

/?p=A;;Tp where A2p= t,l;,=traceA,A;. (1.3) 
I 

In Theorem 2.2 we show how to express the distribution of T, as a power 
series in p, and determine the slope of the power curve near p = 0 for the 
one- and two-sided tests of H, based on T,. 

A solution for the case when Q, the domain of observation of Z, has a 
positive (but bounded) Lebesgue measure may be obtained by choosing {tip, 
I < i <p) to be evenly distributed over R and allowing p to increase to co. 
(For example, if r = 1 and R = [0, l] one could choose tip = i/p.) Two 
distinct situations arise, depending on whether A2,p remains bounded or not. 
Section 3 deals with the situation where A,,, remains bounded and li,p + lli 
as p--t co. Theorem 3.1 shows that T, converges to a r.v. 

T = 2 &(Mf - Nf)/2 + p g &kff + Nf)/2, 
1 1 

(1.4) 
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with properties analogous to Tp. In particular the powers of the tests of H, 
are less than 1, and $p does not converge top. 

However, in the situation where /i *,* + co as p -+ co, dealt with in 
Section 4, Tp satisfies the Central Limit Theorem (C.L.T), &, converges to p, 
and a test of H, may be constructed, with power at a given value of p 
arbitrarily close to 1. (In particular this situation occurs when Z, 3 Z;, i, as 
in the case of elliptical Brownian motion.) 

Finally Section 5 illustrates an alternative method for obtaining {ni} in the 
case where R is arbitrarily but Z,,(s, t), Z&, t) have known eigenvalues 
and eigenfunctions. This approach also enables the construction of C,& t) 
such that the (ni} have specified properties (such as A2,m being finite or 
infinite). 

2. THE FINITE CASE 

Suppose that Z(t) is observed at only the p points in R,. 

LEMMA 2.1. T, is given by (1.1). 

Proof. -2 In f(Z, p) = In (C@)] + 2p ln(2z) + Z/C(p)-‘Z. Let 
~i.j=~iip-p2CijpCj;d~jip, C” =Z;:, C2= =C,:, and C2’ = (C12)‘= 
-pZ;$21pC~:. Then ]C@)] = ]Z,.,] ]Z22p], (see for example De Groot [l, 
pp. 54-551, so that its derivative vanishes at p = 0. Also C@)-’ = (C”) (e.g., 
Problem 2.7 of [3]) which has derivative -C@)-’ dC@)/dp C@)- ’ equal to 
-(i; 2) when p = 0. The result follows. 1 

The next result gives the Fourier transform and the Laplace transform of 
the density T,. 

THEOREM 2.1. Tp can be written in the form (1.2). Hence if 

Re(A)(dip + pA$) < 2, l<i<p, 

then E exp(dTJ2) = D,,@, p)-‘I* where 

%&P) =D,,,W',,-J-4, 

Dp.ptJ)= fi {l -n(Aip +pA&)/2} = IZ-A(Kp + PK~)/~I, 
i=l 

and 

Kp = (~$4;)~‘~. 

(2.1) 
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Proof: From the singular value decomposition (e.g., [3, p. 42]), A,, = 
UAV where VU= V’V=Z,, A =diag(v,,..., v,,), and vi=&,,. Set 
x = ql;‘2x, y = ‘y-“2 22P Y, u = U’x, v = Vy. Then 

T,=x’A,y=u’Av=~v,uivi. 
1 

Also, { (Ui, Vi)‘} are independently distributed as {N,(O, Li)} where 
Li = (iDi ppi) = HP,H, H= 2-“‘(: J,) and Pi = (‘+Op”’ ,_“,J. Hence 
viuivi = a,Mf + b,Nf where ai = (vi + &)/2, bi = (-Vi + pvf)/2 and 
(Mi, IV,)’ = P; “‘H(z+, ui)’ w N,(O, I). This proves (1.2). That is, Tp has 
the weighted chi-square form 

T, = -f (a,@) Mf - a,(-p) Nf) (2.2) 
1 

where {a&) = (n, + PA&)/~} are the eigenvalues of (KP + pKi)/2. The rest 
follows from E exp@N:/2) = (1 - A)- “’ for Re@) < 1 as is easily proved 
by contour integration. m 

Two approximate methods for finding the distribution of indefinite 
quadratic forms of normal r.v.‘s such as Tp are given in Section 29.7 of 
Johnson and Katz [2]. These methods require {a&)}, so that {Ai,) must be 
calculated. There are also various methods for inverting the characteristic 
function of T,, D,(Zit, p) - ‘I’, or its Laplace transform D,(-2t,p)-“‘, or of 
obtaining similarly the distributions of Tp , + T; and convoluting these, where 
TJ , T; are the positive and negative parts of Tp, that is the components of 
(2.2) associated with the positive (or negative) values of (a,@), -ai(- 

From Theorem 2.1 it is easy to verify 

COROLLARY 2.1. ET,, = PA~,~, and var(T,,) = A,,, + P’A~,~ where 

An,p = 2 A$, = trace(A,A;)“12 = trace(A;A,)““. 
I 

Let z, denote the 1 - a quantile of F(x, 0), the null distribution of Tp. The 
one- and two-sided 1 - a level tests of H, are: “accept Ho o T, < z,” and 
“accept H,, o 1 T, 1 < z,,~ .” We now consider the power of these tests near 
p = 0. 

THEOREM 2.2. (a) The density of Tp satisfies 

t-(x, P) =.0x, O){ 1 + PX + p2(x2 + ~,,$I + W3). 
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(b) The one-sided test has power 

a+P I za 

(c) The two-sided test has power 

a+p2 x*)-(x, 0) dx + c&,/2 
I 

+ O@“). 

Prooj Dropping the subscript p, there exists 1, > 0 such that 

D,@) - 1’2 = D0(l)-1’2 exp I$ ~pi(l)~/j( for IReAl <A,, 
1 

where 

Pj(~) = ~ Ci(~y’ and C,(A) = IAf(2 -n/l,>-*. 
I 

Hence D(l, p)- ‘I2 = D(l, O)-“‘{l + pL,(J) + p2L2(J) + O@“)} where 
L,(A)= (P,(A) - P,(-~))P and L2G)= (p2@> + p2(-A))/4 + Ll(~)2/2a 
Also, pl(,l) = -28 In D,,(A) -A r and p,(d) = 4a2 In Do(J) - 4L-‘p,(i) + A,, 
where ai = (a/aJ)j. Set D = D(J, 0), Y = T,/2 and let E, denote E when 
p=O. Then D- ‘I2 = E, exp(lY), D-“‘L,(l) = 2aD-‘12 = 2E, Y exp(LY), 
and D-1/2L2(,l) = ~c!?~D-‘/~ + A2D-‘j2/2 = E,(2Y2 f (1*/2) exp(LY). Then 
(a) follows, and hence (b) and (c), using the symmetry off(x, 0), with p3 for 
P4 in (c). To replace p3 by p4 in (c), note T, = U + pV where 
(U, V) =L (-U, V) so that ( Tpl has distribution expandable in powers 
ofp2. I 

3. THE INFINITE CASE: A,,, BOUNDED 

Suppose that asp+ co, A,+&, i> 1 where A2=CFLf < co. 

THEOREM 3.1. As p -+ co, Tp jL T, given by (1.4). The sum T converges 
in probability. If also A, =C;“ni < 00, then T=L T+ t T- =L T, t T- 
where 

T, =g ai@)MF, T- = - f’ ai Nf , 
1 1 
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{a:} and {a;} are the positive and negative values of {a,@), -ai( and 
a,@) = (Ai + p,If)/2; these sums converge with probability one. 

Proof Suppose that J satisfies (2.1). Then as p + co, 

Dp(A, P> + Dco(n3 P) = fi t1 - nai@>)(l + Aai(-P>) 
I 

which is finite. Convergence in probability follows. 
IfA,<co, T+>O>T- and CZI>ET+>ET->--a, so that T’,T- 

converge with probability 1. The same is true for T, , T_ since these differ 
from T+, T- by only a fixed finite number of terms. 1 

The analogs of the rest of Theorem 2.1, Corollary 2.1, and Theorem 2.2 
also hold. Thus the distribution of T may be determined from {&}. These 
values depend on the choice of {ti,p}, but may be obtained independently of 
them as follows. Let ,u,(.) be the measure putting weight p-’ at ti,p, 
1 < i <p. Suppose pP converges weakly to a measure ,u on R. (The natural 
choice for p is Lebesgue measure on a.) Then when the operators (S,}, A, R 
given by 

Sijf(s) = J zij(s, t>f(t) &(t), 

where j is over Q, 
A = S - l/2 S 

I1 
S - l/2 

12 22 3 R = S,‘S12S;21, 

are well-defined, clearly (ny2} are the eigenvalues of AA’, A,, = Cy Ay is the 
trace of the operator (AA’)“‘2, and T = l X(t) RY(t) Q(t). 

It is not actually necessary to obtain {Ai} in order to get E exp@T/2) = 
D,@, PI- 1’2, since when (ii < co, D,(A,p) = D,,,(A)D,,-,(-A)) where 
D,,,(A) = ny { 1 - A(& + pAf)/2} may be determined from D,,,(n) = 
exp{- St dA j B,(t, t, A> &(fjL where Bp(s, t, A) is the resolvent of the 
operator B, = ((AA’)1’2 + pAA’)/2, (see for example, Withers [4]), or from 
D,,,(n) = D(v,)D(v,j if D(J) = ny (1 -A&) is known and vi, v, are the 
roots of 1 - A(v + pv2)/2 = 0. 

4. THE INFINITE CASE:/~,,, UNBOUNDED 

THEOREM 4.1. Suppose that {Aj,,} are unvormly bounded but LI~,~-+ 00 
asp-+co. Then pP -+p p, (T, - ET,)(var Tp)-1’2 jL N(0, 1) as p -+ co, and 
an asymptotically 1 - a level confidence region for p is given by 

IP -Ppl < @-‘(1 -a/2)/i<@,, +&$JI~,~P~. 

As P-+ 003 A,,, -“2 T -+L 00 ifp > 0, N(0, 1) ifp = 0, and --co ifp < 0. p 



234 C. S. WITHERS 

ProoJ: By Theorem 2.1, Corollary 2.1, and Lyapounov’s Theorem, the 
C.L.T. holds for T, since 

as p-tco. 

Hence 

and 

A;;‘* T, =pA;(; f O,(l). m 

Thus by taking p suitably large one may decide-with negligible error- 
whether p = 0, and if it is not, obtain its value. For example, ifp is chosen so 
that ( 10-3/3.291)2 > (A2,P + $Ai,,,) A 2,; then with probability greater or 
equal to .999 t o(l), p must lie between fiP - .OOl and fiP t .OOl. (Here o(l) 
is a term which tends to zero as p + co. Typically for each n, A,,P/p is a 
power series in p- ’ so that this term can be improved to O(p-‘) for any 
desired [ > 0, by the method of Withers [S].) 

EXAMPLE 4.1. z,(s, t) = OijC(S, t) where ur2C f 0. In this case 02i = o12 
and A, = al, where r~ = ~,~(cr~,o~~)-“~, and A,,, = a”p. Hence with 
probability 1 - a + O(P-“~), 

where 

jp-/?P]<@-‘(l -a/2)o-‘p-‘/2(1 +&?2)“2 

/Tp = u-‘P-~T,, T, = u,X’C,‘Y, 

u. = (u,,u,,)y2 0, and (CpL.0 = CL 3 f&d 

EXAMPLE 4.1. Suppose r = 1, R = [a, b], C(s, t) = min(s, t). Then 

X’C,‘Y=c-‘X,Y,+d-‘fXiDi 

where c=c+d, d=(b-a)/~, D,=Y,-Y,, Di=-Yi_,+2Yi-Yi+I for 
1 <i<p, DP=-YP-,+YP. 

For Z(e) non-Gaussian, a Central Limit Theorem for T, may still be 
proved under suitable conditions (such as when Tp is strong-mixing); 
however the confidence interval in Theorem 4.1 is no longer consistent, and a 
consistent estimate for var T, is more difficult to obtain. 
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5. FOURIER METHODS 

In some applications it may be desirable to try a variety of Zlz(s, t) or 
{C,(s, t)}. Fourier expansions provide a way to construct a covariance for 
Z(t) with given values of {A,}, and hence to make A, or A2 finite or infinite 
as desired. 

Alternatively, when {Cu(s, t)} are given and the eigenvalues {8ii, ezi,...} 
and eigenfunctions {#ii(t), #*i(f),..*) of Z&J, t) (w.r.t. the measure ,D on Q) 
are known for i = 1 and 2, (including the solutions of Sii$ = 0-‘$ with 
19 = co), then the Fourier expansions provide an alternative way of 
calculating {ni}. 

We illustrate this with the following example-the case when the 
marginals x(t), Y(t) are Brownian motion. 

EXAMPLE 5.1. Take r = 1, 52 = [0,6], Z&, t) = ~ii min(s, t), i = 1, 2, 
and ,u Lebesgue measure. Then the eigenfunctions and eigenvalues of Zii(s, t) 
are {#j(t), ej/Oii,j > 1) where Sj = (j - $)’ nz/h2 and #j(t) =(2/b)‘/’ sin 8j’2 t. 
Choose {qi} such that Cy qi < co and set 

Then Z(s, 1, p) will be a covariance o maxip2qf < (T,~o~~, since 
X(S, t, P) = C;” #i(s) #i(t) ri where zi = ( ;;; zy;) = EX(s) X(t)’ where 
x(s> = CE” #its) xi and {Xi} are independent r.v.‘s with means 0 and 
covariance {pi}. 

Also l&l= {lqiled u o 11 22 )-“2} and so A, < co o Cy qfi4 < co. This 
clearly fails for Example 41.1 with a = 0, since that example corresponds to 
the choice q, = o,2/8i. 

However for a choice such as qi z a,,/B~ , II 2 is finite and so is /i , ; this 
choice yields 

C,,(s, t) = u,~ r b min(s, U) min(u, t) du = a,,(stb - st2/2 - s3/6) 
0 

for s Q t; 

also {Ai} = (ae;y where a= ]u12] ((T~~(T~~)-“~, so that the Laplace 
transform/characteristic function of T is given by Section 3 in terms of 
D(A) = ny (1 -A&) = cosin{al)“* b}. 
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