brought to you by T CORE

JOURNAL OF MULTIVARIATE ANALYSIS 15, 228-236 (1984)

A Test for the Independence of Two Gaussian Processes

C. S. WITHERS

Applied Mathematics Division, DSIR, Wellington, New Zealand Communicated by M. M. Rao

A bivariate Gaussian process with mean 0 and covariance

$$\Sigma(s, t, \rho) = \begin{pmatrix} \Sigma_{11}(s, t) & \rho \Sigma_{12}(s, t) \\ \rho \Sigma_{21}(s, t) & \Sigma_{22}(s, t) \end{pmatrix}$$

is observed in some region Ω of R^r , where $\{\Sigma_{ij}(s, t)\}$ are given functions and ρ an unknown parameter. A test of $H_0: \rho = 0$, locally equivalent to the likelihood ratio test, is given for the case when Ω consists of p points. An unbiased estimate of ρ is given. The case where Ω has positive (but finite) Lebesgue measure is treated by spreading the p points evenly over Ω and letting $p \to \infty$. Two distinct cases arise, depending on whether $\Lambda_{2,p}$, the sum of squares of the canonical correlations associated with $\Sigma(s, t, 1)$ on Ω^2 , remains bounded. In the case of primary interest as $p \to \infty$, $\Lambda_{2,p} \to \infty$, in which case $\hat{\rho}$ converges to ρ and the power of the one-sided and two-sided tests of H_0 tends to 1. (For example, this case occurs when $\Sigma_{ij}(s, t) \equiv \Sigma_{11}(s, t)$.) © 1984 Academic Press, Inc.

1. INTRODUCTION AND SUMMARY

Suppose that a zero mean bivariate Gaussian process Z = (X, Y)' is observed in some region Ω in R', with covariance positive definite of the form

$$\Sigma(s,t,\rho) = EZ(s) Z(t)' = \begin{pmatrix} \Sigma_{11}(s,t) & \rho \Sigma_{12}(s,t) \\ \rho \Sigma_{21}(s,t) & \Sigma_{22}(s,t) \end{pmatrix},$$

where $\{\Sigma_{ii}(s, t)\}\$ are known functions and ρ is an unknown real parameter.

We wish to test whether the processes X(t) and Y(t) are independent—that is to test the hypothesis $H_0: \rho = 0$, and to estimate ρ .

Received June 27, 1980; revised March 28, 1983.

AMS 1980 subject classifications: primary 62E15, secondary 60G15.

Key words and phrases: Gaussian process, independence, canonical correlations, parametric test, quadratic forms in normal random variables.

In Section 2 we consider the "finite" case where Ω consists of p points

$$\Omega_p = \{t_{ip}, 1 \leq i \leq p\} \quad \text{in} \quad R^r.$$

Thus we observe $\mathbf{Z}' = (\mathbf{X}', \mathbf{Y}')$ where $X_i = X(t_{ip})$, $Y_i = Y(t_{ip})$. A test of H_0 locally equivalent to the likelihood ratio test is to accept H_0 when $T_p = [\partial \ln f(\mathbf{Z}, \rho)/\partial \rho]_{\rho=0}$ is close to zero, where $f(z, \rho)$ is the density of \mathbf{Z} in R^{2p} . Since $\mathbf{Z} \sim N_{2p}(0, C(\rho))$ where

$$C(\rho) = \begin{pmatrix} \Sigma_{11p} & \rho \Sigma_{12p} \\ \rho \Sigma_{21p} & \Sigma_{22p} \end{pmatrix}$$

and Σ_{ijp} is the $p \times p$ matrix with (α, β) element $\Sigma_{ij}(t_{\alpha p}, t_{\beta p})$, it follows (Lemma 2.1) that

$$T_p = \mathbf{X}' R_p \mathbf{Y} \qquad \text{where} \quad R_p = \Sigma_{11p}^{-1} \Sigma_{12p} \Sigma_{22p}^{-1}. \tag{1.1}$$

In Theorem 2.1 we show that the distribution of T_p is determined by ρ and the canonical correlations of \mathbb{Z} : these may be written in he form $\{|\rho| \lambda_{ip}, 1 \leq i \leq p\}$, where $\{\lambda_{ip}\}$ are the positive roots of $|C(-\lambda^{-1})| = 0$ and $|\cdot|$ denotes the determinant. Equivalently, $\{\lambda_{ip}\}$ are the square roots of the eigenvalues of $A_p A'_p$ or of $A'_p A_p$ where $A_p = \sum_{11p}^{-1/2} \sum_{12p} \sum_{22p}^{-1/2}$. In fact, Theorem 2.1 shows that

$$T_{p} = \sum_{1}^{p} \lambda_{ip} (M_{i}^{2} - N_{i}^{2})/2 + \rho \sum_{1}^{p} \lambda_{ip}^{2} (M_{i}^{2} + N_{i}^{2})/2$$
(1.2)

where $\{M_i, N_i\}$ are independent N(0, 1) random variables (r.v.s).

It follows that the null distribution of T_p is symmetric about 0, and that an unbiased estimate of ρ is

$$\hat{\rho}_{p} = A_{2,p}^{-1} T_{p}$$
 where $A_{2,p} = \sum_{1}^{p} \lambda_{i,p}^{2} = \text{trace } A_{p} A_{p}'$. (1.3)

In Theorem 2.2 we show how to express the distribution of T_p as a power series in ρ , and determine the slope of the power curve near $\rho = 0$ for the one- and two-sided tests of H_0 based on T_p .

A solution for the case when Ω , the domain of observation of Z, has a positive (but bounded) Lebesgue measure may be obtained by choosing $\{t_{ip}, 1 \leq i \leq p\}$ to be evenly distributed over Ω and allowing p to increase to ∞ . (For example, if r = 1 and $\Omega = [0, 1]$ one could choose $t_{ip} = i/p$.) Two distinct situations arise, depending on whether $\Lambda_{2,p}$ remains bounded or not. Section 3 deals with the situation where $\Lambda_{2,p}$ remains bounded and $\lambda_{i,p} \rightarrow \lambda_i$ as $p \rightarrow \infty$. Theorem 3.1 shows that T_p converges to a r.v.

$$T = \sum_{1}^{\infty} \lambda_i (M_i^2 - N_i^2)/2 + \rho \sum_{1}^{\infty} \lambda_i^2 (M_i^2 + N_i^2)/2, \qquad (1.4)$$

with properties analogous to T_p . In particular the powers of the tests of H_0 are less than 1, and $\hat{\rho}_p$ does not converge to ρ .

However, in the situation where $\Lambda_{2,p} \to \infty$ as $p \to \infty$, dealt with in Section 4, T_p satisfies the Central Limit Theorem (C.L.T), $\hat{\rho}_p$ converges to ρ , and a test of H_0 may be constructed, with power at a given value of ρ arbitrarily close to 1. (In particular this situation occurs when $\Sigma_{ij} \equiv \Sigma_{11}$, as in the case of elliptical Brownian motion.)

Finally Section 5 illustrates an alternative method for obtaining $\{\lambda_i\}$ in the case where Ω is arbitrarily but $\Sigma_{11}(s, t)$, $\Sigma_{22}(s, t)$ have known eigenvalues and eigenfunctions. This approach also enables the construction of $\Sigma_{12}(s, t)$ such that the $\{\lambda_i\}$ have specified properties (such as $\Lambda_{2,\infty}$ being finite or infinite).

2. THE FINITE CASE

Suppose that Z(t) is observed at only the p points in Ω_p .

LEMMA 2.1. T_p is given by (1.1).

Proof. -2 ln $f(\mathbf{Z}, \rho) = \ln |C(\rho)| + 2p \ln(2\pi) + \mathbf{Z}'C(\rho)^{-1}\mathbf{Z}$. Let $\Sigma_{i,j} = \Sigma_{iip} - \rho^2 \Sigma_{ijp} \Sigma_{jjp}^{-1} \Sigma_{jip}$, $C^{11} = \Sigma_{1.2}^{-1}$, $C^{22} = \Sigma_{2.1}^{-1}$, and $C^{21} = (C^{12})' = -\rho \Sigma_{22p}^{-1} \Sigma_{21p} \Sigma_{1.2}^{-1}$. Then $|C(\rho)| = |\Sigma_{1.2}| |\Sigma_{22p}|$, (see for example De Groot [1, pp. 54–55], so that its derivative vanishes at $\rho = 0$. Also $C(\rho)^{-1} = (C^{ij})$ (e.g., Problem 2.7 of [3]) which has derivative $-C(\rho)^{-1} dC(\rho)/d\rho C(\rho)^{-1}$ equal to $-\binom{0}{R_{\rho}} \frac{R_{\rho}}{0}$ when $\rho = 0$. The result follows.

The next result gives the Fourier transform and the Laplace transform of the density T_p .

THEOREM 2.1. T_p can be written in the form (1.2). Hence if

$$\operatorname{Re}(\lambda)(\pm\lambda_{ip}+\rho\lambda_{ip}^2)<2, \qquad 1\leqslant i\leqslant p, \tag{2.1}$$

then $E \exp(\lambda T_p/2) = D_p(\lambda, \rho)^{-1/2}$ where

$$D_{p}(\lambda,\rho) = D_{p,\rho}(\lambda) D_{p,-\rho}(-\lambda),$$

$$D_{p,\rho}(\lambda) = \prod_{i=1}^{p} \{1 - \lambda(\lambda_{ip} + \rho\lambda_{ip}^{2})/2\} = |I - \lambda(K_{p} + \rho K_{p}^{2})/2|,$$

and

$$K_p = (A_p A_p')^{1/2}.$$

230

Proof. From the singular value decomposition (e.g., [3, p. 42]), $A_p = U\Lambda V$ where $U'U = V'V = I_p$, $\Lambda = \text{diag}(v_1, ..., v_p)$, and $v_i = \lambda_{ip}$. Set $x = \sum_{11p}^{-1/2} \mathbf{X}, \ y = \sum_{22p}^{-1/2} \mathbf{Y}, \ u = U'x, \ v = Vy$. Then

$$T_p = x'A_p y = u'Av = \sum_{i=1}^{p} v_i u_i v_i.$$

Also, $\{(u_i, v_i)'\}$ are independently distributed as $\{N_2(0, L_i)\}$ where $L_i = \begin{pmatrix} 1 & \rho v_i \\ \rho v_i & 1 \end{pmatrix} = HP_iH$, $H = 2^{-1/2}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ and $P_i = \begin{pmatrix} 1+\rho v_i & 0 \\ 0 & 1-\rho v_i \end{pmatrix}$. Hence $v_i u_i v_i = a_i M_i^2 + b_i N_i^2$ where $a_i = (v_i + \rho v_i^2)/2$, $b_i = (-v_i + \rho v_i^2)/2$ and $(M_i, N_i)' = P_i^{-1/2}H(u_i, v_i)' \sim N_2(0, I)$. This proves (1.2). That is, T_p has the weighted chi-square form

$$T_{p} = \sum_{i}^{p} \left(a_{i}(\rho) M_{i}^{2} - a_{i}(-\rho) N_{i}^{2} \right)$$
(2.2)

where $\{a_i(\rho) = (\lambda_{ip} + \rho \lambda_{ip}^2)/2\}$ are the eigenvalues of $(K_p + \rho K_p^2)/2$. The rest follows from $E \exp(\lambda N_1^2/2) = (1 - \lambda)^{-1/2}$ for $\operatorname{Re}(\lambda) < 1$ as is easily proved by contour integration.

Two approximate methods for finding the distribution of indefinite quadratic forms of normal r.v.'s such as T_p are given in Section 29.7 of Johnson and Kotz [2]. These methods require $\{a_i(\rho)\}$, so that $\{\lambda_{ip}\}$ must be calculated. There are also various methods for inverting the characteristic function of T_p , $D_p(2it, \rho)^{-1/2}$, or its Laplace transform $D_p(-2t, \rho)^{-1/2}$, or of obtaining similarly the distributions of T_p^+ , T_p^- and convoluting these, where T_p^+ , T_p^- are the positive and negative parts of T_p , that is the components of (2.2) associated with the positive (or negative) values of $\{a_i(\rho), -a_j(-\rho)\}$.

From Theorem 2.1 it is easy to verify

COROLLARY 2.1.
$$ET_p = \rho \Lambda_{2,p}$$
, and $\operatorname{var}(T_p) = \Lambda_{2,p} + \rho^2 \Lambda_{4,p}$ where

$$\Lambda_{n,p} = \sum_{1}^{p} \lambda_{ip}^n = \operatorname{trace}(A_p A_p')^{n/2} = \operatorname{trace}(A_p' A_p)^{n/2}.$$

Let z_{α} denote the $1 - \alpha$ quantile of F(x, 0), the null distribution of T_p . The one- and two-sided $1 - \alpha$ level tests of H_0 are: "accept $H_0 \Leftrightarrow T_p < z_{\alpha}$ " and "accept $H_0 \Leftrightarrow |T_p| < z_{\alpha/2}$." We now consider the power of these tests near $\rho = 0$.

THEOREM 2.2. (a) The density of T_p satisfies

$$f(x,\rho) = f(x,0)\{1 + \rho x + \rho^2 (x^2 + \Lambda_{2,p})/2\} + O(\rho^3).$$

(b) The one-sided test has power

$$\alpha + \rho \int_{z_{\alpha}} xf(x,0) \, dx + \rho^2 \left(\alpha \Lambda_{2,p} + \int_{z_{\alpha}} x^2 f(x,0) \, dx \right) + O(\rho^3).$$

(c) The two-sided test has power

$$\alpha + \rho^2 \left\{ \int_{z_{\alpha/2}} x^2 f(x,0) \, dx + \alpha \Lambda_{2,\rho}/2 \right\} + O(\rho^4).$$

Proof. Dropping the subscript p, there exists $\lambda_0 > 0$ such that

$$D_{\rho}(\lambda)^{-1/2} = D_0(\lambda)^{-1/2} \exp\left\{\frac{1}{2}\sum_{j=1}^{\infty} p_j(\lambda) \rho^j / j\right\} \quad \text{for} \quad |\operatorname{Re} \lambda| < \lambda_0,$$

where

$$p_j(\lambda) = \sum_{i=1}^{p} C_i(\lambda)^j$$
 and $C_i(\lambda) = \lambda \lambda_i^2 (2 - \lambda \lambda_i)^{-1}$.

Hence $D(\lambda, \rho)^{-1/2} = D(\lambda, 0)^{-1/2} \{1 + \rho L_1(\lambda) + \rho^2 L_2(\lambda) + O(\rho^3)\}$ where $L_1(\lambda) = (p_1(\lambda) - p_1(-\lambda))/2$ and $L_2(\lambda) = (p_2(\lambda) + p_2(-\lambda))/4 + L_1(\lambda)^2/2$. Also, $p_1(\lambda) = -2\partial \ln D_0(\lambda) - \Lambda_1$ and $p_2(\lambda) = 4\partial^2 \ln D_0(\lambda) - 4\lambda^{-1}p_1(\lambda) + \Lambda_2$, where $\partial^i = (\partial/\partial\lambda)^i$. Set $D = D(\lambda, 0)$, $Y = T_p/2$ and let E_0 denote E when $\rho = 0$. Then $D^{-1/2} = E_0 \exp(\lambda Y)$, $D^{-1/2}L_1(\lambda) = 2\partial D^{-1/2} = 2E_0 Y \exp(\lambda Y)$, and $D^{-1/2}L_2(\lambda) = 2\partial^2 D^{-1/2} + \Lambda_2 D^{-1/2}/2 = E_0(2Y^2 + \Lambda_2/2) \exp(\lambda Y)$. Then (a) follows, and hence (b) and (c), using the symmetry of f(x, 0), with ρ^3 for ρ^4 in (c). To replace ρ^3 by ρ^4 in (c), note $T_p = U + \rho V$ where $(U, V) =^{L} (-U, V)$ so that $|T_p|$ has distribution expandable in powers of ρ^2 .

3. The Infinite Case: $A_{2,p}$ Bounded

Suppose that as $p \to \infty$, $\lambda_{ip} \to \lambda_i$, $i \ge 1$ where $\Lambda_2 = \sum_{i=1}^{\infty} \lambda_i^2 < \infty$.

THEOREM 3.1. As $p \to \infty$, $T_p \to^{L} T$, given by (1.4). The sum T converges in probability. If also $\Lambda_1 = \sum_{i=1}^{\infty} \lambda_i < \infty$, then $T = {}^{L} T^+ + T^- = {}^{L} T_+ + T_$ where

$$T^{+} = \sum a_{i}^{+} M_{i}^{2}, \qquad T^{-} = \sum a_{i}^{-} N_{i}^{2},$$
$$T_{+} = \sum_{1}^{\infty} a_{i}(\rho) M_{i}^{2}, \qquad T_{-} = -\sum_{1}^{\infty} a_{i}(-\rho) N_{i}^{2},$$

232

 $\{a_i^+\}$ and $\{a_i^-\}$ are the positive and negative values of $\{a_i(\rho), -a_i(-\rho)\}$ and $a_i(\rho) = (\lambda_i + \rho \lambda_i^2)/2$; these sums converge with probability one.

Proof. Suppose that λ satisfies (2.1). Then as $p \to \infty$,

$$D_p(\lambda,\rho) \to D_\infty(\lambda,\rho) = \prod_{i=1}^{\infty} (1 - \lambda a_i(\rho))(1 + \lambda a_i(-\rho))$$

which is finite. Convergence in probability follows.

If $\Lambda_1 < \infty$, $T^+ \ge 0 \ge T^-$ and $\infty > ET^+ \ge ET^- > -\infty$, so that T^+, T^- converge with probability 1. The same is true for T_+, T_- since these differ from T^+, T^- by only a fixed finite number of terms.

The analogs of the rest of Theorem 2.1, Corollary 2.1, and Theorem 2.2 also hold. Thus the distribution of T may be determined from $\{\lambda_i\}$. These values depend on the choice of $\{t_{i,p}\}$, but may be obtained independently of them as follows. Let $\mu_p(\cdot)$ be the measure putting weight p^{-1} at $t_{i,p}$, $1 \le i \le p$. Suppose μ_p converges weakly to a measure μ on Ω . (The natural choice for μ is Lebesgue measure on Ω .) Then when the operators $\{S_{ij}\}$, A, R given by

$$\mathbf{S}_{ij}f(s) = \int \Sigma_{ij}(s,t)f(t) \, d\mu(t),$$

where \int is over Ω ,

$$\mathbf{A} = \mathbf{S}_{11}^{-1/2} \mathbf{S}_{12} \mathbf{S}_{22}^{-1/2}, \qquad \mathbf{R} = \mathbf{S}_{11}^{-1} \mathbf{S}_{12} \mathbf{S}_{22}^{-1},$$

are well-defined, clearly $\{\lambda_i^{-2}\}$ are the eigenvalues of AA', $\Lambda_n = \sum_{i=1}^{\infty} \lambda_i^n$ is the trace of the operator $(AA')^{n/2}$, and $T = \int X(t) RY(t) d\mu(t)$.

It is not actually necessary to obtain $\{\lambda_i\}$ in order to get $E \exp(\lambda T/2) = D_{\infty}(\lambda, \rho)^{-1/2}$, since when $\Lambda_1 < \infty$, $D_{\infty}(\lambda, \rho) = D_{\infty,\rho}(\lambda) D_{\infty,-\rho}(-\lambda)$) where $D_{\infty,\rho}(\lambda) = \prod_{i=1}^{\infty} \{1 - \lambda(\lambda_i + \rho\lambda_i^2)/2\}$ may be determined from $D_{\infty,\rho}(\lambda) = \exp\{-\int_0^{\lambda} d\lambda \int B_{\rho}(t, t, \lambda) d\mu(t)\}$, where $B_{\rho}(s, t, \lambda)$ is the resolvent of the operator $B_{\rho} = ((AA')^{1/2} + \rho AA')/2$, (see for example, Withers [4]), or from $D_{\infty,\rho}(\lambda) = D(v_1) D(v_2)$ if $D(\lambda) = \prod_{i=1}^{\infty} (1 - \lambda\lambda_i)$ is known and v_1, v_2 are the roots of $1 - \lambda(v + \rho v^2)/2 = 0$.

4. The Infinite Case: $\Lambda_{2,p}$ Unbounded

THEOREM 4.1. Suppose that $\{\lambda_{jp}\}$ are uniformly bounded but $\Lambda_{2,p} \to \infty$ as $p \to \infty$. Then $\hat{\rho}_p \to^p \rho$, $(T_p - ET_p)(\operatorname{var} T_p)^{-1/2} \to^{\mathsf{L}} \mathsf{N}(0, 1)$ as $p \to \infty$, and an asymptotically $1 - \alpha$ level confidence region for ρ is given by

$$|\rho - \hat{\rho}_p| \leqslant \Phi^{-1}(1 - \alpha/2) \Lambda_{2,p}^{-1}(\Lambda_{2,p} + \hat{\rho}_p^2 \Lambda_{4,p})^{1/2}.$$

As $p \to \infty$, $\Lambda_{2,p}^{-1/2} T_p \to^{\mathsf{L}} \infty$ if $\rho > 0$, N(0, 1) if $\rho = 0$, and $-\infty$ if $\rho < 0$.

Proof. By Theorem 2.1, Corollary 2.1, and Lyapounov's Theorem, the C.L.T. holds for T_p since

$$\sum_{1}^{p} (a_{i}(\rho)^{4} + a_{ip}(-\rho)^{4}) / (\Lambda_{2,p} + \rho^{2} \Lambda_{4,p})^{2} \to 0 \quad \text{as} \quad p \to \infty$$

Hence

$$\Lambda_{2,p}(\hat{\rho}_p - \rho)(\Lambda_{2,p} + \rho^2 \Lambda_{4,p})^{-1/2} \xrightarrow{\mathsf{L}} \mathsf{N}(0, 1),$$

and

$$\Lambda_{2,p}^{-1/2} T_p = \rho \Lambda_{2,p}^{1/2} + 0_p(1).$$

Thus by taking p suitably large one may decide—with negligible error whether $\rho = 0$, and if it is not, obtain its value. For example, if p is chosen so that $(10^{-3}/3.291)^2 \ge (\Lambda_{2,p} + \hat{\rho}_p^2 \Lambda_{4,p}) \Lambda_{2,p}^{-2}$ then with probability greater or equal to .999 + o(1), ρ must lie between $\hat{\rho}_p - .001$ and $\hat{\rho}_p + .001$. (Here o(1) is a term which tends to zero as $p \to \infty$. Typically for each n, $\Lambda_{n,p}/p$ is a power series in p^{-1} so that this term can be improved to $O(p^{-\zeta})$ for any desired $\zeta > 0$, by the method of Withers [5].)

EXAMPLE 4.1. $\Sigma_{ij}(s, t) \equiv \sigma_{ij}C(s, t)$ where $\sigma_{12}C \neq 0$. In this case $\sigma_{21} = \sigma_{12}$ and $A_p = \sigma I_p$ where $\sigma = \sigma_{12}(\sigma_{11}\sigma_{22})^{-1/2}$, and $A_{n,p} = \sigma^n p$. Hence with probability $1 - \alpha + O(p^{-1/2})$,

$$|\rho - \hat{\rho}_p| \leq \Phi^{-1}(1 - \alpha/2) \,\sigma^{-1} p^{-1/2} (1 + \hat{\rho}_p^2 \sigma^2)^{1/2}$$

where

$$\hat{\rho}_p = \sigma^{-2} p^{-1} T_p, \qquad T_p = \sigma_0 \mathbf{X}' C_p^{-1} \mathbf{Y},$$
$$\sigma_0 = (\sigma_{11} \sigma_{22})^{-1/2} \sigma, \qquad \text{and} \qquad (C_p)_{\alpha,\beta} = C(t_{\alpha p}, t_{\beta p})$$

EXAMPLE 4.1. Suppose r = 1, $\Omega = [a, b]$, $C(s, t) = \min(s, t)$. Then

$$\mathbf{X}'C_p^{-1}\mathbf{Y} = c^{-1}X_1Y_1 + d^{-1}\sum_{i=1}^p X_iD_i$$

where c = a + d, d = (b - a)/p, $D_1 = Y_1 - Y_2$, $D_i = -Y_{i-1} + 2Y_i - Y_{i+1}$ for 1 < i < p, $D_p = -Y_{p-1} + Y_p$.

For $Z(\cdot)$ non-Gaussian, a Central Limit Theorem for T_p may still be proved under suitable conditions (such as when T_p is strong-mixing); however the confidence interval in Theorem 4.1 is no longer consistent, and a consistent estimate for var T_p is more difficult to obtain.

5. FOURIER METHODS

In some applications it may be desirable to try a variety of $\Sigma_{12}(s, t)$ or $\{\Sigma_{ij}(s, t)\}$. Fourier expansions provide a way to construct a covariance for Z(t) with given values of $\{\lambda_i\}$, and hence to make Λ_1 or Λ_2 finite or infinite as desired.

Alternatively, when $\{\Sigma_{ij}(s, t)\}\$ are given and the eigenvalues $\{\theta_{1i}, \theta_{2i}, ...\}\$ and eigenfunctions $\{\phi_{1i}(t), \phi_{2i}(t), ...\}\$ of $\Sigma_{ii}(s, t)$ (w.r.t. the measure μ on Ω) are known for i = 1 and 2, (including the solutions of $S_{ii}\phi = \theta^{-1}\phi$ with $\theta = \infty$), then the Fourier expansions provide an alternative way of calculating $\{\lambda_i\}$.

We illustrate this with the following example—the case when the marginals X(t), Y(t) are Brownian motion.

EXAMPLE 5.1. Take r = 1, $\Omega = [0, b]$, $\Sigma_{ii}(s, t) = \sigma_{ii} \min(s, t)$, i = 1, 2, and μ Lebesgue measure. Then the eigenfunctions and eigenvalues of $\Sigma_{ii}(s, t)$ are $\{\phi_j(t), \theta_j/\sigma_{ii}, j \ge 1\}$ where $\theta_j = (j - \frac{1}{2})^2 \pi^2/b^2$ and $\phi_j(t) = (2/b)^{1/2} \sin \theta_j^{1/2} t$. Choose $\{q_i\}$ such that $\sum_{i=1}^{\infty} q_i^2 < \infty$ and set

$$\Sigma_{12}(s,t) = \sum_{1}^{\infty} \phi_i(s) \phi_i(t) q_i.$$

Then $\Sigma(s, t, \rho)$ will be a covariance $\Leftrightarrow \max_i \rho^2 q_i^2 \leqslant \sigma_{11}\sigma_{22}$, since $\Sigma(s, t, \rho) = \sum_{i=1}^{\infty} \phi_i(s) \phi_i(t) \tau_i$ where $\tau_i = \begin{pmatrix} \sigma_{11} & \rho q_i \\ \rho q_i & \sigma_{22} \end{pmatrix} = EX(s) X(t)'$ where $X(s) = \sum_{i=1}^{\infty} \phi_i(s) \mathbf{X}_i$ and $\{\mathbf{X}_i\}$ are independent r.v.'s with means **0** and covariance $\{\tau_i\}$.

Also $\{\lambda_i\} = \{|q_i| \ \theta_i(\sigma_{11}\sigma_{22})^{-1/2}\}$ and so $\Lambda_2 < \infty \Leftrightarrow \sum_{i=1}^{\infty} q_i^2 i^4 < \infty$. This clearly fails for Example 4.1.1 with a = 0, since that example corresponds to the choice $q_i \equiv \sigma_{12}/\theta_i$.

However for a choice such as $q_i \equiv \sigma_{12}/\theta_i^2$, Λ_2 is finite and so is Λ_1 ; this choice yields

$$\Sigma_{12}(s, t) = \sigma_{12} \int_0^b \min(s, u) \min(u, t) \, du = \sigma_{12}(stb - st^2/2 - s^3/6)$$
for $s \le t$;

also $\{\lambda_i\} = \{\alpha \theta_i^{-1}\}$ where $\alpha = |\sigma_{12}| (\sigma_{11}\sigma_{22})^{-1/2}$, so that the Laplace transform/characteristic function of T is given by Section 3 in terms of $D(\lambda) = \prod_{1}^{\infty} (1 - \lambda \lambda_i) = \cos(\alpha \lambda)^{1/2} b\}.$

C. S. WITHERS

References

- [1] DEGROOT, M. H. (1970). Optimal Statistical Decisions. McGraw-Hill, New York.
- [2] JOHNSON, NORMAN L., AND KOTZ, SAMUEL (1970). Continuous Univariate Distributions—2. Houghton Miflin, Boston.
- [3] RAO, C. R. (1973). Linear Statistical Inference. Wiley, New York.
- [4] WITHERS, C. S. (1975). Fredholm theory for arbitrary measure spaces. Bull. Austral. Math. Soc. 12 283-292.
- [5] WITHERS, C. S. (1983). Accurate confidence intervals for distributions with one parameter. Ann. Inst. Statist. Math. A 35, 49-61.