Available online at www.sciencedirect.com

LINEAR ALGEBRA

Additive perturbation results for the Drazin inverse

N. Castro González
Facultad de Informática, Dept. de Matematica Aplicada, Universidad Politécnica de Madrid, Boadilla del Monte, Campus de Montegancedo, 28660 Madrid, Spain
Received 11 March 2002; accepted 1 November 2004

Submitted by H.J. Werner

Abstract

In this paper some new additive results for the Drazin inverse are presented. We give a formula for the Drazin inverse of a sum of two matrices under conditions on the matrices less restrictive than those imposed in the corresponding theorem given by Hartwig et al. (Linear Algebra Appl. 322 (2001) 207-217). We consider some aplications of our results to the perturbation of the Drazin inverse and analyze a number of special cases. © 2004 Elsevier Inc. All rights reserved. AMS classification: Primary 15A09 Keywords: Drazin inverse; Perturbation

1. Introduction

Let $\mathscr{R}(A), \mathscr{N}(A)$ denote the range and null space of $A \in \mathbb{C}^{n \times n}$. The index of A, denoted by $\operatorname{ind}(A)$, is the smallest non-negative integer r such that $\mathbb{C}^{n \times n}=$ $\mathscr{R}\left(A^{r}\right) \oplus \mathscr{N}\left(A^{r}\right)$. The eigenprojection A^{π} of A corresponding to the eigenvalue 0 is the uniquely determined idempotent matrix with

$$
\mathscr{R}\left(A^{\pi}\right)=\mathscr{N}\left(A^{r}\right) \quad \text { and } \quad \mathscr{N}\left(A^{\pi}\right)=\mathscr{R}\left(A^{r}\right) .
$$

[^0]If $A \in \mathbb{C}^{n \times n}$ is such that $\operatorname{ind}(A)=r$, the Drazin inverse of A is the unique matrix $A^{\mathrm{D}} \in \mathbb{C}^{n \times n}$ satisfying the relations

$$
A^{\mathrm{D}} A A^{\mathrm{D}}=A^{\mathrm{D}}, \quad A A^{\mathrm{D}}=A^{\mathrm{D}} A, \quad A^{l+1} A^{\mathrm{D}}=A^{l} \text { for all } l \geqslant r .
$$

By [2-Theorem 7.2.1], for each $A \in \mathbb{C}^{n \times n}$ such that $\operatorname{ind}(A)=r$, there exists a non-singular core-nilpotent block form

$$
A=P\left(\begin{array}{cc}
C & 0 \\
0 & N
\end{array}\right) P^{-1}
$$

where C is non-singular and N is nilpotent of index r. Relative to the above form, the Drazin inverse of A and the eigenprojection A^{π} are given by

$$
A^{\mathrm{D}}=P\left(\begin{array}{cc}
C^{-1} & 0 \\
0 & 0
\end{array}\right) P^{-1}, \quad A^{\pi}=I-A A^{\mathrm{D}}=P\left(\begin{array}{ll}
0 & 0 \\
0 & I
\end{array}\right) P^{-1}
$$

In particular, if A is nilpotent then the block C is empty and $A^{\mathrm{D}}=0$; if A is non-singular then the block N is empty and $A^{\mathrm{D}}=A^{-1}$. The case when $\operatorname{ind}(A)=1$, which is equivalent to having $N=0$ in the above form, is of special interest and the Drazin inverse of A is called the group inverse of A, and is denoted by A^{\sharp}. The Drazin inverse of complex square matrices is investigated in the books [1] and [2].

The behaviour of the Drazin inverse with respect to the sum $a+b$ of two Drazin invertible elements of a ring is firstly considered by Drazin in [4]. Herein, it was showed that $(a+b)^{\mathrm{D}}=a^{\mathrm{D}}+b^{\mathrm{D}}$ provided $a b=b a=0$. In [9-Theorem 2.1] there was constructed, for matrices, a formula for the Drazin inverse $(A+B)^{\mathrm{D}}$ as a function of $A, B, A^{\mathrm{D}}, B^{\mathrm{D}}$ when only the condition $A B=0$ was assumed. This result was extended in [8] to the generalized Drazin inverse of bounded linear operators in Banach spaces. The aim of this paper is to extend additive Drazin inverse results given in [9] to more general cases, under weaker conditions on the matrices A and B by dropping off the assumption that one of the products of these matrices vanishes. In this paper we apply our results to get a perturbation result that generalizes [9-Corollary 2.2] and admits several special cases.

Next we state one lemma concerning Drazin inverse of a partitioned matrix that will be needed later (see Meyer and Rose [5]).

Lemma 1.1. Let

$$
M_{1}=\left(\begin{array}{ll}
A & 0 \\
C & B
\end{array}\right), \quad M_{2}=\left(\begin{array}{ll}
B & C \\
0 & A
\end{array}\right),
$$

where A and B are square matrices with $\operatorname{ind}(A)=r$ and $\operatorname{ind}(B)=s$. Then

$$
M_{1}^{\mathrm{D}}=\left(\begin{array}{cc}
A^{\mathrm{D}} & 0 \\
X & B^{\mathrm{D}}
\end{array}\right), \quad M_{2}^{\mathrm{D}}=\left(\begin{array}{cc}
B^{\mathrm{D}} & X \\
0 & A^{\mathrm{D}}
\end{array}\right),
$$

where

$$
X=\left(B^{\mathrm{D}}\right)^{2}\left(\sum_{i=0}^{r-1}\left(B^{\mathrm{D}}\right)^{i} C A^{i}\right) A^{\pi}+B^{\pi}\left(\sum_{i=0}^{s-1} B^{i} C\left(A^{\mathrm{D}}\right)^{i}\right)\left(A^{\mathrm{D}}\right)^{2}-B^{\mathrm{D}} C A^{\mathrm{D}}
$$

2. Drazin inverse of a sum of two matrices

First we state one particular case of our main result.
Theorem 2.1. Let $B \in \mathbb{C}^{n \times n}$, $s=\operatorname{ind}(B)$, let $N \in \mathbb{C}^{n \times n}$ be nilpotent of index r. If $N B^{\mathrm{D}}=0$ and $B^{\pi} N B=0$ then

$$
\begin{equation*}
(N+B)^{\mathrm{D}}=B^{\mathrm{D}}+\left(B^{\mathrm{D}}\right)^{2}\left(\sum_{i=0}^{r+s-2}\left(B^{\mathrm{D}}\right)^{i} N S(i)\right) \tag{2.1}
\end{equation*}
$$

and, for any $i \geqslant 0$,

$$
\begin{equation*}
B^{\pi}(N+B)^{i}=S(i) \tag{2.2}
\end{equation*}
$$

where

$$
S(i)=B^{\pi}\left(\sum_{j=0}^{i} B^{i-j} N^{j}\right)
$$

Moreover, if $\max \{r, s\} \leqslant l \leqslant r+s-2$ then for all $i \geqslant l$ we have $S(i)=$ $B^{i-l+1} S(l-1)=S(l-1) N^{i-l+1}$.

Proof. Let P be a non-sigular matrix for which

$$
B=P\left(\begin{array}{cc}
C_{B} & 0 \\
0 & N_{B}
\end{array}\right) P^{-1}
$$

where C_{B} is non-singular and N_{B} is nilpotent of index s. From $N B^{\mathrm{D}}=0$ it follows that N can be written as

$$
N=P\left(\begin{array}{ll}
0 & N_{1} \\
0 & N_{2}
\end{array}\right) P^{-1}
$$

where N_{2} is nilpotent of index r. From $B^{\pi} N B=0$ it follows that $N_{2} N_{B}=0$. Thus, for any $i \geqslant 0$,

$$
\left(N_{2}+N_{B}\right)^{i}=\sum_{j=0}^{i} N_{B}^{i-j} N_{2}^{j}=\sum_{j=0}^{i} N_{B}^{j} N_{2}^{i-j}
$$

We observe that $N_{2}+N_{B}$ is nilpotent of index $r+s-1$. We set $t=r+s-2$. From Lemma 1.1 we get that

$$
(N+B)^{\mathrm{D}}=P\left(\begin{array}{cc}
C_{B} & N_{1} \\
0 & N_{2}+N_{B}
\end{array}\right)^{\mathrm{D}} P^{-1}=P\left(\begin{array}{cc}
C_{B}^{-1} & X \\
0 & 0
\end{array}\right) P^{-1}
$$

where

$$
X=\left(C_{B}^{-1}\right)^{2}\left(\sum_{i=0}^{t}\left(C_{B}^{-1}\right)^{i} N_{1}\left(N_{2}+N_{B}\right)^{i}\right)
$$

$$
=\left(C_{B}^{-1}\right)^{2}\left(\sum_{i=0}^{t}\left(C_{B}^{-1}\right)^{i} N_{1}\left(\sum_{j=0}^{i} N_{B}^{i-j} N_{2}^{j}\right)\right)
$$

Write $S(i)=B^{\pi}\left(\sum_{j=0}^{i} B^{i-j} N^{j}\right)$ for all $i \geqslant 0$. Now, we compute, for all $i \geqslant 1$,

$$
\begin{aligned}
S(i) & =P\left\{\left(\begin{array}{cc}
0 & 0 \\
0 & N_{B}^{i}
\end{array}\right)+\sum_{j=1}^{i}\left(\begin{array}{cc}
0 & 0 \\
0 & N_{B}^{i-j}
\end{array}\right)\left(\begin{array}{cc}
0 & N_{1} N_{2}^{j-1} \\
0 & N_{2}^{j}
\end{array}\right)\right\} P^{-1} \\
& =P\left(\begin{array}{cc}
0 & 0 \\
0 & \sum_{j=0}^{i} N_{B}^{i-j} N_{2}^{j}
\end{array}\right) P^{-1} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& B^{\mathrm{D}}+\left(B^{\mathrm{D}}\right)^{2}\left(\sum_{i=0}^{t}\left(B^{\mathrm{D}}\right)^{i} N S(i)\right) \\
& \quad=P\left(\begin{array}{cc}
C_{B}^{-1} & \sum_{i=0}^{t}\left(C_{B}^{-1}\right)^{i+2} N_{1}\left(\sum_{j=0}^{i} N_{B}^{i-j} N_{2}^{j}\right) \\
0 & 0
\end{array}\right) P^{-1} \\
& \quad=P\left(\begin{array}{cc}
C_{B}^{-1} & X \\
0 & 0
\end{array}\right) P^{-1}=(N+B)^{\mathrm{D}}
\end{aligned}
$$

The equality (2.2) and the second statement of the theorem are easily verified.
Remark 2.2. Let $B, N \in \mathbb{C}^{n \times n}$ satisfy conditions of Theorem 2.1. Then we have

$$
(N+B)^{\mathrm{D}}(N+B)=B^{\mathrm{D}} B+\left(\sum_{i=0}^{r+s-2}\left(B^{\mathrm{D}}\right)^{i+1} N S(i)\right)
$$

where $S(i)$ is defined in (2.2).
Now we can derive some especial cases from Theorem 2.1.
Corollary 2.3. Let $B \in \mathbb{C}^{n \times n}, s=\operatorname{ind}(B)$, and let $N \in \mathbb{C}^{n \times n}$ be nilpotent of index r. If $N B=0$ then

$$
(B+N)^{\mathrm{D}}=B^{\mathrm{D}}\left(\sum_{i=0}^{r-1}\left(B^{\mathrm{D}}\right)^{i} N^{i}\right)
$$

Proof. See [9-Corollary 2.1 (iii)].
Corollary 2.4. Let $B \in \mathbb{C}^{n \times n}, s=\operatorname{ind}(B)$, and let $N \in \mathbb{C}^{n \times n}$ be nilpotent of index r. Suppose that $N B^{\mathrm{D}}=0$ and $B^{\pi} N B=0$.
(i) If $N^{2}=0$ then

$$
(B+N)^{\mathrm{D}}=B^{\mathrm{D}}+\left(B^{\mathrm{D}}\right)^{2}\left(\sum_{i=0}^{s-1}\left(B^{\mathrm{D}}\right)^{i} N B^{i}\right)+\left(B^{\mathrm{D}}\right)^{3}\left(\sum_{i=1}^{s-1}\left(B^{\mathrm{D}}\right)^{i} N B^{i}\right) N .
$$

(ii) If $N R=0$, then

$$
(B+N)^{\mathrm{D}} R=B^{\mathrm{D}} R+\left(B^{\mathrm{D}}\right)^{2}\left(\sum_{i=1}^{r+s-2}\left(B^{\mathrm{D}}\right)^{i} N B^{i}\right) R
$$

(iii) If $B^{2}=B$, then

$$
(B+N)^{\mathrm{D}}=B(I-N)^{-1} .
$$

Proof. Each of these cases follows directly from Theorem 2.1 and the following simplification.

Write $S(i)=B^{\pi}\left(\sum_{j=0}^{i} B^{i-j} N^{j}\right)$ for all $i \geqslant 0$.
(i) Since $N^{2}=0, N S(i)=N B^{i}+N B^{i-1} N$ for all $i \geqslant 1$.
(ii) Since $N R=0, N S(i) R=N B^{i} R$.
(iii) Since $B^{2}=B, B^{\mathrm{D}}=B$ and then the hypothesis $N B^{\mathrm{D}}=0$ implies $N B=0$. Then from Corollary 2.3 it follows that $(B+N)^{\mathrm{D}}=B\left(\sum_{i=0}^{r-1} N^{i}\right)$. Now, we use that $(I-N)^{-1}=\sum_{i=0}^{r-1} N^{i}$.

Next, we state the main result.
Theorem 2.5. Let $A \in \mathbb{C}^{n \times n}, r=\operatorname{ind}(A), B \in \mathbb{C}^{n \times n}, s=\operatorname{ind}(B)$. If $A^{\mathrm{D}} B=0$, $A B^{\mathrm{D}}=0$ and $B^{\pi} A B A^{\pi}=0$ then

$$
\begin{align*}
(A+B)^{\mathrm{D}}= & B^{\mathrm{D}}\left(I+\sum_{i=0}^{t}\left(B^{\mathrm{D}}\right)^{i+1} A Z(i)\right) A^{\pi} \\
& +B^{\pi}\left(I+\sum_{i=0}^{t} Z(i) B\left(A^{\mathrm{D}}\right)^{i+1}\right) A^{\mathrm{D}} \\
& -\left(B^{\mathrm{D}}\right)^{2}\left(\sum_{i=0}^{t}\left(B^{\mathrm{D}}\right)^{i} A Z(i) B\right) A^{\mathrm{D}} \\
& -B^{\mathrm{D}}\left(\sum_{i=0}^{t} A Z(i) B\left(A^{\mathrm{D}}\right)^{i}\right)\left(A^{\mathrm{D}}\right)^{2} \\
& -\left(B^{\mathrm{D}}\right)^{2}\left(\sum_{i=0}^{t-1} \sum_{k=0}^{t-1}\left(B^{\mathrm{D}}\right)^{i} A Z(i+k+1) B\left(A^{\mathrm{D}}\right)^{k}\right)\left(A^{\mathrm{D}}\right)^{2} \tag{2.3}
\end{align*}
$$

where $t=r+s-2$ (in the case $r=s=1$, we assume that $\sum_{i=0}^{-1}$ is an empty sum)

$$
\begin{equation*}
Z(i)=B^{\pi}\left(\sum_{j=0}^{i} B^{i-j} A^{j}\right) A^{\pi} \tag{2.4}
\end{equation*}
$$

Moreover, if $\max \{r, s\} \leqslant l \leqslant t$ then we have

$$
Z(i)=B^{i-l+1} Z(l-1)=Z(l-1) A^{i-l+1} \quad \text { for all } i \geqslant l .
$$

Proof. Let P be a non-sigular matrix for which

$$
A=P\left(\begin{array}{cc}
C_{A} & 0 \\
0 & N_{A}
\end{array}\right) P^{-1}
$$

where C_{A} is non-singular and N_{A} is nilpotent of index r. From $A^{\mathrm{D}} B=0$ it follows that B can be written as

$$
B=P\left(\begin{array}{cc}
0 & 0 \\
B_{1} & B_{2}
\end{array}\right) P^{-1}
$$

Thus from the assumptions $A B^{\mathrm{D}}=0$ and $B^{\pi} A B A^{\pi}=0$, using Lemma 1.1 to compute B^{D}, we get that $N_{A} B_{2}^{\mathrm{D}}=0$ and $B_{2}^{\pi} N_{A} B_{2}=0$. So, we see that B_{2} and N_{A} satisfied conditions of Theorem 2.1.

We set $t=r+s-2$. From Lemma 1.1 we have that

$$
(A+B)^{\mathrm{D}}=P\left(\begin{array}{cc}
C_{A} & 0 \\
B_{1} & N_{A}+B_{2}
\end{array}\right)^{\mathrm{D}} P^{-1}=P\left(\begin{array}{cc}
C_{A}^{-1} & 0 \\
X & \left(N_{A}+B_{2}\right)^{\mathrm{D}}
\end{array}\right) P^{-1}
$$

where

$$
X=\left(N_{A}+B_{2}\right)^{\pi}\left(\sum_{k=0}^{t}\left(N_{A}+B_{2}\right)^{k} B_{1}\left(C_{A}^{-1}\right)^{k}\right)\left(C_{A}^{-1}\right)^{2}-\left(N_{A}+B_{2}\right)^{\mathrm{D}} B_{1} C_{A}^{-1}
$$

Using Theorem 2.1 we get that

$$
\left(N_{A}+B_{2}\right)^{\pi}=B_{2}^{\pi}-B_{2}^{\mathrm{D}}\left(\sum_{i=0}^{t}\left(B_{2}^{\mathrm{D}}\right)^{i} N_{A} S(i)\right)
$$

where $S(i)=B_{2}^{\pi}\left(\sum_{j=0}^{i} B_{2}^{j} N_{A}^{i-j}\right)$ for all $i \geqslant 0$.
Now, expand X as the sum of the following terms X_{1}, X_{2} and X_{3}.

$$
\begin{aligned}
X_{1} & =B_{2}^{\pi}\left(\sum_{k=0}^{t}\left(N_{A}+B_{2}\right)^{k} B_{1}\left(C_{A}^{-1}\right)^{k}\right)\left(C_{A}^{-1}\right)^{2} \\
& =B_{2}^{\pi}\left(\sum_{k=0}^{t} S(k) B_{1}\left(C_{A}^{-1}\right)^{k}\right)\left(C_{A}^{-1}\right)^{2},
\end{aligned}
$$

where this equality follows by using (2.2) in Theorem 2.1.

$$
\begin{aligned}
X_{2}= & -B_{2}^{\mathrm{D}}\left(\sum_{i=0}^{t}\left(B_{2}^{\mathrm{D}}\right)^{i} N_{A} S(i)\right)\left(\sum_{k=0}^{t}\left(N_{A}+B_{2}\right)^{k} B_{1}\left(C_{A}^{-1}\right)^{k}\right)\left(C_{A}^{-1}\right)^{2} \\
= & -B_{2}^{\mathrm{D}}\left(\sum_{k=0}^{t} N_{A}\left(N_{A}+B_{2}\right)^{k} B_{1}\left(C_{A}^{-1}\right)^{k}\right)\left(C_{A}^{-1}\right)^{2} \\
& -\left(B_{2}^{\mathrm{D}}\right)^{2}\left(\sum_{i=0}^{t-1} \sum_{k=0}^{t-1}\left(B_{2}^{\mathrm{D}}\right)^{i} N_{A} S(i+k+1) B_{1}\left(C_{A}^{-1}\right)^{k}\right)\left(C_{A}^{-1}\right)^{2},
\end{aligned}
$$

where this equality follows by using (2.2) to obtain that $S(i)\left(N_{A}+B_{2}\right)^{k}=B_{2}^{\pi}\left(N_{A}+\right.$ $\left.B_{2}\right)^{i+k}=S(i+k)$, after we change $i=i-1$ in the last sum and we observe that $S(i+t+1)=0$ for $i=0, \ldots, t-1$.

$$
\begin{aligned}
X_{3} & =-\left(N_{A}+B_{2}\right)^{\mathrm{D}} B_{1} C_{A}^{-1} \\
& =-B_{2}^{\mathrm{D}} B_{1} C_{A}^{-1}-\left(B_{2}^{\mathrm{D}}\right)^{2}\left(\sum_{i=0}^{t}\left(B_{2}^{\mathrm{D}}\right)^{i} N_{A} S(i) B_{1}\right) C_{A}^{-1} .
\end{aligned}
$$

Write $Z(i)=B^{\pi}\left(\sum_{j=0}^{i} B^{i-j} A^{j}\right) A^{\pi}$. By direct computations, for all $i \geqslant 1$ we have,

$$
\begin{aligned}
& Z(i)=P\left(\begin{array}{cc}
I & 0 \\
-B_{2}^{\mathrm{D}} B_{1} & I-B_{2} B_{2}^{\mathrm{D}}
\end{array}\right) \\
& \times\left\{\sum_{j=0}^{i-1}\left(\begin{array}{cc}
0 & 0 \\
B_{2}^{i-j-1} B_{1} & B_{2}^{i-j}
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
0 & N_{A}^{j}
\end{array}\right)+\left(\begin{array}{cc}
0 & 0 \\
0 & N_{A}^{i}
\end{array}\right)\right\} P^{-1} \\
& =P\left(\begin{array}{cc}
0 & 0 \\
0 & \left(I-B_{2} B_{2}^{\mathrm{D}}\right) \sum_{j=0}^{i} B_{2}^{i-j} N_{A}^{j}
\end{array}\right) P^{-1} \\
& =P\left(\begin{array}{cc}
0 & 0 \\
0 & S(i)
\end{array}\right) P^{-1}
\end{aligned}
$$

and

$$
A Z(i) B\left(A^{\mathrm{D}}\right)^{q}=P\left(\begin{array}{cc}
0 & 0 \\
N_{A} S(i) B_{1}\left(C_{A}^{-1}\right)^{q} & 0
\end{array}\right) P^{-1} \quad \text { for all } q \geqslant 1 .
$$

Now, we compute the terms of the expression (2.3) for $(A+B)^{\mathrm{D}}$ using the block descomposition,

$$
\Sigma_{1}=B^{\mathrm{D}}\left(I+\sum_{i=0}^{t}\left(B^{\mathrm{D}}\right)^{i+1} A Z(i)\right) A^{\pi}
$$

$$
\begin{aligned}
& =P\left\{\left(\begin{array}{cc}
0 & 0 \\
0 & B_{2}^{\mathrm{D}}
\end{array}\right)+\sum_{i=0}^{t}\left(\begin{array}{cc}
0 & 0 \\
\left(B_{2}^{\mathrm{D}}\right)^{i+3} B_{1} & \left(B_{2}^{\mathrm{D}}\right)^{i+2}
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
0 & N_{A} S(i)
\end{array}\right)\right\} P^{-1} \\
& =P\left(\begin{array}{cc}
0 & 0 \\
0 & B_{2}^{\mathrm{D}}+\sum_{i=0}^{t}\left(B_{2}^{\mathrm{D}}\right)^{i+2} N_{A} S(i)
\end{array}\right) P^{-1} \\
& =P\left(\begin{array}{cc}
0 & 0 \\
0 & \left(N_{A}+B_{2}\right)^{\mathrm{D}}
\end{array}\right) P^{-1} \text {, } \\
& \Sigma_{2}=B^{\pi}\left(I+\sum_{k=0}^{t} Z(k) B\left(A^{\mathrm{D}}\right)^{k+1}\right) A^{\mathrm{D}} \\
& =P\left(\begin{array}{cc}
C_{A}^{-1} & 0 \\
-B_{2}^{\mathrm{D}} B_{1} C_{A}^{-1}+B_{2}^{\pi}\left(\sum_{k=0}^{t} S(k) B_{1}\left(C_{A}^{-1}\right)^{k+2}\right) & 0
\end{array}\right) P^{-1}, \\
& \Sigma_{3}=-\left(B^{\mathrm{D}}\right)^{2}\left(\sum_{i=0}^{t}\left(B^{\mathrm{D}}\right)^{i} A Z(i) B\right) A^{\mathrm{D}} \\
& =-P\left(\begin{array}{cc}
0 & 0 \\
\sum_{i=0}^{t}\left(B_{2}^{\mathrm{D}}\right)^{i+2} N_{A} S(i) B_{1} C_{A}^{-1} & 0
\end{array}\right) P^{-1}, \\
& \Sigma_{4}=-B^{\mathrm{D}}\left(\sum_{i=0}^{t} A Z(i) B\left(A^{\mathrm{D}}\right)^{i}\right)\left(A^{\mathrm{D}}\right)^{2} \\
& =-P\left(\begin{array}{cc}
0 & 0 \\
\sum_{i=0}^{t} B_{2}^{D} N_{A} S(i) B_{1}\left(C_{A}^{-1}\right)^{i+2} & 0
\end{array}\right) P^{-1}, \\
& \Sigma_{5}=-\left(B^{\mathrm{D}}\right)^{2}\left(\sum_{i=0}^{t-1} \sum_{k=0}^{t-1}\left(B^{\mathrm{D}}\right)^{i} A Z(i+k+1) B\left(A^{\mathrm{D}}\right)^{k}\right)\left(A^{\mathrm{D}}\right)^{2} \\
& =-P\left(\begin{array}{cc}
0 & 0 \\
\sum_{i=0}^{t-1} \sum_{k=0}^{t-1}\left(B_{2}^{\mathrm{D}}\right)^{i+2} N_{A} S(i+k+1) B_{1}\left(C_{A}^{-1}\right)^{k+2} & 0
\end{array}\right) P^{-1} .
\end{aligned}
$$

Thus, $\quad \Sigma_{1}+\Sigma_{2}+\Sigma_{3}+\Sigma_{4}+\Sigma_{5}=P^{-1}\left(\begin{array}{cc}C_{A}^{-1} & 0 \\ X & \left(N_{A}+B_{2}\right)^{\mathrm{D}}\end{array}\right) P$, completing the proof of (2.3). The second statement of the theorem is easily verified.

Remark 2.6. Our conditions in Theorem $2.5, A^{\mathrm{D}} B=0, A B^{\mathrm{D}}=0$ and $B^{\pi} A B A^{\pi}=$ 0 can be formulated geometrically as

$$
\mathscr{R}(B) \subset \mathscr{N}\left(A^{r}\right), \quad \mathscr{R}\left(B^{s}\right) \subset \mathscr{N}(A) \quad \text { and } \quad \mathscr{R}\left(B A^{\pi}\right) \subset \mathscr{N}\left(B^{\pi} A\right)
$$

and we see that when $r=\operatorname{ind}(A)>1$ and $s=\operatorname{ind}(B)>1$ these conditions are weaker than condition $A B=0$, or $\mathscr{R}(B) \subset \mathscr{N}(A)$, assumed in [9-Theorem 2.1].

Remark 2.7. Let $A, B \in \mathbb{C}^{n \times n}$ satisfy conditions of Theorem 2.5 . Then for the projection $(A+B)^{\mathrm{D}}(A+B)$ we get, after some computations, the following formula

$$
\begin{aligned}
(A+B)^{\mathrm{D}}(A+B)= & B^{\mathrm{D}} B+A^{\mathrm{D}} A+\left(\sum_{i=0}^{t}\left(B^{\mathrm{D}}\right)^{i+1} A Z(i)\right) A^{\pi} \\
& +B^{\pi}\left(\sum_{i=0}^{t} Z(i) B\left(A^{\mathrm{D}}\right)^{i+1}\right) \\
& -\sum_{i=0}^{t} \sum_{k=0}^{t}\left(B^{\mathrm{D}}\right)^{i+1} A Z(i+k) B\left(A^{\mathrm{D}}\right)^{k+1}
\end{aligned}
$$

where $Z(i)$ is defined as in (2.4).
Corollary 2.8. Let $A, B \in \mathbb{C}^{n \times n}, r=\operatorname{ind}(A)$ and $s=\operatorname{ind}(B)$. Suppose that $A^{\mathrm{D}} B=$ 0 and $A B A^{\pi}=0$. Then

$$
\begin{aligned}
(A+B)^{\mathrm{D}}= & \left(\sum_{i=0}^{r-1}\left(B^{\mathrm{D}}\right)^{i+1} A^{i}\right) A^{\pi} \\
& +B^{\pi}\left(\sum_{i=0}^{s-1} B^{i}\left(A^{\mathrm{D}}\right)^{i+1}+\sum_{i=1}^{r+s-2} \sum_{j=1}^{i} B^{i-j} A^{j} B\left(A^{\mathrm{D}}\right)^{i+2}\right) \\
& -\left(B^{\mathrm{D}}\right)^{2}\left(\sum_{i=0}^{r-2}\left(B^{\mathrm{D}}\right)^{i} A^{i+1} B\right) A^{\mathrm{D}}-B^{\mathrm{D}}\left(\sum_{i=0}^{r-2} A^{i+1} B\left(A^{\mathrm{D}}\right)^{i}\right)\left(A^{\mathrm{D}}\right)^{2} \\
& -\left(B^{\mathrm{D}}\right)^{2}\left(\sum_{i=0}^{r-2} \sum_{k=0}^{r-2-i}\left(B^{\mathrm{D}}\right)^{i} A^{i+k+1} B\left(A^{\mathrm{D}}\right)^{k}\right)\left(A^{\mathrm{D}}\right)^{2} .
\end{aligned}
$$

Proof. From $A^{\mathrm{D}} B=0$ and $A B A^{\pi}=0$ it follows that

$$
A B^{2}=A B A^{\pi} B+A B\left(I-A^{\pi}\right) B=A B A A^{\mathrm{D}} B=0
$$

and thus $A B^{\mathrm{D}}=0$. Then we can apply Theorem 2.5 , together with the simplification $A Z(i)=A^{i+1} A^{\pi}$ for all $i \geqslant 0$ and $A^{i} B=A^{i+1} A^{\mathrm{D}} B=0$ for all $i \geqslant r$, to get the result of this corollary.

Now, we can derive some special cases from Corollary 2.8.
Corollary 2.9. Let $A, B \in \mathbb{C}^{n \times n}, r=\operatorname{ind}(A)$ and $s=\operatorname{ind}(B)$. Suppose that $A^{\mathrm{D}} B=$ 0 and $A B A^{\pi}=0$.
(i) If $B^{2}=B$ then

$$
(A+B)^{\mathrm{D}}=B\left(\sum_{i=0}^{r-1} A^{i}\right) A^{\pi}+(I-B)\left(A^{\mathrm{D}}+\sum_{i=1}^{r-1} A^{i} B\left(A^{\mathrm{D}}\right)^{i+2}\right)
$$

$$
\begin{aligned}
& -B\left(\sum_{i=0}^{r-2} A^{i+1} B\right) A^{\mathrm{D}}-2 B\left(\sum_{i=0}^{r-2} A^{i+1} B\left(A^{\mathrm{D}}\right)^{i}\right)\left(A^{\mathrm{D}}\right)^{2} \\
& -B\left(\sum_{i=0}^{r-3} \sum_{k=0}^{r-2-i} A^{i+k+1} B\left(A^{\mathrm{D}}\right)^{k}\right)\left(A^{\mathrm{D}}\right)^{2} .
\end{aligned}
$$

(ii) If B is nilpotent then we get a symmetrical result of Theorem 2.1,

$$
(A+B)^{\mathrm{D}}=A^{\mathrm{D}}+\left(\sum_{i=0}^{r+s-2} \sum_{j=0}^{i} B^{i-j} A^{j} B\left(A^{\mathrm{D}}\right)^{i}\right)\left(A^{\mathrm{D}}\right)^{2} .
$$

(iii) In particular, if $B^{2}=0$ then

$$
(A+B)^{\mathrm{D}}=A^{\mathrm{D}}+\left(\sum_{i=0}^{r-1} A^{i} B\left(A^{\mathrm{D}}\right)^{i}\right)\left(A^{\mathrm{D}}\right)^{2}+B\left(\sum_{i=0}^{r-1} A^{i} B\left(A^{\mathrm{D}}\right)^{i}\right)\left(A^{\mathrm{D}}\right)^{3}
$$

Proof. Each of this cases follows directly from Corollary 2.8 and the following simplification.
(i) Since $B^{2}=B$, we have $B^{\mathrm{D}}=B$ and $B^{\pi} B=0$.
(ii) Since B is nilpotent of index s then $B^{s}=0$ and $B^{\mathrm{D}}=0$.
(iii) Since $B^{2}=0$ then $B^{D}=0$.

Corollary 2.10. Let $A \in \mathbb{C}^{n \times n}, r=\operatorname{ind}(A), B \in \mathbb{C}^{n \times n}, s=\operatorname{ind}(B)$. If $A B^{\mathrm{D}}=0$ and $B^{\pi} A B=0$ then

$$
\begin{aligned}
(A+B)^{\mathrm{D}}= & \left(\sum_{i=0}^{r-1}\left(B^{\mathrm{D}}\right)^{i+1} A^{i}+\sum_{i=1}^{r+s-2} \sum_{j=1}^{i}\left(B^{\mathrm{D}}\right)^{i+2} A B^{j} A^{i-j}\right) A^{\pi} \\
& +B^{\pi}\left(\sum_{i=0}^{s-1} B^{i}\left(A^{\mathrm{D}}\right)^{i+1}\right)-\left(B^{\mathrm{D}}\right)^{2}\left(\sum_{i=0}^{s-2}\left(B^{\mathrm{D}}\right)^{i} A B^{i+1}\right) A^{\mathrm{D}} \\
& -B^{\mathrm{D}}\left(\sum_{i=0}^{s-2} A B^{i+1}\left(A^{\mathrm{D}}\right)^{i}\right)\left(A^{\mathrm{D}}\right)^{2} \\
& -\left(B^{\mathrm{D}}\right)^{2}\left(\sum_{i=0}^{s-2} \sum_{k=0}^{s-2-i}\left(B^{\mathrm{D}}\right)^{i} A B^{i+k+1}\left(A^{\mathrm{D}}\right)^{k}\right)\left(A^{\mathrm{D}}\right)^{2}
\end{aligned}
$$

Proof. From $A B^{\mathrm{D}}=0$ and $B^{\pi} A B=0$ it follows that

$$
A^{2} B=A B^{\pi} A B+A\left(I-B^{\pi}\right) A B=A B^{\mathrm{D}} B A B=0
$$

and thus $A^{\mathrm{D}} B=0$. Then we can apply Theorem 2.5 , together with the simplification $Z(i) B=B^{\pi} B^{i+1}$ for all $i \geqslant 0$ and $A B^{i}=A B^{\mathrm{D}} B^{i+1}=0$ for all $i \geqslant s$, to get the result of this corollary.

Corollary 2.11. Let $A \in \mathbb{C}^{n \times n}, r=\operatorname{ind}(A), B \in \mathbb{C}^{n \times n}, s=\operatorname{ind}(B)$. Assume $A B^{\mathrm{D}}=0$ and $B^{\pi} A B=0$.
(i) If $A^{2}=A$ then

$$
\begin{aligned}
(A+B)^{\mathrm{D}}= & \left(B^{\mathrm{D}}+\sum_{i=1}^{s-1}\left(B^{\mathrm{D}}\right)^{i+2} A B^{i}\right)(I-A)+B^{\pi}\left(\sum_{i=0}^{s-1} B^{i}\right) A \\
& -2\left(B^{\mathrm{D}}\right)^{2}\left(\sum_{i=0}^{s-2}\left(B^{\mathrm{D}}\right)^{i} A B^{i+1}\right) A-B^{\mathrm{D}}\left(\sum_{i=0}^{s-2} A B^{i+1}\right) A \\
& -\left(B^{\mathrm{D}}\right)^{2}\left(\sum_{i=0}^{s-3} \sum_{k=1}^{s-2-i}\left(B^{\mathrm{D}}\right)^{i} A B^{i+k+1}\right) A
\end{aligned}
$$

(ii) If A is nilpotent then we get Theorem 2.1 as a particular case of Corollary 2.10.

Proof. We apply Corollary 2.10 and the following simplification.
(i) Since $A^{2}=A$, we have $A^{\mathrm{D}}=A$ and $A^{j} A^{\pi}=0$ for all $j \geqslant 1$.
(ii) Since B is nilpotent then $B^{\mathrm{D}}=0$.

If the stronger condition $A B=0$ is satisfied then we obtain the Theorem 2.1 given in [9].

Corollary 2.12. Let $A, B \in \mathbb{C}^{n \times n}, r=\operatorname{ind}(A)$ and $s=\operatorname{ind}(B)$. If $A B=0$ then

$$
(A+B)^{\mathrm{D}}=B^{\mathrm{D}}\left(\sum_{i=0}^{r-1}\left(B^{\mathrm{D}}\right)^{i} A^{i}\right) A^{\pi}+B^{\pi}\left(\sum_{i=0}^{s-1} B^{i}\left(A^{\mathrm{D}}\right)^{i}\right) A^{\mathrm{D}}
$$

Proof. Since $A B=0$ then it follows that $A^{\mathrm{D}} B=B A^{\mathrm{D}}=0$. Thus we can apply Corollary 2.8 or Corollary 2.10 to get the above result.

3. Applications

We can prove a perturbation result concerning the matrix $L-E$, generalizing [9 -Corollary 2.2]. Our result recovers all the cases analyzed in [9] and thus the previous perturbation results given in $[11,12,15,16]$. Continuity properties of the Drazin inverse are investigated in [3] for complex matrices, and in [10,13] for linear
operators. Error bounds of the perturbed Drazin inverse with certain restrictions on the perturbing matrices are given in $[6,14,15]$ and in [7] for closed linear operators.

The conditions of the following theorem are satisfied when the idempotent matrix W commutes with L which is the case studied in [9-Corollary 2.2].

Theorem 3.1. Consider $L-E$ and let W be an idempotent such that $W E=E$. We set $L_{1}=L(I-W)$ and $R=W L W-W E W$. Suppose that
(i) $L_{1} L W=0$,
(ii) $(I-W) L(L W-E) L_{1}^{\pi}=0$,
(iii) $(I-W) L E(I-W) L W L_{1}^{\mathrm{D}}=0$.

Then

$$
\begin{aligned}
(L-E)^{\mathrm{D}}= & \left(\sum_{i=0}^{l-1}\left(R^{\mathrm{D}}\right)^{i+1} L_{1}^{i}-\sum_{i=1}^{l}\left(R^{\mathrm{D}}\right)^{i+2} E(I-W) L L_{1}^{i-1}\right) L_{1}^{\pi} \\
& +R^{\pi}\left(\sum_{i=0}^{t-1} R^{i}\left(L_{1}^{\mathrm{D}}\right)^{i+1}+\sum_{i=0}^{t-1} R^{i} E(I-W) L E(I-W)\left(L_{1}^{\mathrm{D}}\right)^{i+4}\right) \\
& -R^{\pi}\left(\sum_{i=0}^{t-1} R^{i} E(I-W)\left(I+L W L_{1}^{\mathrm{D}}\right)\left(L_{1}^{\mathrm{D}}\right)^{i+2}\right) \\
& +R^{\mathrm{D}} E(I-W) L_{1}^{\mathrm{D}}+\left(I+R^{\mathrm{D}} E\right)(I-W) L W\left(\left(L_{1}^{\mathrm{D}}\right)^{2}\right. \\
& \left.-E(I-W)\left(L_{1}^{\mathrm{D}}\right)^{3}\right)-\left(R^{\mathrm{D}}\right)^{2} E(I-W) \\
& \times\left(L_{1}^{\pi}-L W L_{1}^{\mathrm{D}}-L E(I-W)\left(L_{1}^{\mathrm{D}}\right)^{2}\right) \\
& -\left(R^{\mathrm{D}}\right)^{3} E(I-W) L E(I-W) L_{1}^{\mathrm{D}}
\end{aligned}
$$

where $l=\operatorname{ind}\left(L_{1}\right)$ and $t=\operatorname{ind}(R)$.
Proof. We split $L-E$ as

$$
L-E=A+B
$$

where $A=L-W L W$ and $B=W L W-E$. In order to compute A^{D} we write A as $A=L_{1}+L_{2}$ where $L_{1}=L(I-W)$ and $L_{2}=(I-W) L W$. We observe that $L_{2}^{2}=0$. It follows from assumption (i) that $L_{1} L_{2}=0$. Thus we may use Corollary 2.12 to obtain

$$
A^{\mathrm{D}}=L_{1}^{\mathrm{D}}+L_{2}\left(L_{1}^{\mathrm{D}}\right)^{2} \quad \text { and } \quad A^{\pi}=L_{1}^{\pi}-L_{2} L_{1}^{\mathrm{D}}
$$

Since $W E=E$ then $L_{1} B=0$. Hence $L_{1}^{\mathrm{D}} B=0$ and $A^{\mathrm{D}} B=\left(I+L_{2} L_{1}^{\mathrm{D}}\right) L_{1}^{\mathrm{D}} B=0$.
From (ii) and (iii) it follows that

$$
A B A^{\pi}=(I-W) L(L W-E)\left(L_{1}^{\pi}-L_{2} L_{1}^{\mathrm{D}}\right)=0
$$

Then we may apply Corollary 2.8 , with the simplification $A^{2} B=\left(L_{1}+L_{2}\right) L_{1} B=$ 0 , to give

$$
\begin{align*}
(A+B)^{\mathrm{D}}= & \left(\sum_{i=0}^{r-1}\left(B^{\mathrm{D}}\right)^{i+1} A^{i}\right) A^{\pi}+B^{\pi}\left(\sum_{i=0}^{s-1} B^{i}\left(A^{\mathrm{D}}\right)^{i+1}\right) \\
& +B^{\pi}\left(\sum_{i=1}^{s} B^{i-1} A B\left(A^{\mathrm{D}}\right)^{i+2}\right)-\left(B^{\mathrm{D}}\right)^{2} A B A^{\mathrm{D}}-B^{\mathrm{D}} A B\left(A^{\mathrm{D}}\right)^{2} \tag{3.1}
\end{align*}
$$

where $r=\operatorname{ind}(A) \leqslant \operatorname{ind}\left(L_{1}\right)+1$ and $s=\operatorname{ind}(B) \leqslant \operatorname{ind}(R)+1$. In order to compute B^{D} we write B as $B=R-S$ where $S=W E(I-W)$. Since $S R=0$ and $S^{2}=0$ then we may apply Corollary 2.12 to give

$$
B^{\mathrm{D}}=R^{\mathrm{D}}-\left(R^{\mathrm{D}}\right)^{2} S \quad \text { and } \quad B^{\pi}=R^{\pi}+R^{\mathrm{D}} S
$$

For all $i \geqslant 1$ we have

$$
B^{i}=(R-S)^{i}=R^{i}-R^{i-1} S \quad \text { and } \quad\left(B^{\mathrm{D}}\right)^{i}=\left(R^{\mathrm{D}}\right)^{i}-\left(R^{\mathrm{D}}\right)^{i+1} S
$$

On the other hand, for all $i \geqslant 1$ we have

$$
A^{i}=L_{1}^{i}+L_{2} L_{1}^{i-1} \quad \text { and } \quad\left(A^{\mathrm{D}}\right)^{i}=\left(L_{1}^{\mathrm{D}}\right)^{i}+L_{2}\left(L_{1}^{\mathrm{D}}\right)^{i+1}
$$

Now, we compute the first term of $(A+B)^{\mathrm{D}}$:

$$
\begin{aligned}
\Sigma_{1}= & \left(\sum_{i=0}^{r-1}\left(B^{\mathrm{D}}\right)^{i+1} A^{i}\right) A^{\pi} \\
= & -\left(R^{\mathrm{D}}\right)^{2} S\left(L_{1}^{\pi}-L_{2} L_{1}^{\mathrm{D}}\right)+\left(\sum_{i=0}^{l-1}\left(R^{\mathrm{D}}\right)^{i+1} L_{1}^{i}-\sum_{i=1}^{l}\left(R^{\mathrm{D}}\right)^{i+2} S L L_{1}^{i-1}\right) L_{1}^{\pi} \\
= & -\left(R^{\mathrm{D}}\right)^{2} E(I-W)\left(L_{1}^{\pi}-L W L_{1}^{\mathrm{D}}\right) \\
& +\left(\sum_{i=0}^{l-1}\left(R^{\mathrm{D}}\right)^{i+1} L_{1}^{i}-\sum_{i=1}^{l}\left(R^{\mathrm{D}}\right)^{i+2} E(I-W) L L_{1}^{i-1}\right) L_{1}^{\pi}
\end{aligned}
$$

Let us compute the second and third term of $(A+B)^{\mathrm{D}}$. From assumption (ii) it follows that $L_{2} R=0$, then for all $i \geqslant 2$ we have $B^{i-1} A B=R^{i-2} S L_{2} S$. Thus,

$$
\begin{aligned}
\Sigma_{2}= & B^{\pi}\left(\sum_{i=0}^{s-1} B^{i}\left(A^{\mathrm{D}}\right)^{i+1}+\sum_{i=1}^{s} B^{i-1} A B\left(A^{\mathrm{D}}\right)^{i+2}\right) \\
= & R^{\pi}\left(\sum_{i=0}^{t-1} R^{i}\left(L_{1}^{\mathrm{D}}\right)^{i+1}+\sum_{i=0}^{t-1} R^{i} S L_{2} S\left(L_{1}^{\mathrm{D}}\right)^{i+4}\right. \\
& \left.-\sum_{i=0}^{t-1} R^{i} S\left(I+L_{2} L_{1}^{\mathrm{D}}\right)\left(L_{1}^{\mathrm{D}}\right)^{i+2}\right) \\
& +R^{\mathrm{D}} S L_{1}^{\mathrm{D}}+\left(I+R^{\mathrm{D}} S\right) L_{2}\left(\left(L_{1}^{\mathrm{D}}\right)^{2}-S\left(L_{1}^{\mathrm{D}}\right)^{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & R^{\pi}\left(\sum_{i=0}^{t-1} R^{i}\left(L_{1}^{\mathrm{D}}\right)^{i+1}+\sum_{i=0}^{t-1} R^{i} E(I-W) L E(I-W)\left(L_{1}^{\mathrm{D}}\right)^{i+4}\right) \\
& -R^{\pi}\left(\sum_{i=0}^{t-1} R^{i} E(I-W)\left(I+L W L_{1}^{\mathrm{D}}\right)\left(L_{1}^{\mathrm{D}}\right)^{i+2}\right) \\
& +R^{\mathrm{D}} E(I-W) L_{1}^{\mathrm{D}}+\left(I+R^{\mathrm{D}} E\right)(I-W) L W \\
& \times\left(\left(L_{1}^{\mathrm{D}}\right)^{2}-E(I-W)\left(L_{1}^{\mathrm{D}}\right)^{3}\right) .
\end{aligned}
$$

On the other hand, for the other terms of $(A+B)^{\mathrm{D}}$ in (3.1) we get

$$
\begin{aligned}
\Sigma_{3} & =-\left(B^{\mathrm{D}}\right)^{2} A B A^{\mathrm{D}}-B^{\mathrm{D}} A B\left(A^{\mathrm{D}}\right)^{2}, \\
& =-\left(R^{\mathrm{D}}\right)^{3} S L_{2} S L_{1}^{\mathrm{D}}-\left(R^{\mathrm{D}}\right)^{2} S L_{2} S\left(L_{1}^{\mathrm{D}}\right)^{2}, \\
& =-\left(R^{\mathrm{D}}\right)^{3} E(I-W) L E(I-W) L_{1}^{\mathrm{D}}-\left(R^{\mathrm{D}}\right)^{2} E(I-W) L E(I-W)\left(L_{1}^{\mathrm{D}}\right)^{2} .
\end{aligned}
$$

Finally, the result follows by adding $\Sigma_{1}+\Sigma_{2}+\Sigma_{3}$ to get $(L-E)^{\mathrm{D}}$.
Here we discus some special interesting cases of Theorem 3.1. The following lemma is needed for the cases to follow.

Lemma 3.2. Let $L \in \mathbb{C}^{n \times n}$ and let $W \in \mathbb{C}^{n \times n}$ be an idempotent. Assume that L^{2} $W=W L^{2} W=(L W)^{2}$. If we set $L_{1}=L(I-W)$ and $L_{3}=W L W$ then

$$
L^{\mathrm{D}}=\left(\sum_{i=0}^{l-1}\left(L_{3}^{\mathrm{D}}\right)^{i+1} L_{1}^{i}\right) L_{1}^{\pi}+L_{3}^{\pi}\left(\sum_{i=0}^{r-1} L_{3}^{i}\left(L_{1}^{\mathrm{D}}\right)^{i+1}\right)+(I-W) L W\left(L_{1}^{\mathrm{D}}\right)^{2}
$$

$l_{1}=\operatorname{ind}\left(L_{1}\right), r=\operatorname{ind}\left(L_{3}\right)$, and

$$
(I-W) L^{\pi}=(I-W)\left(L_{1}^{\pi}-L W L_{1}^{\mathrm{D}}\right)
$$

Moreover, for all $i \geqslant 1$ we have

$$
(I-W)\left(L^{\mathrm{D}}\right)^{i}=(I-W)\left(\left(L_{1}^{\mathrm{D}}\right)^{i}+L W\left(L_{1}^{\mathrm{D}}\right)^{i+1}\right)
$$

and

$$
(I-W) L^{i+1}=(I-W) L L_{1}^{i}
$$

Proof. We split L as $L=L_{1}+L_{2}+L_{3}$, where $L_{1}=L(I-W), L_{2}=(I-W)$ $L W$ and $L_{3}=W L W$. We observe that $L_{2}^{2}=0$. Condition $L^{2} W=(L W)^{2}$ implies $\left(L_{1}+L_{3}\right) L_{2}=0$ and then

$$
L^{\mathrm{D}}=\left(L_{1}+L_{3}\right)^{\mathrm{D}}+L_{2}\left(\left(L_{1}+L_{3}\right)^{\mathrm{D}}\right)^{2}
$$

and since $L_{1} L_{3}=0$ we can apply Corollary 2.12 to get

$$
\left(L_{1}+L_{3}\right)^{\mathrm{D}}=\left(\sum_{i=0}^{l-1}\left(L_{3}^{\mathrm{D}}\right)^{i+1} L_{1}^{i}\right) L_{1}^{\pi}+L_{3}^{\pi}\left(\sum_{i=0}^{r-1} L_{3}^{i}\left(L_{1}^{\mathrm{D}}\right)^{i+1}\right),
$$

where $l=\operatorname{ind}\left(L_{1}\right)$ and $r=\operatorname{ind}\left(L_{3}\right)$. Condition $L^{2} W=W L^{2} W$ implies $L_{2} L_{3}=0$ then $L_{2} L_{3}^{\mathrm{D}}=0$, then

$$
L_{2}\left(\left(L_{1}+L_{3}\right)^{\mathrm{D}}\right)^{2}=L_{2}\left(L_{1}^{\mathrm{D}}\right)^{2}
$$

Then the first part of the lemma is proved. Now, from the formula for L^{D} we get that for all $i \geqslant 1$

$$
(I-W)\left(L^{\mathrm{D}}\right)^{i}=(I-W)\left(\left(L_{1}^{\mathrm{D}}\right)^{i}+L W\left(L_{1}^{\mathrm{D}}\right)^{i+1}\right)
$$

and

$$
(I-W) L^{\pi}=(I-W)\left(L_{1}^{\pi}-L W L_{1}^{\mathrm{D}}\right)
$$

By other way, we can easily prove that for all $i \geqslant 1$,

$$
(I-W) L^{i+1}=(I-W) L L_{1}^{i}
$$

Case (1) We assume (i) $W E=E$ and $E W=0$. (ii) $L^{2} W=W L^{2} W=(L W)^{2}$. (iii) $(I-W) L E L^{\pi}=0$.

Then we can apply Lemma 3.2 and Theorem 3.1, with $R=L_{3}=W L W$ which implies $R^{i}=W L^{i} W$ and $\left(R^{\mathrm{D}}\right)^{i}=\left(L^{\mathrm{D}}\right)^{i} W$, to get

$$
\begin{aligned}
(L-E)^{\mathrm{D}}= & W L^{\mathrm{D}}-\left(\sum_{i=0}^{l-1}\left(L^{\mathrm{D}}\right)^{i+1} E L^{i}\right)(I-W) L^{\pi} \\
& +\left(I-W+L^{\mathrm{D}} E\right)\left(L^{\mathrm{D}}+L W\left(L^{\mathrm{D}}\right)^{2}\right) \\
& +L^{\pi} W\left(\sum_{i=0}^{t-1} L^{i} E L E\left(L^{\mathrm{D}}\right)^{i+4}-\sum_{i=0}^{t-1} L^{i} E\left(L^{\mathrm{D}}\right)^{i+2}\right) \\
& -\left(I-W+L^{\mathrm{D}} E\right) L E\left(L^{\mathrm{D}}\right)^{3}-\left(L^{\mathrm{D}}\right)^{3} E L E L^{\mathrm{D}} \\
& -\left(L^{\mathrm{D}}\right)^{2} E L E\left(L^{\mathrm{D}}\right)^{2} .
\end{aligned}
$$

Case (1a) We assume (i) and (ii) as in Case (1) and $L E=W L E$. Then

$$
\begin{aligned}
(L-E)^{\mathrm{D}}= & W L^{\mathrm{D}}-\left(\sum_{i=0}^{l-1}\left(L^{\mathrm{D}}\right)^{i+1} E L^{i}\right)(I-W) L^{\pi} \\
& +\left(I-W+L^{\mathrm{D}} E\right)\left(L^{\mathrm{D}}+L W\left(L^{\mathrm{D}}\right)^{2}\right) \\
& -L^{\pi} W\left(\sum_{i=0}^{t-1} L^{i} E\left(L^{\mathrm{D}}\right)^{i+2}\right) .
\end{aligned}
$$

Case (1b) We assume (i) as in Case (1) and $L W=W L W$. Then

$$
(L-E)^{\mathrm{D}}=W L^{\mathrm{D}}-\left(\sum_{i=0}^{l-1}\left(L^{\mathrm{D}}\right)^{i+1} E L^{i}\right)(I-W) L^{\pi}
$$

$$
+\left(I-W+L^{\mathrm{D}} E\right) L^{\mathrm{D}}-L^{\pi} W\left(\sum_{i=0}^{t-1} L^{i} E\left(L^{\mathrm{D}}\right)^{i+2}\right)
$$

Case (1c) We assume (i) as in Case (1) and $L W=W L$. Then

$$
\begin{aligned}
(L-E)^{\mathrm{D}}= & L^{\mathrm{D}} W-\left(\sum_{i=0}^{l-1}\left(L^{\mathrm{D}}\right)^{i+1} E L^{i}\right) L^{\pi} \\
& +\left(I-W+L^{\mathrm{D}} E\right) L^{\mathrm{D}}-\left(\sum_{i=0}^{t-1} L^{i} L^{\pi} E\left(L^{\mathrm{D}}\right)^{i+2}\right)
\end{aligned}
$$

Example 3.3. We set

$$
L=\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right) \quad \text { and } \quad E=\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 0 & 0 \\
1 & 0 & -1
\end{array}\right)
$$

Consider

$$
W=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Then

$$
L W=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right), \quad W L=\left(\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right)
$$

We have $L W=W L W$ and $W E=E$, so we can apply Case (1b). However we see $L W \neq W L$.

Example 3.4. We set

$$
L=\left(\begin{array}{cccc}
0 & 0 & -1 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
2 & 1 & 0 & 1
\end{array}\right) \text {, then } L^{\pi}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-1 & 0 & 1 & 0
\end{array}\right)
$$

and consider

$$
W=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0
\end{array}\right), \quad E_{1}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
2 & 1 & 0 & 0
\end{array}\right) \quad \text { and } \quad E_{2}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
2 & 1 & 0 & 0
\end{array}\right)
$$

Then

$$
L^{2} W=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & -1 & 0
\end{array}\right), \quad L E_{2}=\left(\begin{array}{cccc}
-1 & -1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
2 & 1 & 0 & 0
\end{array}\right), L E_{2} L^{\pi}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) .
$$

We see that $L^{2} W=W L^{2} W=(L W)^{2}$. Moreover, for the matrix E_{1} we have $W E_{1}=E_{1}, E_{1} W=0$ and $L E_{1}=W L E_{1}$. Thus we can apply Case(1a) to the matrix $L-E_{1}$. For the matrix E_{2} we have $W E_{2}=E_{2}, E_{2} W=0$ and $(I-W) L E_{2} L^{\pi}=0$, however $(I-W) L E_{2} \neq 0$. Thus, we can apply Case (1) to the matrix $L-E_{2}$.

Case (2) We assume (i) $W E=E$. (ii) $L^{2} W=W L^{2} W=(L W)^{2}$. (iii) $\quad E L W=$ $E W L W,(I-W) L E W=0$ and $(I-W) L E L^{\pi}=0$.

We apply Lemma 3.2 and Theorem 3.1 having in count that condition $E L W=$ $E W L W$ implies that, for all $i \geqslant 1$,

$$
W(L-E)^{i} W=(W L W-E W)^{i}=R^{i}
$$

Thus,

$$
\begin{aligned}
(L-E)^{\mathrm{D}}= & \left(\sum_{i=0}^{l-1}\left(R^{\mathrm{D}}\right)^{i+1} L(I-W) L^{i-1}-\sum_{i=0}^{l-1}\left(R^{\mathrm{D}}\right)^{i+2} E(I-W) L^{i}\right) \\
& \times(I-W) L^{\pi}+R^{\pi} W\left(\sum_{i=0}^{t-1}(L-E)^{i} W L(I-W)\left(L^{\mathrm{D}}\right)^{i+2}\right. \\
& \left.+\sum_{i=0}^{t-1}(L-E)^{i} E(I-W) L E(I-W)\left(L^{\mathrm{D}}\right)^{i+4}\right) \\
& -R^{\pi} W\left(\sum_{i=0}^{t-1}(L-E)^{i} E(I-W)\left(L^{\mathrm{D}}\right)^{i+2}\right)+R^{\mathrm{D}} E(I-W) L^{\mathrm{D}} \\
& \left.+(I-W) L W\left(L^{\mathrm{D}}\right)^{2}-\left(I+R^{\mathrm{D}} E\right)\right)(I-W) L E(I-W)\left(L^{\mathrm{D}}\right)^{3} \\
& -\left(R^{\mathrm{D}}\right)^{3} E(I-W) L E(I-W) L^{\mathrm{D}} \\
& \left.-\left(R^{\mathrm{D}}\right)^{2} E(I-W) L E(I-W)\left(L^{\mathrm{D}}\right)^{2}\right) .
\end{aligned}
$$

Case (2a) Assume (i) and (ii) as in Case (2) and $E(I-W) L W=(I-W) L E=0$. Then

$$
\begin{aligned}
(L-E)^{\mathrm{D}}= & \left(\sum_{i=0}^{l-1}\left(R^{\mathrm{D}}\right)^{i+1} L(I-W) L^{i-1}-\sum_{i=0}^{l-1}\left(R^{\mathrm{D}}\right)^{i+2} E(I-W) L^{i}\right) \\
& \times(I-W) L^{\pi}+R^{\pi} W\left(\sum_{i=0}^{t-1}(L-E)^{i} W L(I-W)\left(L^{\mathrm{D}}\right)^{i+2}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\sum_{i=0}^{t-1}(L-E)^{i} E(I-W)\left(L^{\mathrm{D}}\right)^{i+2}\right)+R^{\mathrm{D}} E(I-W) L^{\mathrm{D}} \\
& +(I-W) L W\left(L^{\mathrm{D}}\right)^{2}
\end{aligned}
$$

Case (2b) Assume (i) as in Case (2) and $(I-W) L W=0$. Then

$$
\begin{aligned}
(L-E)^{\mathrm{D}}= & \left(\sum_{i=0}^{l-1}\left(R^{\mathrm{D}}\right)^{i+1} L(I-W) L^{i-1}-\sum_{i=0}^{l-1}\left(R^{\mathrm{D}}\right)^{i+2} E(I-W) L^{i}\right) \\
& \times(I-W) L^{\pi}+R^{\pi} W\left(\sum_{i=0}^{t-1}(L-E)^{i} W L(I-W)\left(L^{\mathrm{D}}\right)^{i+2}\right. \\
& \left.-\sum_{i=0}^{t-1}(L-E)^{i} E(I-W)\left(L^{\mathrm{D}}\right)^{i+2}\right)+R^{\mathrm{D}} E(I-W) L^{\mathrm{D}}
\end{aligned}
$$

Example 3.5. We consider the matrix L and the idempotent W of Example 3.4 and we set

$$
E_{3}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
2 & -1 & 2 & 3
\end{array}\right)
$$

Then

$$
E_{3} L W=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
3 & 0 & -3 & 3
\end{array}\right), \quad L E_{3} W=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
3 & 0 & 2 & 3
\end{array}\right)
$$

We see that $E_{3} L W=E_{3} W L W,(I-W) L E_{3} W=0$ and $(I-W) L E_{3} L^{\pi}=0$ thus we can apply Case (2) to the matrix $L-E_{3}$.

Case (3) Assume $W E=E, L W=0$. In this case $L E=0$ and we get Corollary 2.12 as a particular case of our perturbation result.

$$
(L-E)^{\mathrm{D}}=\left(\sum_{i=0}^{l-1}\left(-E^{\mathrm{D}}\right)^{i+1} W L^{i}\right) L^{\pi}+E^{\pi}\left(\sum_{i=0}^{t-1}(-E)^{i} W\left(L^{\mathrm{D}}\right)^{i+1}\right)
$$

Case (4) Assume $W E=E, E W=W L W, L^{2} W=W L^{2} W=(L W)^{2}$ and $(I-W) L E(I-W) L^{\pi}=0$. Then we can apply Lemma 3.2 and Theorem 3.1 with $R=0$ to get

$$
\begin{aligned}
(L-E)^{\mathrm{D}}= & (I-W) L^{\mathrm{D}}-W L(I-W)\left(L^{\mathrm{D}}\right)^{2}-E(I-W)\left(L^{\mathrm{D}}\right)^{2} \\
& +E(I-W) L E(I-W)\left(L^{\mathrm{D}}\right)^{4}-(I-W) L E(I-W)\left(L^{\mathrm{D}}\right)^{3} .
\end{aligned}
$$

Case (4a) Assume $W E=E, E W=W L W, L^{2} W=W L^{2} W=(L W)^{2}$ and $L E=$ $W L E$. Then

$$
(L-E)^{\mathrm{D}}=(I-W) L^{\mathrm{D}}-W L(I-W)\left(L^{\mathrm{D}}\right)^{2}-E(I-W)\left(L^{\mathrm{D}}\right)^{2} .
$$

References

[1] A. Ben Israel, T.N.E. Greville, Generalized Inverses: Theory and Applications, Wiley, New York, 1974.
[2] S.L. Campbell, C.D. Meyer, Generalized Inverses of Linear Transformations, Dover, New York, 1991 (Originally published: Pitman, London, 1979).
[3] S.L. Campbell, C.D. Meyer, Continuity properties of the Drazin pseudoinverse, Linear Algebra Appl. 10 (1975) 77-83.
[4] M.P. Drazin, Pseudoinverse in assiciative rings and semigroups, Amer. Math. Monthly 65 (1958) 506-514.
[5] C.D. Meyer, N.J. Rose, The index and the Drazin inverse of block triangular matrices, SIAM J. Appl. Math. 33 (1977) 1-7.
[6] N. Castro González, J.J. Koliha, Y. Wei, Perturbation of the Drazin inverse for matrices with equal eigenprojections at zero, Linear Algebra Appl. 312 (2000) 181-189.
[7] N. Castro González, J.J. Koliha, Perturbation of the Drazin inverse for closed linear operators, Integral Equations Operator Theory 36 (2000) 92-106.
[8] D.S. Djordjević, Y. Wei, Additive results for the generalized Drazin inverse, J. Austral. Math. Soc. 73 (1) (2002) 115-126.
[9] R.E. Hartwig, G. Wang, Y. Wei, Some additive results on Drazin inverse, Linear Algebra Appl. 322 (2001) 207-217.
[10] J.J. Koliha, V. Rakočević, Continuity of the Drazin inverse II, Studia Math. 131 (1998) 167-177.
[11] C.D. Meyer Jr., The condition number of a finite Markov chains and perturbation bounds for the limiting probabilities, SIAN J. Algebraic Discrete Methods 1 (1980) 273-283.
[12] C.D. Meyer Jr., J.M. Shoaf, Updating finite Markov chains by using techniques of group inversion, J. Statist. Comput. Simulation 11 (1980) 163-181.
[13] V. Rakočević, Continuity of the Drazin inverse, J. Operator Theory 41 (1999) 55-68.
[14] G. Rong, The error bounds for the perturbation of the Drazin inverse, Linear Algebra Appl. 47 (1982) 159-168.
[15] Y. Wei, G. Wang, The perturbation theory for the Drazin inverse and its applications, Linear Algebra Appl. 258 (1997) 179-186.
[16] Y. Wei, On the perturbation of the group inverse and the oblique projection, Appl. Math. Comput. 98 (1999) 29-42.

[^0]: E-mail address: nieves@fi.upm.es
 0024-3795/\$ - see front matter © 2004 Elsevier Inc. All rights reserved.
 doi:10.1016/j.laa.2004.11.001

