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Alzheimer's disease is characterized by the presence of extracellular deposits of amyloid, primarily composed of
the amyloid β-protein (Aβ). A growing body of evidence indicates that oligomeric forms of Aβ play a critical role
in disease causation. Soybean isoflavones are flavonoids with an isoflavone backbone. Isoflavones have been
reported to protect against Aβ-induced neurotoxicity in cultured cell systems, the molecular mechanisms re-
main unclear. Our previous studies demonstrated that red wine-related flavonoids with a flavone backbone
are able to inhibit Aβ assembly and destabilize preformed Aβ aggregates. Here, we show that isoflavones, espe-
cially glycitein and genistein, have anti-fibrillization, anti-oligomerization and fibril-destabilizing effects on
Aβ1–40 and Aβ1–42 in vitro at physiological pH and temperature, by using nucleation-dependent polymerization
monitored by thioflavin T fluorescence, atomic force microscopy, electron microscopy, and photo-induced
cross-linking of unmodified proteins followed by SDS-PAGE. Our three-dimensional fluorescence spectroscopic
analyses demonstrated that glycitein interacted with Aβ monomers, oligomers and fibrils, indicating specific
binding of glycitein to these Aβ species. Glycitein also interacted with different Aβ fragments (Aβ1–42, Aβ1–40,
Aβ1–16 and Aβ25–35), exhibiting the highest fluorescence enhancement with Aβ25–35. We speculated that
glycitein's anti-amyloidogenic properties are specifically mediated by its binding to Aβ monomers, oligomers
and fibrils. Isoflavones may hold promise as a treatment option for preventative strategies targeting amyloid
formation in Alzheimer's disease.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Alzheimer's disease is characterized by the presence of intracellu-
lar neurofibrillary tangles consisting of hyperphosphorylated tau and
extracellular parenchymal and vascular amyloid deposits largely com-
posed of amyloid β-protein (Aβ) [1]. The aggregation of Aβmonomers
and β-sheet formation are considered to be critical events rendering
these peptides neurotoxic [2]. Moreover, oligomeric forms of Aβ
appear to play a crucial role in disease causation [3–7].

Flavonoids are chemically classified into a number of different
groups; i.e., flavone, flavonol, flavanone, flavan-3-ol, anthocyanidin
and isoflavone (Supplemental Fig. S1A). A substantial body of evidence
indicates that flavonoids can inhibit the fibrillization of a variety of
amyloidogenic proteins [8–10]. Isoflavones are a chemical class with
orce microscopy; AU, arbitrary
i, daidzein; DTT, dithiothreitol;
n; EX, excitation; fAβs, Aβ fi-
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Pur, purunetin; SE, standard
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about 15 members, and are found in high concentrations in soybean,
red clover, Puerariamirifica and other plants. Stilbenoids are polypheno-
lic compounds derived from natural products. Resveratrol is a major
stilbenoid (Supplemental Fig. S1B), which has been reported to exert
potent neuroprotective effects [11]. Although epidemiological studies
on oral consumption of isoflavones for Alzheimer's disease have never
been reported, the consumption of red wine, related to resveratrol
and flavonoids with the flavone backbone, are associated with a lower
risk of dementia [12,13].

Major soybean isoflavones, including glycitein (Gly) and genistein
(Gen) (Fig. 1) have been reported to inhibit Aβ-induced apoptosis of
cultured cells [14]. Several mechanisms may contribute to their neu-
roprotective effects: (i) isoflavones inhibit caspase activation, thereby
reducing apoptosis [14]; (ii) the antioxidant activity of isoflavones
mitigates Aβ-mediated toxicity, which is at least in part, mediated
by oxidative injury [14]; (iii) isoflavone-induced arginase 1 activity
protects glial cells and promotes axonal regeneration [15].

We previously reported that red wine-related flavonoids with
the flavone backbone are effective inhibitors of Aβ1–40 and Aβ1–42

fibrillization in vitro, and that these compounds could also destabilize
preformed Aβ assemblies [8]. Our prior work demonstrated that a fla-
vonoid myricetin, with a flavone backbone (Supplemental Fig. S1C),
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Fig. 1. Structures of isoflavones analyzed in this study.
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preferentially and reversibly bound Aβ fibrils (fAβ), rather than
monomeric Aβ, revealing a molecular mechanism for the ability of
flavonoids to inhibit Aβ-fibrillization and to destabilize preformed
fAβ [16]. Furthermore, flavonoids with the flavone backbone have
been shown to inhibit pre-protofibrillar oligomerization with photo-
induced cross-linking of unmodified proteins (PICUP) [10].

Here,we examined the effects of isoflavones onAβ-fibrillization, Aβ-
oligomerization and preformed Aβ assemblies, in vitro at pH 7.4 and
37 °C, using a nucleation-dependent polymerization model [17,18]
and PICUP followed by SDS-PAGE [10,19]. Moreover, we examined
whether isoflavones could interact with the monomers, oligomers and
fibrils of Aβs by using three-dimensional fluorescence spectroscopy.

2. Material and methods

2.1. Preparation of Aβ solutions

Aβ1–40 (trifluoroacetate form, lot number 541226; Peptide Insti-
tute Inc., Osaka, Japan), Aβ1–42 (trifluoroacetate form, lot number
580403, Peptide Institute Inc.), Aβ1–16 (HCl form, lot number
570408, Peptide Institute Inc.) and Aβ25–35 (trifluoroacetate form, lot
number 600102, Peptide Institute Inc.) were handled in a 4 °C cold
room. The peptides were dissolved by brief vortexing in 60 mM
NaOH–10 mM phosphate buffer (PB) and brought to final concentra-
tions of 500 μM (2.2 mg/mL) and 250 μM, and stored at−80 °C before
assaying (fresh Aβ1–40, Aβ1–42, Aβ1–16 and Aβ25–35 solutions).

2.2. Peptide fibrillization assay

Fibrillization of Aβ1–40 and Aβ1–42 was assayed as described [8].
The reaction mixture contained 25 μM Aβ1–40 or Aβ1–42, and 0, 25 or
250 μM of the isoflavone—Gen, daidzein (Dai), Gly, formononetin
(For), purunetin (Pur), or (±)-Equol (Equ) (Sigma Chemical Co.,
St. Louis, MO, USA) (Fig. 1)—and 10 mM PB (pH 7.4). The isoflavones
(Gen, Dai, Gly, For, Pur and Equ) were dissolved in 10 mM PB to a con-
centration at 2.5 mM, and these were added to the reactionmixture to
a final concentration of 25 or 250 μM. Aliquots (100 μL) of the mixture
were transferred to 100 μL PCR tubes (Takara Shuzo Co. Ltd., Otsu,
Japan) and incubated at 37 °C for 0–7 days without agitation.

2.3. Fluorescence spectroscopy monitored by thioflavine T

Fluorescence spectroscopy was performed using Hitachi F-7000
fluorescence spectrophotometers (Tokyo, Japan) as described [8].
Fluorescence measurements of fAβ1–40 and fAβ1–42 were obtained at
excitation and emission wavelengths of 445 and 490 nm, respectively,
with the reaction mixture containing 5 μM thioflavine T (ThT) (Wako
Pure Chemical Industries Ltd., Osaka, Japan) and 50 mM of glycine–
NaOH buffer (pH 8.5). From each reaction tube, triplicate 5-μL aliquots
were removed and subjected to fluorescence spectroscopy, and the
mean of the 3 measurements was determined by subtracting the fluo-
rescence of a ThT blank. The concentration of isoflavones in the ThT
solution was diluted up to 1/200 of that in the reaction mixture. We
confirmed that all our tested compounds did not quench ThT fluores-
cence at the diluted concentration.

2.4. Chemical photo-induced cross-linking and determination of
oligomer frequency distributions

Immediately after their preparation, samples were cross-linked
using PICUP, as described [18]. Briefly, to an 18-μL volume of protein so-
lution were added 1 μL of 1 mM tris(2,2-bipyridyl)
dichlororuthenium(II) (Ru(bpy)) and 1 μL of 20 mM ammonium
persulfate. The final protein:Ru(bpy):ammonium persulfate molar ra-
tios for Aβ1–40 and Aβ1–42 were 0.29:1:20 and 0.16:1:20, respectively.
The mixture was irradiated for 1 s with visible light, and then the reac-
tion was quenched with 40 μL of Tricine sample buffer (Invitrogen,
Carlsbad, CA) containing 2 μL of 1 M dithiothreitol (DTT). Determina-
tion of the frequency distribution of the monomers and oligomers was
accomplished using SDS-PAGE and silver staining, as described [19].
Briefly, 10 μL of each cross-linked sample was electrophoresed on a
10–20% gradient tricine gel and visualized by silver staining
(SilverXpress, Invitrogen). Non-cross-linked samples were used as con-
trols in each experiment.

2.5. Size exclusion chromatography

PICUP reagents were removed from cross-linked samples by size
exclusion chromatography as described [20]. To do so, 1.5-cm diame-
ter cylindrical columns were packed manually with 2 g of Bio-Gel P2
Fine (Bio-Rad), which produced a 6-mL column volume. The column
was first washed twice with 25 mL of 50 mM NH4HCO3 (pH 8.5). A
216-μL volume of 50–100 μM cross-linked sample was then loaded.
The column was eluted with the same buffer at a flow rate of approx-
imately 0.15 mL/min. The first 1 mL of eluate was collected. The frac-
tionation range of the Bio-Gel P2 column is 100–1800 Da. Thus, Aβ
peptides eluted in the void volume, whereas Ru(bpy) (Mr=748.6),
ammonium persulfate (Mr=228.2) and dithiothreitol (Mr=154.2)
entered the column matrix and were separated from Aβ. Fractions
were lyophilized immediately after collection and were reconstituted
to the indicated concentration, in 10 mM PB (pH 7.4).

2.6. Cross-linked oligomer-destabilization assay

Destabilization of cross-linked Aβ oligomers was assessed as fol-
lows and then subjected to SDS-PAGE followed by silver staining.
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Briefly, the reaction mixture contained 25 μM cross-linked Aβ1–40 or
Aβ1–42, 250 μM of the isoflavone and 10 mM PB (pH 7.4) were placed
in PCR tubes. Each sample was incubated at 37 °C for 24 h, and dried
in a centrifugation evaporator for 12 h at 37 °C. Twenty microliters of
SDS sample buffer was added to these dried fractions, and 10 μL of
each sample was electrophoresed on a 10–20% gradient tricine gel
and visualized by silver staining (SilverXpress, Invitrogen).

2.7. Fibril-destabilization assay

Destabilization of fAβs was assessed as reported previously [8].
Briefly, the reaction mixture contained 25 μM fresh fAβ1–40 or
fAβ1–42, 0–250 μM of the isoflavone and 10 mM PB (pH 7.4). Three
5-μL aliquots were subjected to fluorescence spectroscopy and 30-μL
aliquots were placed in PCR tubes. The temperature was elevated
from 4 to 37 °C. Incubation times ranged from 0 to 24 h, as indicated
in each figure, and the reaction was stopped by placing the tubes on
ice. The mean of the 3 measurements was determined. At the diluted
concentration, these compounds did not compete with ThT for fAβ at
either 4 or 37 °C for a period of 1 min.

2.8. Fractionation of the reaction mixture and SDS-PAGE

Aβ1–40 and Aβ1–42 in the reaction mixtures of fAβ1–40 and fAβ1–42

destabilization were fractionated into phosphate buffer-soluble (PB-
sol) and PB-insoluble (PB-insol) fractions and then subjected to SDS-
PAGE followed by silver staining, as follows. Aliquots (20 μL) of the re-
action mixtures were removed and centrifuged at 21,500×g for 2 h at
4 °C. After removal of the supernatants containing Aβ1–40 and Aβ1–42

soluble in phosphate buffer (PB-sol fraction), the pellets were inde-
pendently dried in a centrifugation evaporator for 6 h at 37 °C. Then,
20 μL of 73% formic acid was added to the pellets containing Aβ1–40

and Aβ1–42 insoluble in PB (PB-insol fraction), vortex-mixed, incubat-
ed at room temperature for 1 h, and dried in a centrifugation evapora-
tor for 12 h at 25 °C. The PB-sol fraction was dried in a centrifugation
evaporator for 12 h at 25 °C. Twenty microliters of SDS sample buffer
was added to these dried fractions, and 6 μL of each sample was elec-
trophoresed on a 10–20% gradient tricine gel and visualized by silver
staining (SilverXpress, Invitrogen).

2.9. Electron microscopy (EM)

A 20-μL aliquot of each sample was spotted onto a carbon-coated
grid (Okenshoji, Co., Ltd., Tokyo, Japan) and incubated for 5 min. The
peptide was stained negatively with 1% phosphotungstic acid (pH
7.0). This solution was wicked off, and then the grid was air-dried.
Samples were examined using a JEM-1210 transmission electron mi-
croscope with an acceleration voltage of 75 kV.

2.10. Atomic force microscopy (AFM)

Peptide solutions were characterized using a Nanoscope IIIa
controller (Veeco Digital Instruments, Santa Barbara, CA) with a
multimode scanning probe microscope equipped with a JV (J-type
vertical) scanner. All measurements were carried out in the tapping
mode under ambient conditions using single-beam silicon cantilever
Fig. 2. Anti-fibrillization effects of isoflavones on Aβ1–40 and Aβ1–42. (A–D) Effects of Gen (A
fresh Aβ1–40 and Aβ1–42, respectively, monitored by ThT fluorescence. The reaction mixtures
0 (●), 25 (○) or 250 μM (□) of Gen (A, B) or Gly (C, D), were incubated at 37 °C for the indic
determined. Binding is expressed as a mean fluorescence in arbitrary fluorescence units±th
experiments. (E–T) Electron microscopy (E–L) and atomic force microscopy (M–T) of Aβ1–

(E–H, M–P) or Aβ1–42 (I–L, Q–T), 10 mM phosphate buffer (pH 7.4), and 0 (E, I, M, Q), 25 (F,
7 days (E–H, M–P) or 6 h (I–L, Q–T). Scale bars indicate 100 nm. (U, V) Effects of isoflavones
Aβ1–42, respectively, monitored by ThT fluorescence. The reaction mixture, containing
isoflavones (gray columns), was incubated at 37 °C for 7 days (U) or 6 h (V), respectively. E
out compounds was regarded as 100%. Bars indicate SE. *pb0.05; post-hoc Tukey–Kramer
probes. A 10-μL aliquot of each lyophilized peptide, reconstituted to
a concentration of 25 μM in 10 mM PB (pH 7.4), was spotted onto
freshly cleaved mica (Okenshoji Co. Ltd., Tokyo, Japan), incubated at
room temperature for 5 min, rinsed with water, and then blown dry
with air. The sample was analyzed by examining at least five regions
of the mica surface to confirm the homogeneity of the structures
throughout the sample.
2.11. Three-dimensional fluorescence spectroscopic characterization of
isoflavone emission spectra

Fluorescence emission of isoflavones in the presence or absence of
the various Aβ forms was characterized as follows. The reaction mix-
tures (200 μL), containing 0–50 μM isoflavones, 10 mM buffer and
0–50 μM Aβs were analyzed at 25 °C with a black microfluorimeter
cell (GL Sciences Inc., Tokyo, Japan). ΔFluorescence emission of Gly in
the presence of various Aβ species was obtained after subtraction of
both the fluorescence emission of Gly alone and that of Aβs alone
from the actual fluorescence emission of Gly mixed with Aβs. The
buffers used were citrate buffer at pH 4–6, phosphate buffer at pH
6–8, Tris–HCl buffer at pH 8–9 and glycine–NaOH buffer at pH 8.5–10.
Excitation and emission fluorescence spectra were obtained immedi-
ately after the reaction mixture was made. Excitation and emission
were scanned in the range of 200–600 nmand 200–600 nm, respective-
ly. The scanning speed was 2400 nm/min, and excitation and emission
slits were set at 5 and 5 nm, respectively. Scans were completed in
5 min.
2.12. Statistical analysis

One-way factorial analysis of variance followed by Tukey–Kramer
post‐hoc comparisons were used to determine statistical significance
among data sets. Significance was defined as pb0.05.
3. Results

3.1. Aβ fibrillization assay and anti-fibrillization effects of isoflavones on
Aβ1–40 and Aβ1–42

When fresh Aβ1–40 (Fig. 2A, C) or Aβ1–42 (Fig. 2B, D) was incubated
at 37 °C, the fluorescence gently increased, finally reaching a plateau.
When Aβ1–40 was incubated with 25 or 250 μM Gen (Fig. 2A) or Gly
(Fig. 2C), the final equilibrium level decreased in a dose-dependent
manner. Similar effects were observed for the two isoflavones with
Aβ1–42; Gen (Fig. 2B) and Gly (Fig. 2D). EM and AFM analyses revealed
that the number of thick straight fibrils was reduced after incubating
fresh Aβ1–40 (Fig. 2F, N) or Aβ1–42 (Fig. 2J,R) with 25 μM Gly. Short fi-
brils and amorphous aggregates were observed after incubating fresh
Aβ1–40 or Aβ1–42 with 250 μMGly (Fig. 2G,K,O,S) or Gen (Fig. 2H,L,P,T).
Thus, Gen and Gly can inhibit the fibrillization of both Aβ1–40 and
Aβ1–42. We compared the anti-fibrillization activities of the isoflavones
(Fig. 2U,V); statistical analysis revealed a significant difference in the
potency of 250 μM Gen and Gly on both Aβ1–40 (Fig. 2U) and Aβ1–42

fibrillization (Fig. 2V). Gly, at 250 μM, had the strongest activity.
, B) and Gly (C, D) on the kinetics of fAβ1–40 (A, C) and fAβ1–42 (B, D) formation from
, containing 25 μM Aβ1–40 (A, C) or Aβ1–42 (B, D), 10 mM phosphate buffer (pH 7.4), and
ated times. Periodically, three 5-μL aliquots were removed, and ThT binding levels were
e standard error (SE) (error bars). Each figure comprises data obtained in 3 independent
40 and Aβ1–42 assembly morphology. The reaction mixtures, containing 25 μM Aβ1–40

J, N, R) or 250 μMGly (G, K, O, S), or 250 μMGen (H, L, P, T) were incubated at 37 °C for
on the formation of Aβ1–40 fibrils (fAβ1–40) (U) and fAβ1–42 (V) from fresh Aβ1–40 and
25 μM Aβ, 10 mM phosphate buffer (pH 7.4), and 25 (white columns) or 250 μM
ach column represents the average of 3 independent experiments. The average with-
tests.
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Fig. 3. Anti-oligomerization effects of isoflavones on Aβ1–40 and Aβ1–42. PICUP, followed by SDS-PAGE and silver staining, was used to determine the effects of isoflavones on Aβ1–40

(A) and Aβ1–42 oligomerization (B). Lanes 1, proteins alone (no cross-linking); lanes 2, proteins alone; lanes 3–14, proteins plus 25 or 250 μM isoflavones. Each gel is representative
of each of 3 independent experiments.
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3.2. Aβ oligomerization assay and anti-oligomerization effects of
isoflavones on Aβ1–40 and Aβ1–42

We examined the effects of isoflavones on Aβ oligomerization by
using PICUP, followed by SDS-PAGE and silver staining (Fig. 3). In
the absence of cross-linking by PICUP as a control, only Aβ1–40 mono-
mers (Fig. 3A, lane 1) and Aβ1–42 monomers and trimers (Fig. 3B, lane
1) were observed. The Aβ1–42 trimer band has been shown to be an
SDS-induced artifact [18]. After cross-linking, Aβ1–40 existed as a mix-
ture of monomers and oligomers of orders 2–4 (Fig. 3A, lane 2),
whereas Aβ1–42 comprised monomers and oligomers of orders 2–6
(Fig. 3B, lane 2). When 250 μM Gen or Gly was mixed with 25 μM
Aβ1–40, oligomerization was blocked significantly with only dimer
bands visible (Fig. 3A, lanes 4 and 6). Mixing 25 μM Gen or Gly with
25 μM Aβ1–40, produced lower levels of inhibition (Fig. 3A, lanes 3
and 5). The effects of Dai, For, Pur and Equ on Aβ1–40 oligomerization
were weaker compared with Gen or Gly, with low tetramer band in-
tensities (Fig. 3A, lanes 7–14).

The effect of 250 μM Gen on Aβ1–42 oligomerization was equally
significant with very low intensities of oligomer bands (Fig. 3B,
lanes 4 and 6). Mixing 25 μM Gen or Gly with 25 μM Aβ1–42 produced
weaker levels of inhibition (Fig. 3B, lanes 3 and 5). The effects of Dai,
For, Pur and Equ on Aβ1–42 oligomerization were weaker compared
with Gen or Gly (Fig. 3B, lanes 7–14).

These data show that Gen and Gly inhibit Aβ1–40 and Aβ1–42 oligo-
merization at compound:peptide ratios of 1:10.

3.3. Aβ assembly-destabilizing assay and fibril-destabilizing effects of
isoflavones on Aβ1–40 and Aβ1–42

After incubating fresh fAβ1–40 and fAβ1–42 at 37 °C without
isoflavones as a control, ThT fluorescence did not change
Fig. 4. Aβ assembly-destabilizing assay and fibril-destabilizing effects of isoflavones on Aβ1–

phosphate buffer (pH 7.4), and 25 (white columns) or 250 μM isoflavones (gray columns)
experiments. The average without compounds was regarded as 100%. Bars indicate SE. *pb
microscopy (K–R) analyses of Aβ1–40 and Aβ1–42 assembly morphology. The reaction mixtur
(pH 7.4), and 0 (C, G, K, O), 25 (D, H, L, P) or 250 μM Gly (E, I, M, Q), or 250 μM Gen (F, J, N,
100 nm. (S,T) Effects of Gly and Gen on fAβs-destabilization monitored by SDS-PAGE and s
reaction mixture containing 25 μM fAβ1–40 (S) or fAβ1–42 (T), 10 mM phosphate buffer (p
into PB-sol and PB-insol fractions. Each gel is representative of each of 3 independent exp
monitored by SDS-PAGE and silver staining. The reaction mixture containing 25 μM cross
fresh isoflavones was incubated at 37 °C for 24 h. Each gel is representative of each of 3 in
significantly (Fig. 4A, B). In contrast, when 250 μM Gly was incubat-
ed with 25 μM fAβ1–40, the final equilibrium level significantly de-
creased (Fig. 4A). Similar effects were observed when 250 μM Gen
or Gly was incubated with 25 μM fAβ1–42 (Fig. 4B). EM analyses rev-
ealed that the number of fibrils was reduced slightly after incubat-
ing fAβ1–40 (Fig. 4D) or fAβ1–42 (Fig. 4H) with 25 μM Gly. Short
aggregates and amorphous aggregates were observed after incubat-
ing fAβ1–40 or fAβ1–42 with 250 μM Gly (Fig. 4E, I) or Gen (Fig. 4F, J).
AFM analyses revealed tangled and coated fibrils with amorphous
aggregates after incubating fAβ1–40 or fAβ1–42 with Gly (Fig. 4L, M,
P, Q) or Gen (Fig. 4N, R).

Fig. 4S and T shows the effects of Gly and Gen on preformed
fAβ1–40 (Fig. 4S) or fAβ1–42 (Fig. 4T), determined by SDS-PAGE after
fractionation into PB-sol (supernatant) and PB-insol (pellet) frac-
tions. No proteins were detected in all of the PB-sol fractions. This im-
plies that although Gly and Gen could destabilize fAβ1–40 and fAβ1–42

to visible aggregates (Fig. 4A–R) they could not depolymerize fAβs to
PB-soluble Aβs including Aβ monomers.

Fig. 4U and V shows the effects of 250 μM isoflavones on 25 μM
cross-linked Aβ1–40 (Fig. 4U) or Aβ1–42 oligomers (Fig. 4V) deter-
mined by SDS-PAGE and silver staining. No isoflavone could change
the distributions of oligomer frequency.

3.4. Characterization of the fluorescence emission of isoflavones in the
presence or absence of various Aβ species

Solution of 12.5 μMGly alone gave a maximum fluorescence emis-
sion (565 arbitrary units (AU)) at 465 nm with excitation at 350 nm
(Supplemental Fig. S2; Gly, left). PB (control), Gen or Pur did not
show obvious peaks of fluorescence emission (Supplemental Fig. S2;
left). We confirmed that the peak fluorescence of isoflavones did
not change for at least 5 min after the reaction mixture was made.
40 and Aβ1–42. (A, B) The reaction mixture, containing 25 μM fAβ1–40 or fAβ1–42, 10 mM
was incubated at 37 °C for 24 h. Each column represents the average of 3 independent
0.05; post-hoc Tukey–Kramer tests. (C–R) Electron microscopic (C–J) and atomic force
es, containing 25 μM Aβ1–40 (C–F, K–N) or Aβ1–42 (G–J, O–R), 10 mM phosphate buffer
R) were incubated at 37 °C for 7 days (C–F, K–N) or 24 h (G–J, O–R). Scale bars indicate
ilver staining. Lane 1, 25 μM Aβ1–40 (S) or Aβ1–42 monomer (T) alone; lanes 2–7, the
H 7.4), and 0 or 250 μM fresh Gly or Gen was incubated at 37 °C for 24 h, fractionated
eriments. (U,V) Effects of isoflavones on the frequency of cross-linked Aβ oligomers
-linked Aβ1–40 (U) or Aβ1–42 (V), 10 mM phosphate buffer (pH 7.4), and 0 or 250 μM
dependent experiments.
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The higher concentration of Gly was associated with a higher fluores-
cence intensity (Supplemental Fig. S3). The fluorescence change was
linear from 0 to 25 μM Gly (R2=0.976; Supplemental Fig. S3C),
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indicating that the fluorescence emitted at 465 nm with an excitation
maximum at 350 nm reflects the specific fluorescence of the Gly
solution.
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Fig. 5. ΔFluorescence emission of Gly in the presence of various Aβ species. ΔFluorescence emission of Gly in the presence of various Aβ species was obtained after subtraction of
both the fluorescence emission of Gly alone and that of Aβs alone from the actual fluorescence emission of Gly mixed with Aβs. The data are representative pattern from 3 inde-
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12.5 μM Gly were monitored at the excitation and emission wavelengths of 350 and 465 nm, respectively.
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Next, to examine whether Gly could interact with Aβ species, we
used monomers, oligomers and fibrils of Aβ1–40 or Aβ1–42. Fluores-
cence emission of 12.5 μM Aβ1–42 monomers or oligomers alone,
obtained at the excitation and emission wavelengths of 350 and
465 nm, respectively, was neglectable (Supplemental Fig. S2 and S4).
Solution of 12.5 μMAβ1–42 fibrils gave a maximum fluorescence emis-
sion of 410 nm with excitation at 300 nm (Supplemental Fig. S2),
however, they gave little fluorescence emission at 465 nm with exci-
tation at 350 nm (Supplemental Fig. S2 and S4). After mixing with
Aβ1–42 monomers, oligomers or fibrils, 12.5 μM Gly solution emitted
a significantly higher fluorescence at 465 nm with an excitation max-
imum at 350 nm (pb0.05; Supplemental Fig. S2; Gly). Fig. 5 show the
Δfluorescence excitation (Fig. 5A) and emission spectra (Fig. 5B) of
Gly in the presence of individual Aβ species after subtracting each
fluorescence of Gly and Aβ alone. The maxima of Δfluorescence emis-
sion were also observed at the excitation and emission wavelengths
of 350 (Fig. 5A) and 465 nm (Fig. 5B), respectively. The higher concen-
tration of Aβ1–42 species was associated with a higher fluorescence in-
tensity (Fig. 5C). The Δfluorescence of Gly in the presence of Aβ1–42

monomer was pH-dependent, exhibiting a maximum around pH 10
and a minimum around pH 4–6 (Fig. 5D–F). These data indicates
that theΔfluorescence obtained at an emission of 465 nmwith excita-
tion at 350 nm reflects the binding of Gly to Aβmonomers, oligomers
and fibrils at pH 7.4.
After mixing Aβ1–40 species with Gly, the Δfluorescence spectra
were nearly identical to those of Aβ1–42 species, and slightly lower
fluorescence levels were observed compared to mixing Aβ1–42 species
with Gly (Fig. 5A,B). These data are indicating that Gly could interact
with monomers, oligomers and fibrils of Aβ1–40 and Aβ1–42 in sample
solution. In contrast, minimal changes in the fluorescence spectra
were observed when Aβ1–42 were mixed with PB (control), Gen, Dai,
For, Pur or Equ (Supplemental Fig. S2).

3.5. The Δfluorescence emission of glycitein in the presence of Aβ
fragments

To determine which regions of monomeric Aβs Gly interacts with,
we used different Aβ fragments. Fig. 6 shows the Δfluorescence en-
hancement of Gly in the presence of Aβ fragments. The spectra of
Gly mixed with Aβ1–40 or Aβ1–16 were nearly identical to that with
Aβ1–42. In comparison, a much larger Δfluorescence was observed
after mixing Gly with Aβ25–35 (pb0.05). Gly interacted with different
Aβ fragments (Aβ1–42, Aβ1–40, Aβ1–16 and Aβ25–35), exhibiting the
highest Δfluorescence enhancement with Aβ25–35. Fig. 6C shows that
the Δfluorescence intensity rose with increasing concentration of Aβ
fragments. The Δfluorescence of Gly ultimately reached plateau levels
at a compound:peptide ratio of 5:2 for Aβ1–42, Aβ1–40 and Aβ1–16, and
at a ratio of 1:1 or more for Aβ25–35. These results suggest that Gly can
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bind to the limited number of interaction sites on Aβ1–42, Aβ1–40,
Aβ1–16 and Aβ25–35, and that Gly may have the most potent affinity
for Aβ25–35 among the Aβ fragments examined in this study.

4. Discussion

We demonstrate that isoflavones, especially Gly and Gen, can in-
hibit the fibrillization as well as the oligomerization in a dose-
dependent manner. Also, these compounds destabilized preformed
fAβ1–40 and fAβ1–42. In addition, our three-dimensional fluorescence
spectroscopic analyses showed that Gly directly interacted with
monomers, oligomers and fibrils of Aβ1–40 and Aβ1–42 at pH 7.4, indi-
cating the binding of Gly to these Aβ species. Moreover, Gly interacted
with different Aβ fragments (Aβ1–42, Aβ1–40, Aβ1–16 and Aβ25–35),
exhibiting the most potent affinity for Aβ25–35. Gly can interact with
the limited number of binding sites along the length of monomeric
Aβs.

These interactions of Gly with Aβs would explain the anti-
fibrillation and anti-oligomerization effects of Gly on Aβ1–40 and
Aβ1–42. Gly initially binds with the site(s) present in monomeric Aβs,
thereby preventing fibrillation and oligomerization. Alternatively,
Gly binds to Aβ fibrils or oligomers, thus inhibiting the addition of
Aβ monomers onto the growing ends of Aβ assembly. Previously, we
demonstrated that a flavonoid myricetin bound to fAβs by using
three-dimensional fluorescence spectroscopy and surface plasmon
resonance analyses [16]. Prior work using circular dichroism (CD)
spectroscopy and PICUP showed that a flavonoid could inhibit transi-
tions of initial coil‐α-helix/β-sheet secondary structure and subse-
quent pre-protofibrillar oligomerization [10].

The binding of Gly to fAβs would achieve the fibril-destabilizing ef-
fects of Gly on preformed fAβ1–40 and fAβ1–42. The fluorescence
changes of fAβ1–42 by Gly were slightly greater than those of fAβ1–40,
and, probably related to it, the fibril-destabilizing activities of Gly on
fAβ1–42 were slightly stronger than those on fAβ1–40; this may be re-
lated to structural differences between fAβ1–40 and fAβ1–42. AFM anal-
yses revealed fAβs coated and tangled into amorphous aggregates
after the fAβ-destabilizing assay with Gly. By SDS-PAGE analyses
after fractionation into PB-sol and PB-insol, Gly seems not to depoly-
merize fAβs to PB-soluble Aβs including Aβ monomers.

Although the fluorescence changes suggested the binding of Gly to
Aβ oligomers, Gly could not destabilize preformed Aβ oligomers
assembled by PICUP. There has been no report of compounds which
destabilize preformed Aβ oligomers assembled by PICUP.
Among prior works on isoflavones, Gen has been reported to bind
serum albumin noncovalently and exhibit enhanced fluorescence
emission [21]; Gly, Gen and Dai have also been reported to bind the
monomeric form of transthyretin protein (TTR) [22]. Because Gen
did not show obvious peaks of fluorescence emission, our three-
dimensional fluorescence spectroscopic methods were not available
to analyze any interaction between Gen and Aβs, nor to explain the
mechanism of Gen's anti-fibrillation, anti-oligomerization and fibril-
destabilizing effects on Aβs.

Understanding of the relationship between the chemical structure
of the flavonoids and these specific anti-amyloid effects may lead to
development of more effective drug designs with more potent anti-
amyloid effects, requiring further studies.

The anti-fibrillization, anti-oligomerization and fibril-destabilizing
effects of isoflavones require concentrations of at least 250 μM in our
in vitro system. Generally, under habitual dietary conditions, plasma
Gly levels are in the range of 0.004–1.2 μM [23–25]. Six hours after in-
take of soymilk and tofu, 1.7 μM and 1.3 μM of Gen were measured in
plasma, respectively [26]. Isoflavone concentrations of 0.5–0.9 μM
were measured in the blood of 3 adults after consuming soy nutri-
tional supplements [25]. Seven infants eating soy-based formula had
2–7 μM concentrations of isoflavones in their blood [25]. Although it
was reported that the penetration of flavonoids into the central ner-
vous system depends on their lipophilicity [27], there is little infor-
mation about the interaction of isoflavones with the blood–brain
barrier. In any case, it is unlikely that the estimated isoflavone con-
centrations in the cerebrospinal fluid (CSF) would be higher than
10 μM under habitual dietary conditions, and these would be lower
than those used in this study. However, low concentrations of
isoflavones may exhibit anti-amyloidogenic activities in vivo when
administered for a long period. Alternatively, supplemental intake of
isoflavones could sufficiently increase CSF concentrations to provide
anti-amyloidogenic effects. There have been no clinical trials on the
neurological effects of isoflavone consumption. The central nervous
system levels of isoflavones have never reported in the studies using
animal model fed with isoflavones. Previous reports demonstrated
that long-term orally administered different polyphenolic flavonoids,
including (+)-catechin and (−)-epicatechin, significantly attenuated
cognitive deterioration and improved cognitive function in a mouse
model of AD with reduced oligomeric Aβ in the brain [28,29]; the cal-
culated total metabolite level in the brain was at the very most 1.1 pM
after treatment with orally 200 mg/kg/day of the polyphenolic flavo-
noids, equivalent to a human dosage of 1 g/day [29].
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Recent laboratory findings indicate that isoflavones may protect
against dementia. Gen was protective against oxidative injury caused
by Aβ25–35 treatment, and it helped tomaintain redox balance in PC12
cells [30]. Gen could also rescue neurons from Aβ-induced cell death
by inhibiting the activation of p38 MAP kinase [31]. Furthermore,
Gen can inhibit Aβ–associated inflammation—this appeared to be
due to its ability to induce PPAR-γ expression in cultured astrocytes
[32]. Mixed soy isoflavones, which contain Gen, Dai and Gly, attenuate
oxidative stress and improve parameters related to aging and
Alzheimer's disease in C57BL/6J mice treated with D-galactose [33].
In transgenic Caenorhabditis elegans, Gly may protect against Aβ-
induced toxicity through its combined ability to mitigate oxidative in-
jury and inhibit Aβ deposition [34]. Finally, this study demonstrates
that isoflavones, especially Gly and Gen, can inhibit Aβ assembly,
and that Gly's effects may be mediated by direct binding to Aβmono-
mers, oligomers and fibrils. Our results indicate that compounds with
an isoflavone backbone may also be promising candidates for applica-
tion in therapeutic strategies targeting Aβ assemblies.

In conclusion, we show that isoflavones, especially Gly and Gen,
have anti-fibrillization, anti-oligomerization and fibril-destabilizing
effects on Aβ1–40 and Aβ1–42 in vitro. In particular, Gly exerted an
anti-amyloidogenic effect by binding to Aβ monomers, oligomers
and fibrils. Gly interacted with the limited number of binding sites
along the length of monomeric Aβ, and with different Aβ fragments
(Aβ1–42, Aβ1–40, Aβ1–16 and Aβ25–35) exhibiting the most potent affin-
ity for Aβ25–35. Isoflavonesmay hold promise as a treatment option for
preventative strategies targeting amyloid formation in Alzheimer's
disease.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.bbadis.2012.05.006.
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