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a b s t r a c t

This letter studies identification problems of model orders using the Hankel matrix of
impulse responses of a system and presents two order identificationmethods: one is based
on the singularities or ratios of the Hankel matrix determinants and the other is based on
the singular value decomposition of the Hankel matrix. A numerical example verifies the
proposed methods.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Identification for linear systems contains the structure or order determination and parameter estimation. There exist a
lot of parameter estimation methods for linear systems, e.g., the multi-innovation parameter identification methods [1–7],
the iterative estimation methods [8,9], the data filtering based estimation methods [10], and the gradient based estimation
methods [11–14], but most assume that the system orders or structure indices are known.

In the area of order identification, Duong and Landau presented an instrumental variable based criterion for model
order selection [15]. Bauer studied the order estimation methods using the subspace technique [16]. Schoukens, Rolain
and Pintelon discussed the modified AIC rule for model selection in combination with prior estimated noise models [17].
Ruan, Yang, Chen and Li considered the on-line order estimation and parameter identification problems for linear stochastic
feedback control systems [18]. Lind and Ljung explored the regressor selection with the analysis of variance method [19].
Aladag, Egrioglu and Kadilar forecasted a nonlinear time series with a hybrid methodology [20]. Thavaneswaran, Appadoo
andGhahramani studied RCAmodelswith GARCH innovations [21]. Gong and Thavaneswaran studied parameter estimation
problems for continuous time stochastic volatility models [22]. Recently, Ding et al. presented a least squares parameter
estimation algorithmwith irregularly missing data [23] and a hierarchical estimation algorithm for non-uniformly sampled
systems [24].

This letter studies the order estimation problems for linear systems using the Hankel matrix and the SVD decomposition.

2. The method of determining the Hankel Matrix’s rank

Consider a linear discrete-time system described by the following state space model,
x(t + 1) = Ax(t) + bu(t),
y(t) = cx(t) + du(t), (1)
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where x(t) ∈ Rn is the state vector, u(t) ∈ R and y(t) ∈ R are the input and output of the system, A ∈ Rn×n, b ∈ Rn,
c ∈ R1×n and d ∈ R are constant matrix, vectors or number.

Order identification is determining the minimum dimensions of the controllability matrix and the observability matrix
using the input–output data {u(t), y(t)} of the system. Let z−1 be a unit backward shift operator [z−1x(t) = x(t − 1)]. From
(1), we havex(t) = (zI − A)−1bu(t),

y(t) = cx(t) + du(t)
= [c(zI − A)−1b + d]u(t),

where I is an identity matrix of appropriate size. Thus, the transfer relation from the system input to output is given by

G(z) :=
y(t)
u(t)

= c(zI − A)−1b + d. (2)

Using long division, we have

G(z) = z−1c

I −

A
z

−1

b + d = d + cbz−1
+ cAbz−2

+ cA2bz−3
+ · · · .

From the above equation, we can obtain the impulse responses:

g(t) =


d, t = 0,
cAt−1b, t > 0. (3)

The controllability matrix Qc and the observability matrix Qo of system (1) are defined by

Qc := [b,Ab,A2b, . . . ,An0−1b, . . . ,Al−1b], (4)

Qo :=



c
cA
cA2

...

cAn0−1

...

cAl−1


, (5)

where n0 represents the true order of the system and is unknown, the number l is large enough and satisfies l ⩾ n0.
For control, the system order is generally regarded as the dimension n of the state vector x(t). For identification, the

system order is defined as the dimension of both controllable and observable subsystem and thus the system order is the
minimum rank of the controllability matrix Qc and the observability matrix Qo, i.e., n0 := min{rank[Qc], rank[Qo]}.

Suppose that A is full rank (otherwise, take t = 1). Assume that the controllability matrix Qc has rank n1 (n0 ⩽ n1). That
is, the successive n1 columns of Qc are linearly independent. From (4), we form the matrix

Jc(t) := [At−1b,Atb,At+1b, . . . ,At+l−2b] ∈ Rn×l, l ⩾ n0, (6)

which has rank n1. Thus, there exists a series of numbers αij (not all zeros) such that the following relation holds,

At+n1−1+ib = αi1At−1+ib + αi2At+ib + · · · + αin1A
t+n1−2+ib, i = 0, 1, . . . , (l − n1 − 1).

Pre-multiplying both sides of the above equation by c gives

cAt+n1−1+ib = αi1cAt−1+ib + αi2cAt+ib + · · · + αin1cA
t+n1−2+ib, i = 0, 1, . . . , (l − n1 − 1).

Using (3) gives

g(t + n1 + i) = αi1g(t + i) + αi2g(t + i + 1) + · · · + αin1g(t + n1 − 1 + i), i = 0, 1, . . . , (l − n1 − 1). (7)

Pre-multiplying both sides of (6) by c , we have

H(t) := cJc(t) = [cAt−1b, cAtb, cAt+1b, . . . , cAt+l−2b]
= [g(t), g(t + 1), g(t + 2), . . . , g(t + l − 1)] ∈ R1×l.

Replacing t with t + i gives

H(t + i) = [g(t + i), g(t + i + 1), g(t + i + 2), . . . , g(t + 2i)] ∈ R1×l.
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Taking i = 0, 1, . . . , l − 1, we obtain l equations which can be rewritten as the form of a Hankel matrix

H(l, t) :=


H(t)

H(t + 1)
...

H(t + l − 1)

 =


g(t) g(t + 1) · · · g(t + l − 1)

g(t + 1) g(t + 2) · · · g(t + l)
...

...
...

g(t + l − 1) g(t + l) · · · g(t + 2l − 2)

 ∈ Rl×l. (8)

According to (7), we can see that the matrix H(l, t) has rank n1, so we can determine the dimension of the controllable
subsystem from the rank of the Hankel matrix H(l, t). Since the impulse response g(t) of a stable system approaches zero
as t increases, t in H(l, t) should not be too large.

Similarly, assume that the observability matrix Qo has rank n2 (n0 ⩽ n2). That is, the successive n2 rows are linearly
independent. From (5), we form the matrix,

Jo(t) :=


cAt−1

cAt

cAt+1

...

cAt+l−2

 ∈ Rl×n, l ⩾ n0, (9)

which has rank n2. Thus, there exists a series of numbers βij (not all zeros) such that the following relation holds,

cAt+n2−1+i
= βi1cAt−1+i

+ βi2cAt+i
+ · · · + βin2cA

t+n2−2+i, i = 0, 1, . . . , (l − n2 − 1).

Post-multiplying both sides by b gives

cAt+n2−1+ib = βi1cAt−1+ib + βi2cAt+ib + · · · + βin2cA
t+n2−2+ib, i = 0, 1, . . . , (l − n2 − 1).

Using (3), it follows that

g(t + n2 + i) = βi1g(t + i) + βi2g(t + i + 1) + · · · + βin2g(t + n2 − 1 + i), i = 0, 1, . . . , (l − n2 − 1). (10)

Post-multiplying both sides of (9) by b, we can write the Hankel matrix of (8) as follows:

H(l, t) = [J0(t)b, J0(t + 1)b, . . . , J0(t + l − 1)b] ∈ Rl×l.

According to (10), it is clear thatH(l, t) has rank n2. Therefore, we can determine the dimension of the observable subsystem
based on the rank of the Hankel matrix H(l, t).

Since the system order is equal to theminimum rank of the controllability matrix and the observability matrix, i.e., n0 :=

min{rank[Qc], rank[Qo]}, we have

rank[H(l, t)] = n0, l ⩾ n0, t ⩾ 1. (11)

This indicates that the rank of the Hankel matrix equals the true order of the system when l ≥ n0. In other words, when
l ⩽ n0, the Hankel matrix has full rank and its determinant is not equal to zero. Thus, we can determine the system order
according to the singularity of the Hankel matrix.

In practice, the impulse response data contain measurement errors (noises) and the determinant of the Hankel matrix
cannot equal zero for l > n0. In this case, the system order can be determined by observing the changing rates of the
determinants of the Hankel matrices, i.e., the number l is the system order when det[H(l, t)]/ det[H(l + 1, t)] is maximum
for every l = 1, 2, . . ..

3. The SVD method

The singular value decomposition (SVD) theorem: Suppose that R is an m × n matrix with rank r , there exist an m × m
orthogonal matrix U and an n × n orthogonal matrix V such that the following equality holds,

R = UΣV T, (12)

where

Σ =


σ1

σ2
. . .

σr
0

 ∈ Rm×n, (13)
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Table 1
The impulse response sequence (k = 5).

t g(t) t g(t) t g(t) t g(t) t g(t) t g(t)

1 1.00000 6 0.05128 11 −0.46126 16 0.31241 21 0.01087 26 −0.04296
2 2.96000 7 −0.41179 12 −0.31950 17 0.09593 22 0.06709 27 0.02292
3 3.24240 8 −0.49809 13 −0.04230 18 −0.10418 23 0.03638 28 0.06940
4 2.32986 9 −0.47469 14 0.24749 19 −0.17075 24 −0.03369 29 0.06068
5 1.04294 10 −0.47802 15 0.38849 20 −0.10164 25 −0.07109 30 0.00889

Table 2
The impulse response sequence (k = 3).

t g(t) t g(t) t g(t) t g(t) t g(t) t g(t)

1 1.000 6 0.051 11 −0.461 16 0.312 21 0.011 26 −0.043
2 2.960 7 −0.412 12 −0.320 17 0.096 22 0.067 27 0.023
3 3.242 8 −0.498 13 −0.042 18 −0.104 23 0.036 28 0.069
4 2.330 9 −0.475 14 0.247 19 −0.171 24 −0.034 29 0.061
5 1.043 10 −0.478 15 0.388 20 −0.102 25 −0.071 30 0.009

σi =
√

λi (i = 1, 2, . . . , r) are the singular values of R, and λi (i = 1, 2, . . . , n) are the eigenvalues of the n × n symmetric
square matrix RTR with λ1 ⩾ λ2 ⩾ · · · ⩾ λr > 0, λr+1 = · · · = λn = 0. Because U and V are the orthogonal matrices, we
have

rank[R] ⩽ min{rank[U ], rank[Σ], rank[V ]} = rank[Σ] = r. (14)

For the Hankel matrix H(l, t) in (8) (take t = 1 for singular A) and given l value (l is large enough and should be greater
than the true order n0) and smaller t , we make the SVD decomposition to H(l, t) in (12) and obtain the matrix Σ like (13).
Observing the structure of Σ, the number r of the nonzero singular values σ1, σ2, . . . , σr is the rank of the Hankel matrix
H(l, t) and is also the model order.

For the noise-free ideal case, the SVDmethod is very simple and can determine the model’s order. But for the cases with
the impulse responses having the measurement errors (noise), none singular values equal zero, we compute and compare
σi/σi+1 for i = 1, 2, . . .. If σl/σl+1 is maximum for some i = l, then l is the system order.

In theory, t in H(l, t) may take any number more than unity, but the impulse response g(t) approaches zero for a stable
system as t increases. Thus, t in H(l, t) generally takes a small integer, i.e., t = 1, t = 2 or t = 3.

4. Numerical example

Consider the following simulation plant:

y(t) − 2.44y(t − 1) + 2.96y(t − 2) − 1.86y(t − 3) + 0.55y(t − 4)
= 1.00u(t − 1) + 0.52u(t − 2) − 1.02u(t − 3) + 1.32u(t − 4).

In a simulation, the input {u(t)} is taken as a unit impulse sequence and the corresponding impulse responses g(t)
(i.e., the system output y(t)) are shown in Fig. 1 and Tables 1–2, for keeping k = 5 decimal places and k = 3 decimal
places, respectively. That is, the impulse responses contain different measurement errors (noises). The corresponding step
responses y(t) are shown in Fig. 2. We apply the the ratios of the Hankel matrix method and the SVD method to determine
the order of this system.

1. The Hankel matrix determinant method.
Take t = 1. When l = 1, 2, . . . , 8, computing Dl = | det[H(l, t)]| gives

Dl = [D1,D2,D3,D4,D5,D6,D7,D8]

= [1.00000, 5.51920, 0.55062, 0.02874, 0.00001, 0.00000, 0.00000, 0.00000] for k = 5,

Dl = [D1,D2,D3,D4,D5,D6,D7,D8]

= [1.00000, 5.51960, 0.54224, 0.02922, 0.00005, 0.00000, 0.00000, 0.00000] for k = 3.

Since D5 is very close to zero, the system order is 4.
2. The SVD method.

Take t = 1 and l = 8, using (12) and making the SVD composition of H(l, t) give the diagonal matrices:

Σ = diag[σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8]

= diag[8.46052, 3.94895, 1.10769, 0.80510, 0.00002, 0.00001, 0.00001, 0.00000] for k = 5,

Σ = diag[σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8]

= diag[8.46031, 3.94899, 1.10700, 0.80449, 0.00130, 0.00124, 0.00122, 0.00096] for k = 3.

Since σ4/σ5 is maximum, we say that the system order is 4.
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Fig. 1. The impulse response g(t).

Fig. 2. The step response y(t).

5. Conclusions

Two order identificationmethods are developed for linear systems using the impulse response sequences of the systems
according to the singularities or ratios of theHankelmatrix determinants and the singular value decomposition of theHankel
matrix. The numerical results indicate that the proposed approaches are effective for determining the system orders.
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