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Emerging evidence points to proteoglycan abnormalities in the pathophysiology of schizophrenia (SZ). In particular,
markedly abnormal expression of chondroitin sulfate proteoglycans (CSPGs), key components of the extracellular
matrix, was observed in the medial temporal lobe. CSPG functions, including regulation of neuronal differentiation
and migration, are highly relevant to the pathophysiology of SZ. CSPGs may exert similar functions in the olfactory
epithelium (OE), a continuously regenerating neural tissue that shows cell and molecular abnormalities in SZ.
We tested the hypothesis that CSPG expression in OE may be altered in SZ. CSPG-positive cells in postmortem
OE from non-psychiatric control (n = 9) and SZ (n = 10) subjects were counted using computer-assisted light
microscopy. ‘Cytoplasmic’ CSPG (c-CSPG) labeling was detected in sustentacular cells and some olfactory recep-
tor neurons (c-CSPG + ORNs), while ‘pericellular’ CSPG (p-CSPG) labeling was found in basal cells and some
ORNs (p-CSPG + ORNs). Dual labeling for CSPG and markers for mature and immature ORNs suggests that c-
CSPG + ORNs correspond to mature ORNs, and p-CSPG + ORNs to immature ORNs. Previous studies in the same
cohort demonstrated that densities of mature ORNs were unaltered (Arnold et al., 2001). In the present study, nu-
merical densities of c-CSPG + ORNs were significantly decreased in SZ (p b 0.025; 99.32% decrease), suggesting a
reduction of CSPG expression inmature ORNs. Previous studies showed a striking increase in the ratios of immature
neurons with respect to basal cells. In this study, we find that the ratio of p-CSPG + ORNs/CSPG + basal cells was
significantly increased (p = 0.03) in SZ, while numerical density changes of p-CSPG + ORNs (110.71% increase) or
CSPG + basal cells (53.71% decrease), did not reach statistical significance. Together, these results indicate that
CSPG abnormalities are present in the OE of SZ and specifically point to a reduction of CSPG expression in mature
ORNs in SZ. Given the role CSPGs play in OE cell differentiation and axon guidance, we suggest that altered CSPG ex-
pression may contribute to ORN lineage dysregulation, and olfactory identification abnormalities, observed in SZ.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction
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differentiation and migration, maturation of synapses and regula-
tion of neurotransmitter receptor availability (Meyer-Puttlitz
et al., 1996; Frischknecht et al., 2009; Maeda et al., 2010). These
functions bear direct relevance to the pathophysiology of schizo-
phrenia (SZ), a disease with a strong neurodevelopmental compo-
nent (e.g. Arnold and Rioux, 2001; Harrison, 2007). Recently,
significant CSPG expression anomalies have been detected in this
disease (Buxbaum et al., 2008; Pantazopoulos et al., 2010; Enwright
et al., 2012; Mauney et al., 2013). In particular, CSPG-enriched
perineuronal nets were decreased in several brain regions, often in asso-
ciationwithmarked increased of CSPG-positive glial cells (Pantazopoulos
et al., 2010; Enwright et al., 2012; Mauney et al., 2013). Together, these
abnormalities have been postulated to disrupt neurodevelopmental pro-
cesses, including neuronal migration, circuit formation and consolidation
(Berretta, 2012).
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CSPG developmental functions are thought to play a key role
throughout life in the olfactory epithelium (OE), a neural structure in
which neuronal differentiation, migration and axon outgrowth occur
robustly throughout life (Clarris et al., 2000; Schwob, 2002). The adult
OE contains stem cells that retain the capacity to divide and differentiate
into mature olfactory receptor neurons (ORNs) (Schwob, 2002). During
the course of their maturation, newly formed ORN axons join odor-
specific axon bundles to reach the corresponding olfactory bulb glomer-
uli (Graziadei, 1973; Yoshihara and Mori, 1997; Beites et al., 2005). In
the OE and olfactory bulb, development-specific patterns of CSPG ex-
pression help position ingrowing olfactory axons in the glomerular
layer and maintain glomerular integrity (Gonzalez and Silver, 1994;
Clarris et al., 2000). CSPG role in regulating brain cell differentiation
(Yanagisawa and Yu, 2007; Purushothaman et al., 2012) suggests that
theymay contribute toOEbasal cell differentiation and theirmaturation
into ORNs.

OE abnormalities observed in SZ are consistent with CSPG dys-
regulation. Primary cell lines fromOE biopsieswere reported to have re-
duced adhesion properties and altered cell proliferation in SZ (Feron
et al., 1999;McCurdy et al., 2006; Fan et al., 2012). Notably, disturbances
of OE cell cycle include lower density of basal cells and increase of post-
mitotic immature ORNs, providing strong support for a dysregulation of
OE neuronal lineage (Feron et al., 1999; Arnold et al., 2001; Perry et al.,
2002; McCurdy et al., 2006). Taken together, CSPG anomalies in several
neural regions and abnormalities in theOE of SZs suggest a disruption of
key CSPG functions in this structure. We tested the hypothesis that
CSPG expression may be disrupted in the OE of subjects with SZ.
A broad spectrum CSPG histological marker, i.e. Wisteria floribunda
agglutinin (WFA) was used for group comparisons in postmortem
OE tissue; antibodies raised against phosphacan and versican V0/V1,
CSPGs suspected to be involved in SZ and to be expressed in the OE,
were added for normal investigations on cell-specific CSPG distribution
(Clarris et al., 2000; Popp et al., 2003; Buxbaum et al., 2008; Takahashi
et al., 2011) (Pantazopoulos et al., unpublished observations).

2. Methods

2.1. Human subjects and tissue processing

2.1.1. Postmortem and biopsy human OE tissue for normal study

2.1.1.1. Postmortem. A tissue block containing the OE, cribriform plate,
olfactory bulbs, lateral nasal walls and septum from a healthy control
Table 1
Sample demographic and descriptive characteristics— comparison study. Data relative to subjec
chlorpromazine-equivalent (CPZ) dose (expressed in average mg/day during the last month o

Dx Age Sex PMI Brain weight

SZ 83 M 7 1200
SZ 74 F 15 1140
SZ 79 F 8 1040
SZ 75 F 16 1219
SZ 76 M 10 1322
SZ 70 M 17 1200
SZ 72 F 10 1157
SZ 71 M 10 1188
SZ 74 M 14 1260
SZ 80 F 11 1060
10 75.4 +/− 4.2 5 M/5 F 11.8 +/− 3.5 1178.6 +/−
C 43 M 30.5 1545
C 73 M 8 1249
C 74 F 3.5 1000
C 91 F 11.5 1140
C 74 F 6 1250
C 69 M 11 1625
C 63 M 5 1360
C 67 F 5.5 1100
C 98 M 15 1340
9 72.4 +/− 15.8 5 M/4 F 10.7 +/− 8.3 1289.9 +/−
subject (male, 80 years old) was obtained from National Disease
Research Interchange. The tissue block was processed as previously
described (Holbrook et al., 2011). Sections were cut at 10 μm and
mounted on super frost plus slides.

2.1.1.2. Biopsy. Tissue samples containing the OE from two healthy con-
trols (males — 23 and 41 years of age) were obtained by biopsy under
local anesthesia. Medical history, current medical status and absence of
psychiatric disorders (Structured Clinical Interview for DSM Disorders,
SCID)were recorded for each subject. Protocols for recruitment, consent,
and biopsy were approved by the Institutional Review Boards of McLean
Hospital and Massachusetts Eye and Ear Infirmary. Subjects provided
written informed consent prior to their inclusion in the study. Biopsy
samples were postfixed in 4% paraformaldehyde for 1 h, cryoprotected
in 30% sucrose overnight and sectioned on a cryostat (10 μm).

2.1.2. Postmortem human OE tissue for group comparisons
PostmortemOE tissuewas collected from 10 chronic SZ patients and

9 age- and sex-matched non-psychiatric controls (Table 1). All subjects
with SZwere prospectively accrued from two state hospitals in Pennsyl-
vania and were clinically assessed and diagnosed according to DSM-IV
criteria by research psychiatrists of the University of Pennsylvania's
Schizophrenia Mental Health Clinical Research Center, Philadelphia, as
previously described (Arnold et al., 2001). This involved a standardized
medical record review of demographic variables, presenting and sub-
sequent symptoms, treatment history, medical history, caregivers'
interview and laboratory and neuroimaging findings. Based on all
information, diagnoses and inclusion were established by research
team consensus. Non-psychiatric controls were obtained through the
University of Pennsylvania's Alzheimer Disease Core Center. Review of
clinical histories found no evidence of prior major psychiatric or neuro-
logical illnesses. Gross and microscopic diagnostic neuropathologic
examinations of multiple cortical and subcortical regions revealed no
evidence for changes consistentwith Alzheimer's disease or cerebrovas-
cular accidents in any of the subjects included in this cohort. At autopsy,
the nasal epithelium, bony septae, and contiguous cribriform plate were
removed en bloc and processed as above (Arnold et al., 2001).

2.2. Histochemistry and immunohistochemistry

2.2.1. Single immunohistochemistry/histochemistry for CSPGs
Tissue sections were blocked in 2% bovine albumin serum (BSA).

For immunohistochemistry, sections were incubated for 48 h in
t cohort used for comparison studies. Brainweight expressed in grams. Abbreviations: CPZ,
f life); Dx, diagnosis; PMI, postmortem interval (hours).

CPZ last month of life Age at onset Years of illness

0 21 62
600 18 56
0 NA NA
900 23 52
600 20 56
850 32 38
NA 24 48
0 34 37
100 23 51
100 22 58

85.0 350 +/− 382.4 24.11 +/− 5.4 50.89 +/− 8.6
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA

203.3 NA NA NA
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primary antibodies (see below), then for 2 h at room temperature in
biotinylated secondary antibody (1:500 goat anti-rabbit, Vector Labs
BA-1000, lot x0212); for histochemistry, sections were incubated in
Wisteria floribunda agglutinin (WFA; see also Supplementary material)
in 1% BSA for 24 h at 4 °C. For both immunocytochemistry and histo-
chemistry, sections were then incubated in streptavidin (1:5000;
Invitrogen 434323, lot 830799A). Nickel-enhanced diaminobenzidine/
Fig. 1. Patterns of CSPG expression in the normal human OE. In normal human OE, CSPG labelin
pericellular CSPG (p-CSPG) labeling (arrow heads), and cytoplasmic CSPG (c-CSPG) labeling (arr
patterns. High resolution fluorescent confocal images ofWFA labeled cells (green) and DAPI lab
WFAwith GAP43, prevalently expressed in immature ORNs, shows that p-CSPG + ORNs corre
WFA with OMP, which typically labels mature ORNs, shows that c-CSPG + ORNs correspond t
with a pericellular pattern of CSPG/WFA; ii) immature ORNsmaintain the p-CSPG expression pa
expression. Scale bar, 50 μm.
peroxidase reaction (0.02% diaminobenzidine (Sigma-Aldrich, St. Louis,
MO), 0.08% nickel-sulfate, 0.006% hydrogen peroxide) was used to visu-
alize the reaction product. Solutions for all the steps aboveweremade in
phosphate buffer/saline with 0.5% Triton X (PBS–Tx). Each step was
followed by washes in the same solution. Antibodies: receptor tyrosine
phosphate zeta (RPTPz)/phosphacan (1:2000; Abcam ab126497, lot#
GR79986; immunogen was a synthetic peptide corresponding to
g using the broad spectrummarkerWFA shows two distinct labeling patterns in OE cells:
ows). In A and B, lightmicroscopy photomicrographs show examples of these two labeling
eled nuclei (blue) confirm this pattern (C, D). In E–G, dual fluorescence labeling combining
spond to GAP43 + ORNs (arrow heads). In contrast, dual fluorescence labeling combining
o OMP + ORNs (H–J; arrows). Together, these findings indicate that i) basal cells present
ttern; and iii)mature ORNs appear to transition to a prevalent cytoplasmic pattern of CSPG
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amino acids 831–978 of the human RPTPz/phosphacan sequence —

made in rabbit); glycosaminoglycan beta (GAGbeta)/versican V0/V1
(1:8000; gift from M.T. Dours-Zimmermann and D.R. Zimmermann,
Univ. of Zurich, Switzerland – identifies the C-terminus amino acids
2646–3088 of human versican – made in rabbit) reported to label
both the V0 and V1 versican isoforms (Dours-Zimmermann and
Zimmermann, 1994). Biotinylated WFA (1:1000; Vector Labs, #B-
1355, lot W0103, Burlingame, CA).

2.2.2. Dual antigen immunofluorescence
Double labeling for mature ORNs and CSPGs was carried out using a

primary antibody raised in goat against olfactorymarker protein (OMP)
(1:12,000, Wako, #544-10001, lot 1UP-1001, Richmond VA) in combi-
nation with biotinylated WFA (1:2000, Vector Labs). Immature ORNs
were labeled using a primary antibody raised in mouse against growth
associated protein 43 (GAP-43) (1:500, Millipore, clone 9-1E12
#MAB347, lot NG1869850, Temecula, CA), in combination with WFA.
After blocking in 2% BSA, sections were incubated in primary antibodies
with 2% BSA at 4 °C for 48 h, followed by a combination of either Alexa
Fluor donkey anti-goat 594 (1:250, Invitrogen #A11058, lot 1003216,
Grand Island, NY) and Alexa Fluor Streptavidin 488 (1:3000, Invitrogen
#S-11223), or Alexa Fluor donkey anti-mouse 594 (1:250, Invitrogen
A21203, lot 987237) and Streptavidin 488 (1:3000, Invitrogen #S-
11223). Sectionswerewashedwith 0.1 MPB and coverslippedwith Pro-
long Gold anti-fade mounting media with DAPI (Invitrogen P-36931).
Solutions for all the steps above were made in PBS with 0.5% Triton X.

2.3. Data collection

2.3.1. CSPG-positive cell phenotype in normal human OE
Sections from the OE (3–4 sections per subject), dual labeled for

CSPGs (WFA) in combination with OMP or GAP43 from 3 control sub-
jects (two biopsy and one postmortem samples) were examined using
a Zeiss Axioskop II plus fluorescence imaging system, interfaced with
Stereo-Investigator 6.0 (MicroBrightField, Inc., Williston, VT). OE areas
in each section, interspersed among respiratory epithelium (RE)
patches, were identified according to established structural and
cytoarchitectonic criteria (Moran et al., 1982; Morrison and Costanzo,
1990; Holbrook et al., 2011) (compare Figs. 1A, B to 3A). OE areas
were scanned at 40× throughout the extent of the x, y, and z axes to
count CSPG-positive (CSPG+) cells with cytoplasmic or pericellular
labeling, and their expression, or lack thereof, of OMP or GAP43. Cy-
toplasmic and pericellular WFA labeling was confirmed on a subset
of sections at 63× using a Leica TCS SP8 confocal imaging system
(z-axis resolution: 1 μm through the extent of the tissue section;
Fig. 1C, D). Cell morphology and immunolabeling distribution of
versican V0/V1 and RPTPz/phosphacan (Fig. 2) were analyzed
under 40× magnification.
Fig. 2. Versican V0/V1 and phosphacan expression in normal human OE. Light microscopy pho
V0/V1 showed cytoplasmic expression (arrows) similar to that detected inmature ORNs. Phosp
sembling that observed with WFA in immature ORNs and basal cells.
2.3.2. CSPG-positive cells in OE and RE — group comparison
Slides were coded for analysis blind to diagnosis. Computer-assisted

light microscopy interfaced with stereology quantification software
(see above) was used for data collection. Two to four sections per sub-
ject were available for quantification. The borders between the OE and
RE areas were drawn as described above. Sections were scanned
through the extent of the x, y, and z axes within each area under 40×
magnification and all CSPG-labeled cells were counted. Intra-rater
(H.P.) reliability of at least 95% was established before the actual quan-
tification process begun and assessed on a regular basis throughout the
quantification process. Morphologically distinct CSPG+ cell categories
were identified in the OE (see Moran et al., 1982; Morrison and
Costanzo, 1990; Holbrook et al., 2011). CSPG + ORNs were further
subdivided in two groups according to their pericellular (p-CSPG+) or
cytoplasmic (c-CSPG+) labeling pattern (see Fig. 1 and Section 3: Re-
sults). In RE, CSPG+ cells corresponded almost exclusively to basal
cells (Fig. 4A).

2.4. Statistical analysis

For the purpose of group comparisons, numerical densities of
CSPG+ cells for each subject were the main outcome measure (sum
of labeled cells divided by the sum of the areas of OE or RE). Total num-
bers of cells were not calculated because the anatomical characteristics
of the OE, which is constituted of islands intermingled with RE
(Holbrook et al., 2011), do not allow reliable total volume estimates.
Statistical significance of differences between groups relative to the
main outcome measures was assessed using a stepwise linear regression
process. A logarithmic transformation was uniformly applied to all raw
values because the data was not normally distributed. Statistical analyses
were performed using JMP v5.0.1a (SAS Institute Inc., Cary, NC). Age,
gender, postmortem time interval (PMI), brainweight, and daily averages
of antipsychotic drugs taken during the last month of life, expressed as
chlorpromazine-equivalent (CPZ) dose, were tested systematically for
their effects on numerical densities and included in the model if they
significantly improved the model goodness-of-fit (Table 1). In addition,
potential effects of exposure to antipsychotics, as well as age at the
onset of the disease and duration of the illness, were tested in separate
linear correlation analyses (see also Supplementary information).

3. Results

3.1. CSPG expression in normal human OE

In the OE, two clearly distinguishable patterns of CSPG labeling,
pericellular and intracellular, were detected. Sustentacular cells and
one subgroup of ORNs (Fig. 1A–D,H–J) showed intracellular CSPG label-
ing in a granular pattern within the cytoplasm, often more intense near
the nucleus (Fig. 1H–J). In contrast, basal cells and a second subgroup of
tomicrographs of normal human OE stained for versican V0/V1 and phosphacan. Versican
hacan predominantly showed pericellular expression patterns (arrow heads) strongly re-

image of Fig.�2


Fig. 3. Densities of c-CSPG + ORNs are decreased in the OE of SZ subjects. Numerical
densities of c-CSPG + ORNswere significantly decreased (p = 0.02) in the OE of subjects
with SZ, as compared to non-psychiatric control subjects (A). Increases of p-CSPG + ORNs
and decreases of CSPG+ basal cells did not reach statistical significance. Significance
values are derived from stepwise linear regressionmodels testing potential effects of con-
found variables. Scatter plots show the mean (black line) and 95% confidence intervals
(gray lines). No significant correlation was observed between c-CSPG + ORNs and chlor-
promazine normalized (CPZ) dose of antipsychotics (B).
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ORNs presented with pericellular CSPG labeling (Fig. 1A–D). The simi-
larity of CSPG labeling pattern in basal cells and a subset of ORNs raised
the possibility that the latter may correspond to immature, GAP43-
positive, ORNs. Dual immunofluorescence labeling of normal OE
Fig. 4.Numerical densities of CSPG+ cells were not significantly different in the RE of SZ subjec
histological stained for CSPGs (WFA) show dense black labeling. Scale bar, 50 μm. (B) No diffe
and non-psychiatric control subjects. Statistical analyses were performed using stepwise linear
(gray lines).
confirmed this possibility. The large majority (89.4%) of p-
CSPG + ORNs expressed GAP43 (Fig. 1E–G), a protein prevalently
contained in immature ORNs (Verhaagen et al., 1989; Hahn et al.,
2005), while only 1.9% of c-CSPG + ORN was GAP43-positive. Con-
versely 91.2% of c-CSPG +ORN expressed OMP (Fig. 1H–J), a marker
for mature ORNs (Farbman and Margolis, 1980; Hahn et al., 2005),
while 15.0% of p-CSPG + ORNs were found to be OMP-positive. Finally,
we tested whether the two different patterns of CSPG cellular distribu-
tion may reflect expression of distinct CSPGs. Immunolabeling for
RPTPz/phosphacan showed predominant pericellular ORN and basal
cell labeling (Fig. 2B),while versican V0/V1 (GAGbeta) presented nearly
exclusively with intracellular ORN labeling (Fig. 2A).

3.2. CSPG-positive cells in the OE and RE of subjects with SZ

In the OE, numerical densities of c-CSPG + ORNs were significantly
decreased in subjects with SZ compared to control subjects (step-wise
linear regression analysis; p b 0.025; 99.32% decrease; Fig. 3A). Numer-
ical density increases of p-CSPG + ORNs (110.71%) and decreases of
CSPG+basal cells (53.71%) in SZ subjects, did not reach statistical signif-
icance (Fig. 3A). The ratio of p-CSPG + ORNs/CSPG+ basal cells signifi-
cantly increased in subjects with SZ (p = 0.038, t = 2.31). Ratios of
c-CSPG + ORNs/CSPG+ basal cells and p-CSPG + ORNs/c-CSPG +
ORNs were not altered. Numerical densities of CSPG+ sustentacular
cells were not altered in subjects with SZ (Fig. 3A). In the RE, numer-
ical densities of CSPG+ basal cells were similar in the two groups
(Fig. 4B).

None of potential confounding variables tested with stepwise linear
regression models showed significant effects. Antipsychotic exposure
(Fig. 3B) and other potential disease-related factors, such as age at
onset of the illness and duration of the illness,were also tested using lin-
ear correlation analysis (see also Supplementary information). A posi-
tive correlation of c-CSPG + ORNs with years of illness suggests that
decreases of these cells are not due to non-specific effects of chronic
illness.

4. Discussion

These findings show, to our knowledge for the first time, that CSPGs
are expressed in mature and immature ORNs, sustentacular cells and
basal cells in the adult human OE, with a distinct, cell specific, localiza-
tion pattern. Furthermore, our results represent the first evidence for
CSPG abnormalities in the OE of SZ subjects. Thus, we show that these
abnormalities encompass not only distinct CNS regions but also
ts. CSPG+ cells in RE corresponded almost exclusively to basal cells. In (A), examples of RE
rences of numerical density of CSPG+ basal cells and RE cells were observed between SZ
regression models. Scatter plots show themean (black line) and 95% confidence intervals

image of Fig.�4
image of Fig.�3
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peripheral sensory structures, potentially contributing to functional
sensory impairment (Moberg et al., 1999; Turetsky et al., 2009). These
abnormalities prevalently affect cells putatively corresponding to ma-
ture ORNs. This finding suggests that, in addition to CSPG+ glial cell
and perineuronal net anomalies previously detected in the CNS, CSPG
pathology in SZmay also affect maturing neurons, disrupting ORNmatu-
ration and olfactory system connectivity and, potentially, brain develop-
ment. Below we discuss the possibility that these abnormalities may
reflect a dysregulation of CSPG expression in the OE of subjects with SZ,
and put forth the hypothesis that they may contribute to a disruption of
cell lineage in OE in SZ (Arnold et al., 2001).

4.1. CSPG expression in normal human OE

The observed pericellular pattern of CSPG labeling (WFA and
phosphacan) in basal cells is highly reminiscent of that of CSPG expres-
sion in neural stem/cell progenitors (NSCPs) in stem cell niches of the
embryonic and adult brain (Ito et al., 2005; von Holst et al., 2006). In
these cells, surface expression of CSPGs was found to be essential for
proliferation, cell renewal and responsivity to growth factors that deter-
mine maturation, differentiation and migration (von Holst et al., 2006;
Sirko et al., 2010). We suggest that the p-CSPG labeling in OE basal
cells may mediate similar functions, such as proliferation of basal cells
and their differentiation into immature ORNs. In mature ORNs, WFA/
CSPG expression was instead found predominantly in the cytoplasm.
Versican, which is also expressed in the cytoplasm of neurons in the
brain, showed a similar pattern. Thus, our results suggest that ORNmat-
uration involves a transition of CSPG type and distribution: from
pericellular phosphacan expression to versican V0/V1 expression in
the cytoplasm. The functional implications of the transition between
phosphacan and versican can only be inferred on the basis of current
knowledge on brain CSPG functions, because their expression in the
adult OE has not been reported before. We suggest that this transition
may involve a shift in the ORN interactions with other cells and the ex-
tracellular environment (Rhodes and Fawcett, 2004; Carulli et al., 2005;
Dityatev et al., 2010). While electron microscopy will determine the ul-
trastructural localization of CSPGs in OE cells, for the purpose of this
study, we use the term ‘pericellular’ to indicate CSPG labeling at the
cell periphery, as clearly distinct from the CSPG labeling pattern detect-
ed in mature ORNs.

4.2. CSPG abnormalities in SZ

Comparisons between non-psychiatric control and SZ subjects show
a significant decrease of c-CSPG + ORN, putatively corresponding to
mature (OMP+) ORNs. Previous results from a largely overlapping set
of OE samples (Arnold et al., 2001), showedno change, or perhaps an in-
crease, of OMP + ORNs in the OE of subjects with SZ. Together, these
findings suggest that decreased c-CSPG + ORN densities reflect reduced
CSPG expression in mature ORNs, rather than a decrease of mature
ORNs. This reduction may be due to decreased synthesis and/or failure
of these cells to fully transition to a mature pattern of CSPG expression.
A significant increase of the p-CSPG + ORN/CSPG+ basal cell ratio,
consistent with increased ratio of immature ORN/basal cells reported
by Arnold et al. (2001), supports the latter possibility and may offer a
clue on a potential contributing mechanism. As mentioned above, cell
surface CSPG expression in NSCPs is needed for cell differentiation and
maturation, mediated by interactions with growth factors (Sirko et al.,
2010). Altered p-CSPG + ORN/CSPG+ basal cell ratio in SZ may
reflect a disruption of this process, and thus ORN's failure to transition
from p-CSPG to a mature c-CSPG expression patterns. Overall, these
findings add to evidence for a disruption of OE cell lineage in SZ and
raise the possibility that abnormal CSPG expression may contribute to
such disruption. It should be recognized, however, that while the dis-
crepancy between c-CSPG-ORNs decreases in this study and normal
density of OMP + ORNs previously reported in the same subject cohort
(Arnold et al., 2001) indicates reduced CSPG expression in these neurons,
results from the 2001 study do not allow to unambiguously interpret in-
creased ratios of pCSPG + ORNs/CSPG+basal cells in SZ as altered CSPG
expression in immature ORNs and basal cells.

On a speculative level, we postulate that aberrant CSPG expression
in ORNsmay disrupt ORN axonal outgrowth and guidance, as suggested
by preclinical studies (Clarris et al., 2000). CSPGs, and versican in
particular, promote axon outgrowth (Wu et al., 2004; Maeda, 2010;
Klausmeyer et al., 2011). CSPGs have been shown to play a key role
in guiding ORN axons across the lamina propria and through the lamina
cribrosa, and eventually forming bundles segregated by odor specificity
and reaching odor specific glomeruli in the olfactory bulb (Gonzalez
and Silver, 1994; Yoshihara and Mori, 1997; Tisay and Key, 1999;
Belluscio and Katz, 2001; Hayar et al., 2004). It is conceivable that
CSPG abnormalities inmaturingORNsmay impact on axonal outgrowth
and guidance resulting in mismatched and/or disorganized synaptic
formation between the OE and the olfactory bulb. This phenomenon
may contribute robust olfactory deficits detected in subjects with SZ
(Kopala et al., 1993; Moberg et al., 1999; Brewer et al., 2001; Atanasova
et al., 2008).

Caution in interpreting these results is necessary given the small
sample size (9 normal control and 10 SZ subjects for the group compar-
ison study). Although the sample size in this study is small, it is compa-
rable to a similar published report using postmortem OE samples from
SZ (13) and control (10) subjects (Arnold et al., 2001).

5. Conclusions

In summary, these results show CSPG abnormalities in the OE of SZ
subjects. Given the role that CSPGs play in cell differentiation and ORN
neurite outgrowth and axon guidance, altered CSPG expression may
contribute to cell lineage and olfactory identification abnormalities de-
tected in SZ (Arnold et al., 2001; Turetsky et al., 2008). These results
further suggest that CSPG pathologymay bewidespreadwithin the ner-
vous system and detectable in tissue, such as the OE, that can be
harvested by biopsy. Future studies will use this approach to test mech-
anisms of CSPG abnormalities in SZ and their association with specific
core clinical aspects of this disorder.
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