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ABSTRACT We introduce a computational method for classification of individual DNA molecules measured by an a-he-
molysin channel detector. We show classification with better than 99% accuracy for DNA hairpin molecules that differ only in
their terminal Watson-Crick basepairs. Signal classification was done in silico to establish performance metrics (i.e., where train
and test data were of known type, via single-species data files). It was then performed in solution to assay real mixtures of DNA
hairpins. Hidden Markov Models (HMMs) were used with Expectation/Maximization for denoising and for associating a feature
vector with the ionic current blockade of the DNA molecule. Support Vector Machines (SVMs) were used as discriminators, and
were the focus of off-line training. A multiclass SVM architecture was designed to place less discriminatory load on weaker
discriminators, and novel SVM kernels were used to boost discrimination strength. The tuning on HMMs and SVMs enabled
biophysical analysis of the captured molecule states and state transitions; structure revealed in the biophysical analysis was
used for better feature selection.

INTRODUCTION

Molecular classification using nanopore detectors holds
promise in biophysics and biotechnology (Akeson et al.,
1999; Kasianowicz et al., 1996; Meller et al., 2000; Meller
et al., 2001; Vercoutere et al., 2001). Such detectors use
a nanometer-scale pore to relate ionic current blockade mea-
surements to single molecule translocation (Akeson et al.,
1999; Kasianowicz et al., 1996; Meller et al., 2000) or to
capture by the pore (Vercoutere et al., 2001). Biologically
based a-hemolysin channels are elegant in this regard in that
they self-assemble in lipid bilayers (Gouaux et al., 1994;
Song et al., 1996), thereby providing inexpensive and re-
producible nanopores. The size of the a-hemolysin pore is
also optimal for DNA measurement in that single-stranded
DNA (ssDNA) translocates whereas double-stranded DNA
(dsDNA) does not, being held instead in a vestibule of the
pore (Vercoutere et al., 2001). Modifications to the a-he-
molysin channel have been examined (Bayley 2000), and
semiconductor nanopores are being developed (Li et al.,
2001).

For DNA measurements using nanopores, an important
milestone is the ability to rapidly identify individual bases or
basepairs in single DNA molecules. One end of double-
stranded DNA (dsDNA) can be captured by the a-hemolysin
pore and held for an extended period of time (Vercoutere
et al., 2001). Extensive characterization of the ionic current
blockade associated with such an event is thus made

possible. In this report, we show that a nanopore detector
coupled with machine learning methods can discriminate
with high accuracy between DNA hairpins that differ in only
one basepair.

In our nanopore signal analysis, an HMM is used to
extract a feature vector from each blockade example. Hidden
Markov Models (HMMs) (Chung et al., 1990; Chung and
Gage, 1998; Colquhoun and Sigworth, 1995) can character-
ize current blockades by identifying a sequence of sub-
blockades as a sequence of state emissions. HMMs have
also been used to estimate state transition and emission
probabilities on sequential data in more general contexts,
including genomic analysis (Krogh et al., 1994; Stormo,
2000) and voice recognition (Jelinek, 1997). The parameters
of an HMM are usually estimated using a method called
Expectation/Maximization (Durbin, 1998). Although HMMs
can be used to discriminate among several classes of input,
multiclass computational scalability tends to favor their use
as feature extractors. In particular, HMMs are well suited to
extraction of aperiodic information embedded in stochastic
sequential data. Support Vector Machines (SVMs) are then
used to classify the feature vectors (for a single blockade
event) obtained by the HMM. SVMs are fast, easily trained
discriminators (Vapnik, 1999; Burges, 1998). Given a train-
ing set of feature vectors, some labeled positive, some
labeled negative, SVM training produces an optimized
hyperplane that separates the clusters of positives and
negatives. Implicit in this is a mapping of feature vectors
to points in a higher dimensional space, together with
a notion of distance between those points. The distance
properties are determined by the choice of kernel in the
SVM. Such generality permits strong discrimination,
whereas the structural risk minimization that underlies the
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SVM formulation helps to prevent over-fitting (Vapnik,
1999).

METHODS

Nanopore implementation

Each experiment was conducted using onea-hemolysin channel inserted into
a diphytanoyl-phosphatidylcholine/hexadecane bilayer (Fig. 1), where the
bilayer was formed across a 20-micron diameter horizontal Teflon aperture
(Vercoutere et al., 2001). The bilayer separates two 70-mL chambers
containing 1.0 M KCl buffered at pH 8.0 (10 mM HEPES/KOH). A
completed bilayer between the chambers was indicated by the lack of ionic
current flow when a voltage was applied across the bilayer (using Ag-AgCl
electrodes). Once the bilayer was in place, a dilute solution of a-hemolysin
(monomer) was added to the cis chamber. Self-assembly of the a-hemolysin
heptamer and insertion into the bilayer results in a stable, highly reproducible,
nanometer-scale channel with a steady current of 120 pA under an applied
potential of 120 mV at 238C (60.18C using a Peltier device). Once one

channel formed, further pores were prevented from forming by thoroughly
perfusing the cis chamber with buffer. Molecular blockade signals were then
observed by mixing analytes into the cis chamber.

DNA hairpin design

The nine basepair hairpin molecules examined in this study share an eight
basepair hairpin core sequence, to which we attached one of the four
permutations of Watson-Crick basepairs that may exist at the blunt end
terminus, i.e., 5-G�C-39, 59-C�G-39, 59-T�A-39, and 59-A�T-39. These are
denoted 9GC, 9CG, 9TA, and 9AT. The sequence of the 9CG hairpin was 59
CTTCGAACGTTTTCGTTCGAAG 39. The basepairing region is under-
lined. An eight basepair DNA hairpin with a 59-G�C-39 terminus was also
tested (see Fig. 2). This control molecule is denoted 8GC. The DNA
oligonucleotides were synthesized using an ABI 392 Synthesizer, purified
by PAGE, and stored at �708C in TE buffer. The prediction that each hairpin
would adopt one basepaired structure was tested and confirmed using the
DNA mfold server (http://bioinfo.math.rpi.edu/mfold/dna/form1.cgi), which
is based in part on data from SantaLucia (1998).

FIGURE 1 Examination of DNA duplex ends using a voltage-pulse routine. An observation cycle for a 9GC hairpin blockade event is shown. At the start of
each voltage cycle the voltage across the pore is reset to 0 mV. A potential difference of 120 mV (trans side positive) is then applied for 250 ms, initially
resulting in an open channel current of 120 pA (image A, with arrow indicating the open channel region of the current trace). In time, duplex DNA is pulled
into the pore by the applied potential causing an abrupt current decrease (image B, with arrows and solid bar delineating region of blockade signal). After the
250-ms forward bias, the potential is briefly reversed (�40 mV, trans side) then set at 0 mV for 50 ms which clears the pore (image C, with arrow indicating
the voltage reversal spike). The cycle is then repeated to examine the next molecule. Only the first 100 ms of blockade signal is used to identify each current
signature. In the diagrams, the stick figure in blue is a two-dimensional section of the a-hemolysin pore derived from x-ray crystallographic data (Song et al.). A
ring of lysines that circumscribe a 1.5-nm-limiting aperture of the channel pore is highlighted in red. A ring of threonines that circumscribe the narrowest, 2.3-
nm-diameter section of the pore mouth is highlighted in green. In our working model, the four dT hairpin loop (yellow) is perched on this narrow ring of
threonines, suspending the duplex stem in the pore vestibule (Vercoutere et al., 2001, Winters-Hilt et al., in preparation). The terminal basepair (brown) dangles
near the limiting aperture. The structure of the 9bp hairpin shown here was rendered to scale using WebLab ViewerPro. See the Discussion section for further
details on the mechanism behind the blockade signals.
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Sampling protocol

The solution sampling protocol used periodic reversal of the applied
potential to accomplish the capture and ejection of single DNA molecules
(added to the cis chamber in 20 mM concentrations). The voltage toggling
protocol was based on a 300-ms cycle: 250 ms at ;120 mV for capture/
measurement, followed by 1 ms at �40 mV for ejection, and then 49 ms
at 0 mV for reset. The 300-ms voltage-toggle cycle was chosen to
accommodate signal acquisition of the first 100 ms of blockade signal (as
shown in Fig. 1). If less than 100 ms of blockade signal was acquired before

the ejection phase of the cycle, the signal was ignored. The effective duty
cycle for the 100-ms blockade measurements was one reading every 0.4 s.

Signal acquisition

Ionic current was filtered at 10 kHz bandwidth using an analog low pass
Bessel filter and recorded at 20 ms intervals using an Axopatch 200B
amplifier (Axon Instruments, Foster City, CA) coupled to an Axon Digidata
1200 digitizer. A time-domain finite state automaton (FSA; Cormen et al.,
1989) with eight states performed the identification and acquisition on the
first 100 ms of blockade signal (Acquisition Stage, Fig. 3). Two states,
sequentially connected, were used for resetting and initializing the FSA.
Transition between the two states, from reset-start to reset-ready, was ac-
complished upon measuring a short section of acceptable baseline current
(200 ms). An abrupt drop in current to 70% residual current, or less, then
triggered transition from the reset-ready state to the signal-active state. From
the signal-active state, processing advanced to one of two states (good- and
bad-end-level states) according to an end-of-signal profile. The profile rule
simply required that the last end-level-range observations had to have cur-
rent above minimum-end-level-value. Satisfying the rule led to the good-
end-level state, otherwise the bad-end-level state was reached. If there was
a normal return to baseline (good-end-level state), or a signal-blockade scan
exited due to truncation (bad-end-level state), the signal complete state
was reached, otherwise further scanning was performed. Further scanning
involved transition through the internal active state, where local signal
properties, observation less than maximum-cutoff and observation greater
than minimum-cutoff, were used to decide whether to exit (to the reset-end
state) or continue the blockade scan (return to the signal-active state).
Similar to the local blockade signal properties that determined how to
transition from the internal-active state, transition to the acquire-signal state
from the signal-complete state was based on several global properties of the
signal trace: maximum blockade sample less than maximum-cutoff and
greater than min-max-internal, minimum blockade sample greater than
minimum-cutoff and less than max-min-internal, and signal duration greater
than or equal to minimum-duration.

The time-domain FSA was tuned so that it would rarely miss signal
acquisitions (low false negatives) by allowing for large numbers of mistaken
signal acquisitions (i.e., large false positives). The acquisition bias was
accomplished by imposing constraints on valid starts that were weak while
maintaining constraints on valid interior and ends that were strong. The bias
toward high sensitivity permitted tuning on FSA parameters with a simplified
objective. For the blockade signatures studied, the FSA parameters for max-
imal signal acquisition shared a broad, common range, allowing one set of
FSA parameters (a single generic FSA) to acquire all signals. After tuning,
the FSA parameters were: minimum-start-drop ¼ 70%, maximum-cutoff ¼
170%, minimum-cutoff ¼�60%, end-level-value ¼ 95%, max-min-internal
¼ 55%, min-max-internal ¼ 70%, end-level-range ¼ 10 (at the 20 ms
sampling this leads to a minimum 200 ms interval between blockade
acquisitions), and maximum-duration ¼ 100 ms ¼ minimum-duration (for
100-ms truncation on acquired signals). Parameters expressed in terms of
percentages refer to current measurements normalized with respect to the
average baseline (determined by a 1024-element baseline sampling on the
contiguous baseline segment nearest and before the blockade signal).

Signal preprocessing

Each 100-ms signal acquired by the time-domain FSA consisted of
a sequence of 5000 subblockade levels (with the 20-ms analog-to-digital
sampling). Signal preprocessing was then used for adaptive low-pass
filtering. For the data sets examined the preprocessing led to length com-
pression on the sample sequence from 5000 to 625 samples (later HMM
processing then required construction of a dynamic programming table with
only 625 columns). The signal preprocessing makes use of an off-line
wavelet stationarity analysis (Diserbo et al., 2000). The stationarity analysis
(Off-line Wavelet Stationarity Analysis, Fig. 3) was based on a training set

FIGURE 2 Typical blockade signatures for each of the five classes of
DNA hairpins. The nine basepair hairpins differ in only their terminal
basepairs. The variants were chosen to include the two possible Watson-
Crick basepairs and the two possible orientations of those basepairs at the
duplex ends. The core 8bp stem and 4dT loop were identical with the primary
sequence 59-TTCGAACGTTTTCGTTCGAA-39, where the basepaired
compliments are underlined. The eight basepair hairpin that was used as
a control had the primary sequence 59-GTCGAACGTTTTCGTTCGAC-39.
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of blockade signals from each of the different classes of blockades to be
discriminated.

A 1024-sample Haar wavelet transform (Nievergelt, 1999) was applied to
the time-domain information at the start of each blockade in the training set.
The wavelet-domain components were then completed so that a wavelet-
domain FSA could easily reference a ‘‘moving’’ wavelet transform (i.e.,
the Haar transform with forward-shifting time-origin in the 5000-element
sequence). The FSA scanning operation over wavelet components was then
defined. Half the scanning data consisted of values from a 2N-point moving
average (withN equal to a specified order of wavelet component), whereas the
other half of the data consisted of the order-Nwavelet difference coefficients.
The moving sum and difference wavelet components for a given order
provided a dual track of wavelet states. For the data analyzed, the information
in the difference coefficients was only used when the difference coefficient
was very large, indicating a transitionbetweenblockade levels, or the start/end
transition of the blockade itself. The dual track of wavelet states was thereby
reduced to a single track, consisting of a sequence of sum wavelet components
with the occasional occurrence of an overriding difference-wavelet compo-
nent. (The single track override also provided the framework for incorporating
fine-scale feature extraction, such as spike detection, from the time-domain
FSA, but such feature passing was not used in the results that follow.)

A tuning process was used by the wavelet-domain FSA to select the
optimal order of wavelet component to use as the basis for the signal
quantization. The tuning method employed an emergent grammar heuristic on
the single-track-compressed sequence of states. The method made use of the
property that, as wavelet order was decreased, the difference wavelet override
was triggered more easily—which eroded the distinctive transition structure
seen in blockade signals. The lowest order that retained a distinctive transition
structure, or grammar, was then used as the basis for the quantization. For the
data examined this corresponded toN¼ 3 for an eightfold reduction in HMM
processing. Blockade binning statistics on the sum wavelet components (at
N¼ 3) were calculated for the different classes of channel blockade. Clearly
discernable sum-wavelet characteristics were possible with a blockade state
grayscale that ranged in 1% increments of the open-channel current. The 1%
gray scale and N ¼ 3 wavelet-order were used as the basis for state
quantization by the HMM in the processing stages that follow.

Feature extraction

Hidden Markov Models (Durbin 1998) provide a statistical framework for
sequences of observations obeying stationary Markov statistics. The
‘‘hidden’’ part of the HMM consists of the labelings, si, for each observation,

and zi, where the index i labels the observation. The stationary statistics for
a first-order HMM are described in terms of emission probabilities, eni ¼
p(Zj ¼ zi j Sj ¼ n), transition probabilities, anm ¼ p(Sj ¼ m j S(j�1) ¼ n).
(The indexing on j is left in for clarity on the transition probability definition;
from stationarity the expressions are valid for any choice of j.) Given the
above stationarity statistics, the probability for a sequence of L observations
can be expressed as p(Z0 ¼ z0, . . . , Z(L�1) ¼ z(L�1)) ¼ Skfkibki, where fki
are the forward probabilities, fki ¼ p(Z0 ¼ z0, . . . , Zi ¼ zi, Si ¼ k), and bki
are the backward probabilities, bki¼ p(Z(iþ1)¼ z(iþ1), . . . , Z(L�1)¼ z(L�1) j
Si¼ k). The forward and backward variable can be recursively defined by fki
¼ abkeki fb(i�1) and bki ¼ akbeb(iþ1) bb(iþ1) (Durbin 1998), where we use
the Einstein convention of implied summation over repeated Greek letter
indices. The recursive definitions on forward and backward variables permit
efficient computation of observed sequence probabilities using dynamic
programming tables.

The recursive algorithm for the most likely state path given an observed
sequence (the Viterbi algorithm) is expressed in terms of vki, the probability
of the most probable path that ends with observation Zi ¼ zi, and state Si ¼
k. The recursive relation is vki ¼ maxnfekiankvn(i�1)g, where the maxnf. . .g
operation returns the maximum value of the argument over different values
of index n, and the boundary condition on the recursion is vk0 ¼ ek0pk. The
Viterbi path labelings are then recursively defined by (Si j S(iþ1) ¼ n) ¼
argmaxkfvkiakng, where the argmaxnf. . .g operation returns the index n with
maximum value of the argument. The evaluation of sequence probability
(and its Viterbi labeling) take the emission and transition probabilities as
a given. Estimates on the emission and transition probabilities are obtained
by an Expectation/Maximization (EM) algorithm (Durbin, 1998; commonly
referred to as the Baum-Welch algorithm in the context of HMMs).

An HMM was used to remove noise from the acquired signals, and to
extract features from them (Feature Extraction Stage, Fig. 3). The HMM was
implemented with 50 states, corresponding to current blockades in 1%
increments ranging from 20% residual current to 69% residual current. The
HMM states, numbered 0–49, corresponded to the 50 different current
blockade levels in the discrete sequences that it processed. The state
emission parameters of the HMM were initially set so that the state j, 0\¼ j

\¼ 49 corresponding to level L ¼ j þ 20, could emit all possible levels,
with the probability distribution over emitted levels set to a discretized
Gaussian with mean L and unit variance. All transitions between states were
possible, and initially were equally likely.

Each blockade signature was denoised by five rounds of Expectation-
Maximization (EM) training on the parameters of the HMM. During this
estimation, the state emission distribution of each state j was constrained

FIGURE 3 Machine learning strategy. Sig-
nal acquisition was performed using a time-
domain, thresholding, Finite State Automaton.
This was followed by adaptive prefiltering
using a wavelet-domain Finite State Auto-
maton. Feature extraction on those acquired
channel blockades was done by Hidden
Markov Model processing; and classification
was done by Support Vector Machine. The
optimal SVM architecture is shown for classi-
fication of molecules 9CG, 9GC, 9TA, 9AT,
and 8GC. The linear tree multiclass SVM
architecture benefits from strong signal skim-
ming and weak signal rejection along the line
of decision nodes. Scalability to larger multi-
class problems is possible inasmuch as the
main on-line computational cost is at the
Hidden Markov Model feature extraction
stage. The accuracy shown is for single-species
mixture identification upon completing the
15th single molecule sampling/classification
(in ;6 s on hardware described in Methods).
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to remain a Gaussian with mean j þ 20; only the variance was adjusted. The
50 transition parameters for each state were freely readjusted, but a pseudo-
count of three was used to smooth the estimations. After the EM itera-
tions, 150 parameters, described below, were extracted from the HMM.
The resulting parameter vector, normalized such that (nonzero) vector
components sum to unity, was used to represent the acquired signal in
discrimination at the later Support Vector Machine stages.

The 150 parameters extracted from the HMM consisted of three sets of 50
parameters each. The parameters were derived from the HMM’s emission
and transition probabilities and the HMM’s Viterbi-path statistics (Durbin
1998). In the first set, parameter lj, 0 \¼ j\¼ 49, was the a posteriori
estimated fraction of the time the signal was in state j, estimated using the
Viterbi path (upon completion of the EM iterations). In the second set,
parameter sj, 0 \¼ j\¼ 49, was the variance of the Gaussian emission
distribution for state j (normalized by dividing by the sum over sj).

To define the third parameter set (tj, 0\¼ j\¼ 49), we began with the
two states in the first parameter set that had the largest locally maximal
a posteriori probabilities. The posterior probability for state k was said to be
locally maximal if it was greater than the posterior probabilities at either
state k � 1 or state k þ 1. The third parameter set then consisted of
a weighted combination of the outgoing transition probabilities from the two
states with largest locally maximal posterior probabilities. The weighting on
their transition probability combination was their posterior probabilities (lj).
This reduced a 50 3 50 matrix of transition parameters to 50 parameters,
although preserving information about the distinctive bilevel toggling be-
tween major blockade levels that was characteristic of the data.

The normalization on each of the three sets of 50 parameters was unity
before the overall feature vector normalization. Feature vector normalization
then followed with division by 3. The feature vector terms thus described
a (nonzero) partition of unity, a domain that was needed for SVM
discrimination that used information divergences (in addition to discrimi-
nation based on the usual geometric distance measures). The parameters
were nonzero due to the Bayesian origin of the probabilities. Although
mixture kernels were considered over the three sets of parameters
themselves (without the overall normalization), they generally did not
perform as well as the best nonmixture kernels, and will not be discussed in
what follows.

Classification training

The normalized feature vectors obtained from the feature extraction stage
were classified using binary Support Vector Machines (SVMs). Binary
SVMs are based on a decision-hyperplane heuristic that incorporates
structural risk management by attempting to impose a training-instance void,
or ‘‘margin,’’ around the decision hyperplane.

Feature vectors are denoted by xik, where index i labels the M feature
vectors (1 # i # M) and index k labels the N feature vector components (1
# i # N). For the binary SVM, labeling of training data is done using label
variable yi ¼ 6 1 (with sign according to whether the training instance was
from the positive or negative class). For hyperplane separability, elements of
the training set must satisfy the following conditions: wbxib � b $ þ1 for i
such that yi ¼ þ 1, and wbxib � b#�1 for yi ¼ �1, for some values of the
coefficients w1, . . ., wN, and b (again using the convention of implied sum on
repeated Greek indices). This can be written more concisely as: yi(wbxib �
b) � 1 $ 0. Data points that satisfy the equality in the above are known as
‘‘support vectors’’ (or ‘‘active constraints’’).

Once training is complete, discrimination is based solely on position
relative to the discriminating hyperplane: wbxib � b ¼ 0. The boundary
hyperplanes on the two classes of data are separated by a distance 2/w,
known as the ‘‘margin,’’ where w2 ¼ wbwb. By increasing the margin
between the separated data as much as possible, the optimal separating
hyperplane is obtained. In the usual SVM formulation, the goal to maximize
w�1 is restated as the goal to minimize w2. The Lagrangian variational
formulation then selects an optimum defined at a saddle point of L(w,b;a) ¼
(wbwb)/2� agyg(wbxgb� b)� a0, wherea0 ¼Sgag,ag$ 0 (1# g#M).

The saddle point is obtained by minimizing with respect to fw1,. . . ,wN,bg
and maximizing with respect to fa1,. . .,aMg. If yi(wbxib � b) � 1$ 0, then
maximization on ai is achieved for ai ¼ 0. If yi(wbxib � b) � 1 ¼ 0, then
there is no constraint on ai. If yi(wbxib � b) � 1\ 0, there is a constraint
violation, and ai ! ‘. If absolute separability is possible the last case will
eventually be eliminated for all ai, otherwise it is natural to limit the size of ai
by some constant upper bound, i.e., max(ai) ¼ C, for all i. This is
equivalent to another set of inequality constraints with ai # C. Introducing
sets of Lagrange multipliers, jg and mg (1 # g # M), to achieve this, the
Lagrangian becomes: L(w,b;a,j,m) ¼ (wbwb)/2� ag[yg(wbxgb� b) þ jg]
þ a0 þ j0C�mgjg, where j0 ¼Sgjg, a0 ¼Sgag, and ag $ 0 and jg $ 0 (1
# g # M).

At the variational minimum on the fw1, . . . , wN, bg variables, wb ¼
agygxgb, and the Lagrangian simplifies to: L(a) ¼ a0 � (adydxdb agygxgb)/
2, with 0 # ag # C (1 # g # M) and agyg ¼ 0, where only the variations
that maximize in terms of the ag remain (known as the Wolfe
Transformation). In this form the computational task can be greatly
simplified. By introducing an expression for the discriminating hyperplane:
fi ¼ wbxib � b ¼ agygxgbxib � b, the variational solution for L(a) reduces
to the following set of relations (known as the Karush-Kuhn-Tucker, or
KKT, relations): i), ai ¼ 0$ yifi $ 1, ii), 0\ai\C$ yifi ¼ 1, and iii), ai
¼ C$ yifi # 1. When the KKT relations are satisfied for all of the ag (with
agyg ¼ 0 maintained) the solution is achieved. (The constraint agyg ¼ 0
is satisfied for the initial choice of multipliers by setting the a-values
associated with the positive training instances to 1/N(þ) and the a-values
associated with the negatives to 1/N(�), where N(þ) is the number of
positives and N(�) is the number of negatives.) Once the Wolfe
transformation is performed it is apparent that the training data (support
vectors in particular, KKT class (ii) above) enter into the Lagrangian solely
via the inner product xibxjb. Likewise, the discriminator fi, and KKT
relations, are also dependent on the data solely via the xibxjb inner product.
Generalization of the SVM formulation to data-dependent inner products
other than xibxjb are possible and are usually formulated in terms of the
family of symmetric positive definite functions (reproducing kernels)
satisfying Mercer’s conditions (Vapnik, 1999).

Binary SVMs were grouped into a classifier tree and trained to perform
multiclass discrimination on five classes of DNA hairpin as shown in
classification stages I–IV in Fig. 3. Tuning on the multiclass SVM
architecture was done for performance optimization. Separate tuning was
done on the polarization strength used in the data cleaning (see
Discriminator Implementation Section). Tuning was also done on the
SVM internals, over families of kernels based on regularized distances
(Jaakkola and Haussler, 1998) and regularized information divergences. In
the former case, the squared Euclidean distance between feature vectors x

and y, d2(x,y) ¼ Sk(xk–yk)2, also known as the squared l2-norm on (x–y),
[l2(x–y)]2 ¼ d2(x,y), is associated with the Gaussian kernel: KG(x,y) ¼
exp(�d2(x,y)/2s2). In the latter case, the information divergence (relative
entropy) between probability vectors x and y, D(xky) ¼ Skxk log(xk/yk),
can be associated with the ‘‘Entropic kernel’’: KE(x,y) ¼ ex-
p(�[D(xky)þD(ykx)]/2s2). The terminating SVM node of the classifier
tree (stage IV in Fig. 3) used the Entropic kernel. The other nodes of the
classifier tree used a regularized-distance type kernel, the ‘‘Indicator
kernel,’’ based on the square root of the l1-norm, where l1(x–y) ¼ Skjxk–ykj,
with kernel KI(x,y) ¼ exp(��l1(x–y)/2s2). The kernels considered were

not restricted byMercer’s conditions. Instead, attention was focused on

exploring kernels based on regularized information divergences as

a parallel to the very successful kernels based on regularized distances

(such as the Gaussian kernel). The Gaussian kernel (which satisfies

Mercer’s conditions) was outperformed in all cases studied by the

Entropic and Indicator kernels.

Discriminator implementation

The SVM discriminators are trained by solving their KKT relations using the
Sequential Minimal Optimization (SMO) procedure (Platt, 1998). The
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method begins by selecting a pair of Lagrange multipliers, fa1,a2g, where at
least one of the multipliers has a violation of its associated KKT relations
(for simplicity it is assumed in what follows that the multipliers selected are
those associated with the first and second training instances: fx1,x2g). The
SMO procedure then ‘‘freezes’’ variations in all but the two selected
Lagrange multipliers, permitting much of the computation to be circum-
vented by use of analytical reductions. By using the constraint agyg ¼ 0 to
eliminate references to a1, and performing the variation on a2, @L(a)/@a2 ¼
0 leads to the following update rule: a2

new ¼ a2
old � y2((f1�y1) � (f2�y2))/

h. Once a2
new is obtained, the constraint a2

new # C must be reverified in
conjunction with the agyg ¼ 0 constraint. If the L(a) maximization leads to
a a2

new that grows too large, the new a2 must be ‘‘clipped’’ to the maximum
value satisfying the constraints. For example, if y1 6¼ y2, then increases in a2
are matched by increases in a1. So, depending on whether a2 or a1 is nearer
its maximum of C, we have max(a2) ¼ argminfC; a2 þ (C � a1)g. See
(Platt 1998) for other boundary conditions and details on the b-value update.

A Chunking (Osuna et al., 1997; Joachims, 1998) variant of SMO was
employed to manage the large training task at each SVM node. The
multiclass SVM training was based on over 10,000 blockade signatures for
each DNA hairpin species. The data cleaning needed on the training data
was accomplished by an extra SVM training round. The initial SVM training
that resulted was interpreted in terms of the data polarization around its
discriminating hyperplane, with stronger data calls defined as those further
away from the hyperplane. The polarized data was separated, using a tuned
cutoff, into strong positives, strong negatives, and weak signals. The SVMs
were then retrained with strong positives as the new positives and the
remainder (including weak positives) as new negatives. This served to shift
weak positive (and negative) nondiagnostic noise to the negatives. The
retrained SVMs were then biased toward use for high-confidence calling on
the positives.

Testing protocol

The test data consisted of over 2000 blockade signals for each DNA hairpin
species and was drawn from experiments that were run on days (and
nanopores) different from those used to acquire the training data. Testing on
single-species mixture calling was done directly, with classification on
observations from single-species solutions in the cis chamber. One goal of
the study was to find how many classification attempts were required to
classify the single-species solutions with very high confidence. Scoring was
possible by tracking the known labels on the test data. Scoring was similarly
possible in the context of in silico five-way mixtures (where an equal mix of
the five species was considered). Scoring with comparable permutations of
the train/test day separations (;80% of the days on training, 20% of the days
on testing) established roughly the same performance. (Assessing the
performance when training and testing are done on different days is
important. When train/test data was split by random selection without regard
to day of operation scoring improved greatly, but this protocol does not
reflect a realistic usage scenario.) Sequential group calling was also
performed, where groups (sequential packets) of blockade signals were
classified as a group. The sequential group caller was based on majority-vote
(with rejection on tie), and used a 10-call group size.

For true mixture test data, tens of thousands of blockade signatures were
acquired, also from different days. For true mixture tests some of the train
data was used for an added calibration. An extra calibration was required
because true mixtures of hairpins are sensitive to the different (entropic)
acceptance rates and (discriminator) rejection rates by the nanopore
instrument for the different hairpin species.

Real-time operation

One of the computational goals was real-time signal calling, here taken to
mean signal calling in less time than the duration of the signal itself. This
goal has practical use in detector operation in that extensive data caching is
not needed (detector data outflow does not exceed the throughput of the

signal processing pipeline). Under the signal sampling used here (100-ms
blockades acquired, 400-ms effective duty cycle) it was possible to operate
signal calling ‘‘real-time’’ with an inexpensive PC (less than $1000) that had
an 800 MHz Pentium III motherboard, and 512M RAM. The computer ran
under Linux (a free Unix-type operating system), and used the C and Perl
software packages. (The computer was part of a five-element computer
network, comprised of computers with similar computational power, which
was used to manage the off-line SVM training. Job control was directly
managed using remote shell commands.)

RESULTS

Using the testing protocol described above, we were able to
determine which of five species of DNA hairpin had been
added to the cis chamber of the nanopore device. This was
achieved in less than 6 s with 99.6% accuracy. The five
species of DNA hairpins consisted of a control hairpin and
four hairpins that differed only in their terminal basepairs
(Fig. 2). These results were for test data drawn from
nanopores established on days other than those used to
generate the training data. Fig. 4 shows the scoring for
multiple observation days, with the number of single
molecule sampling/classifications ranging from 1 to 30. At
75% weak signal rejection, ;15 classification attempts were
needed to classify the type of single-species solution being
sampled; final solution classification was obtained in 6 s on
average. If training and testing were done on data drawn
from the same set of days of nanopore operation, albeit
different samples, 99.9% calling was obtained with 15%
rejection, and throughput was about one call every half
second.

Identification of two hairpins in mixtures was also
attempted. Fig. 5 shows the percentage of 9TA classification
in a 3:1 mixture of 9TA to 9GC. (Although the mixture
preparations are estimated to be 610% of their stated
mixture ratios, calibration and testing of aliquots from the

FIGURE 4 Accuracy for classification of single-species solutions of 9TA,
9GC, 9CG, 9AT, and 8GC. By the 15th classification attempt single-species
solutions can be identified with high accuracy (inset).
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same mixture compensates for such common error.) The
assay on 9TA concentration asymptotes to 75% 6 1%, con-
sistent with the 3:1 ratio, and the assay error drops to 1%
after ;100 individual molecule classification attempts
(completed in 40 s).

HMM/EM characterization on the five classes of hairpin
signatures revealed the existence of two major conductance
blockade levels, one minor level intermediate between them,
and one to three other statistically relevant levels depending
on the hairpin. By examining the transition probabilities
between the various levels it was found that blockades
typically began in the less common intermediate level and
from there almost always transitioned to the greater
conductance blockade level.

DISCUSSION

Calibration and feature extraction by HMM

The HMM-based profiling we used for feature extraction
provided better discrimination than wavelet-based profiling
(see Vercoutere et al., 2001). The improved signal resolution
on channel blockades with HMMs is not new (Chung and
Gage, 1998). (The wavelet-domain FSA that generates the
blockade-level profiling does have the advantage, however,
of being hundreds of times faster than the HMM processing
in this instance.) The better performance with HMM
processing indicated that signal analysis benefited from
parsing structural information in the stochastic sequence
of blockade-states. Parsing structures in stochastic data is
a familiar problem in gene prediction, where Hidden Markov
Models (HMMs) have been used to great advantage (Krogh
et al., 1994; Stormo, 2000). Typically with gene prediction,
however, HMMs are operated at a high level that parses
coding starts and stops, etc., with feature scoring on starts
and stops performed at a lower level by neural net or related
statistical methods. For channel current analysis, the HMM
extracts structural features without identifying them, effec-

tively operating at the lower level, and used with EM
(Durbin, 1998), accomplished denoising on the blockade-
state structure (Chung and Gage, 1998) before extracting
those features.

A single HMM/EM process was used to perform the
feature extraction in our experiments. If separate HMMs
were used to model each species, the HMM/EM processing
could also be operated in a discriminative mode. This
requires multiple HMM/EM evaluations (one for each
species) on each unknown signal as it is observed. Increased
computational burden would thus be added at the worst
place: the expensive feature extraction stage. For future
work, semiscalable, species-specific processing is being
considered for the HMM/EM in an indirect manner, by using
prior HMM/EM characterization of the species to identify
a reduced set of features relevant to each species. The
reduced feature set relates to physical characterizations of the
captured molecule, such as level states, their time constants,
and allowed level transitions.

Samples using blockade signatures of longer duration
(before truncation) require fewer rejections to achieve the
same signal classification accuracy. A situation that would
probably favor longer signal samples than the 100 ms used
here was seen in attempts to read more of the DNA hairpin
end-sequence than the terminal basepair. Preliminary in-
dications are that the penultimate basepairs can probably also
be identified using longer signal samples (17 species with
control). Scaling the classification task from 5 to 17 species
may also require refinements to the feature extraction, such
as the species-specific HMM feature extractions mentioned
above.

Tests with mixtures of hairpins required an added
calibration due to the nanopore’s different acceptance rates
for different hairpins (i.e., there are different free energy
barriers to capture). This finding was consistent with a model
for hairpin capture (see below) in which hairpins are
captured by an entropically accessible binding site. It is also
in agreement with the brief intermediate level state typically
observed at the start of the signal blockades.

Classification by SVM hierarchy

Novel SVM kernels were used to obtain the results described
here, which are based on a generalization from regularized
square-distances to regularized information divergences.
One of the kernels (the Entropic kernel at Classification
Stage IV in Fig. 3) used the Kullback-Leibler information
divergence (Cover and Thomas, 1991). (Entropic-type
kernels may offer advantages when all or part of the feature
vector can be interpreted as a probability vector.) However,
if the positive and negative feature vector clusters are badly
overlapped, binary SVM discrimination will be poor no
matter what kernel is used. In such a circumstance, if a better
choice of features cannot be obtained, rejection of low
confidence data by the SVM can still be done. The SVM

FIGURE 5 Classification on a 3:1 mixture of 9TA and 9GC hairpin
molecules as a function of single molecule acquisitions. The 3:1 mol ratio is
accurately identified within 1% error after 100 observations (;40 s).
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confidence is a function of the distance from the feature-
vector point-mapping to the separating (discriminatory)
hyperplane, where greater distance represents higher confi-
dence in discriminating between two signals.

Multiclass SVM discrimination can be obtained by
grouping binary SVMs into a decision-tree architecture
(Vapnik, 1999; Bredensteiner and Bennett, 1999) using
rejection of low confidence data at earlier stages to postpone
decisions to more appropriate later stages. All-in-one
multiclass SVM optimizations are also possible (Li et al.,
2001), but were not used here. Decision trees of SVMs offer
good multiclass scaling properties, good noise tolerance, and
low susceptibility to overtraining, but most importantly, once
trained they are highly accurate and perform discriminations
very quickly.

The a-hemolysin channel in the nanopore detector must
be reestablished on a day-to-day basis. As a result, the class
training data that would normally map to a single cluster is
shattered into a cluster of clusters, with greater dispersion
and class overlap in the SVM feature vector space. SVM
classification in such circumstances faces weaker training

convergence and poorer signal calling. For the five classes
considered here, a passive stabilization approach was used
that optimized the kernels for high rejection. More active
(computational) stabilization methods are being studied for
larger multiclass problems and improved accuracy overall.
The active stabilization methods being studied include use of
reference signals (reference molecules mixed in solution)
to actively track the state of the instrumentation. One
stabilization approach being considered involves associative
memory extensions to the feature vectors, with discrimina-
tion then operating in a higher order SVM space. Sta-
bilization and alternative discrimination methods, such as
boosting (Freund et al., 1999), could also be considered.

Blockade mechanism

Two forthcoming manuscripts (DeGuzman et al., in
preparation, and Winters-Hilt et al., in preparation) will
focus on details of the current blockade mechanism, so only
a preliminary description is given here (Fig. 6). The
intermediate level (IL) conductance state initiates most

FIGURE 6 Molecular mechanisms underlying the observed current transitions. a) When a 9bp DNA hairpin initially enters the pore, the loop is perched in
the vestibule mouth and the stem terminus binds to amino acid residues near the limiting aperture. This results in the IL conductance level. b) When the
terminal basepair desorbs from the pore wall, the stem and loop may realign, resulting in a substantial current increase to UL. Interconversion between the IL
and UL states may occur numerous times, or UL may convert to the LL state, c). This LL state corresponds to binding of the stem terminus to amino acids near
the limiting aperture but in a different manner from IL. d) From the LL bound state, the duplex terminus may fray, resulting in extension and capture of one
strand in the pore constriction.
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blockades and always transitions to the upper level
conductance state (UL). This is explained by binding of
the hairpin terminus to the vestibule interior (IL) followed by
desorption of the DNA from the protein wall and orientation
of the stem along the axis of the electric field (UL).
Transitions from the UL state were either back to the IL state
or to the lower level conductance state (LL). From the LL
state there were brief transitions to nearly full blockade,
denoted by S for spike conductance state. The LL and S
states are both thought to involve binding between the
hairpin’s terminal 59 base and the pore’s limiting aperture.
The brief S state behavior is explained by a terminus-fraying
event that is accompanied by extension by the terminal 39
base into the limiting aperture. Part of the evidence for this is
a strong spike (fraying) frequency correlation with the
different terminus binding energies. Asymmetric base
addition or phosphorylation (at the terminal 39 and 59
positions) is part of the evidence for the asymmetric roles for
59 binding (LL and S) and 39 fraying/extension (S).

Applications of nanopore classification

One of the key strengths of nanopore detectors is that they
analyze populations of single molecules. With signal
processing and pattern recognition, this information enables
a new type of cheminformatics based on channel current
measurements. Single molecule observations are also of
interest in biophysics; binding/conformational changes on
captured dsDNA end regions, for example, might be tracked
and understood using the nanopore blockade signal. DNA
regions away from the ends may eventually be studied in
a similar manner, using pore-translocation confinement to
reveal distinctive conductance/binding properties on those
bases threading the pore’s limiting aperture constriction.
Single molecule classifications permit a number of technical
innovations. For sequencing, the single molecule basis of
measurement may permit Sanger-type sequencing on DNA
molecules separated by capillary electrophoresis. If DNA
can be translocated slowly enough, through a limiting
aperture with dominant contributions to resistance spanning
only two or three nucleotides length (;20 Ångstroms for
ssDNA, 10 Ångstroms for dsDNA), then DNA sequencing
of a single molecule may eventually be possible. For single
nucleotide polymorphism (SNP) identification, small sample
volumes can be used, such that PCR amplification may not
be needed. With SNP identification, expression analysis and
disease identification (for individualized therapeutics) are
just a few of the possibilities. Non-PCR expression analysis
may even offer a new level of experimentation on live cells
using patch-clamp methods.

CONCLUSION

Five species of DNA hairpin were examined, four of which
differed only in their terminal basepairs. Classification of

a single 100-ms hairpin event, with no rejection, was 77%
accurate on average. Accuracy was boosted above 99% if
longer event durations were used or if multiple short events
were used with nonzero rejection. For purposes of rapid
mixture analysis, the latter approach was adopted, with
single species identification with 99.6% accuracy in 6 s and
two species mixture identification in 40 s with less than 1%
error in the majority species percentage. The signal
processing architecture that accomplished this used HMMs
for feature extraction and SVMs for classification. The
HMMs were implemented with Expectation/Maximization
and the SVMs were implemented with novel kernels. The
on-line signal processing was designed to be scalable to
hundreds of species, or more, while at the same time
performing the classification in less time than the duration of
the signal acquisition itself (100 ms). This was accomplished
on an inexpensive PC. An unconstrained training process, as
used here, has scalability complications due to rapid growth
in multiclass combinatorics, but for five species was easily
automated (on a network of five PCs). If scalability
requirements are relaxed, allowing species-specific HMM
processing for example, discrimination accuracy (or speed)
can be boosted even further. The processing architecture is
directly applicable to other channel current analysis
situations by simply retraining the machine learning
components.
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