FINITELY GENERATED FREE TETRAVALENT MODAL ALGEBRAS

Isabel LOUREIRO
C.M.A.F., 2, Av. Prof. Gama Pinto, 1699 Lisboa Codex, Portugal

Received February, 1981
Revised 20 October 1981 and 8 September 1982

The purpose of this work is to prove that the tetravalent modal algebra with a finite set of free generators is finite and to determine its cardinal number.

1. Preliminary definitions and properties

We begin with the following definition introduced by A.A. Monteiro in 1978:

1.1. Definition. A tetravalent modal algebra \((A, \wedge, \vee, \neg, \nabla, 1)\) or simply \(A\), is an equational algebra of type \((2, 2, 1, 1, 0)\) which satisfies the following axioms:

\[
\begin{align*}
(A1) & \quad x \wedge (x \vee y) = x, \\
(A2) & \quad x \wedge (y \vee z) = (z \wedge x) \vee (y \wedge x), \\
(A3) & \quad \neg \neg x = x, \\
(A4) & \quad \neg(x \wedge y) = \neg x \vee \neg y, \\
(A5) & \quad \neg x \vee \neg x = 1, \\
(A6) & \quad x \wedge \neg x = \neg x \vee \neg x.
\end{align*}
\]

It immediately follows that \(A\) is a distributive lattice [8] with least element \(0 = \neg 1\) and a De Morgan algebra [6].

We then assume that the reader is familiar with the basic notions of lattice theory.

We define the unary operator \(\Delta\) on \(A\) by \(\Delta x = \neg \neg x\).

It can be proved that the operators \(\nabla\) and \(\Delta\) satisfy the properties of a closure operator and of an interior operator respectively.

In a corresponding logic, if \(p\) is a proposition, \(\nabla p\) will mean the proposition "\(p\) is possible" and \(\Delta p\) will mean the proposition "\(p\) is necessary".

A tetravalent modal algebra is called trivial if it has only one element.

Three-valued Lukasiewicz algebras are important examples of tetravalent modal algebras [7]. We consider also the example of tetravalent modal algebra,
denoted by S_3, whose Hasse diagram and the corresponding operations are:

\[
\begin{array}{c|ccc}
 x & \sim x & \nabla x \\
\hline
0 & 1 & 0 \\
a & a & 1 \\
b & b & 1 \\
1 & 0 & 1 \\
\end{array}
\]

\[a \leq b \iff a \leq \nabla b \leq \nabla a \leq b\]

This algebra has two subalgebras S_3 (subalgebras with three elements) formed by the sets $A_1 = \{0, a, 1\}$ and $B_1 = \{0, b, 1\}$ and one subalgebra S_2 (subalgebra with two elements) formed by the set $\{0, 1\}$.

We introduce now some definitions and state results that we shall need later. These results will be published in [4].

1.2. Definition ([2]). For each prime filter P of a of a tetravalent modal algebra A (i.e. each prime filter of the subjacent lattice) we define the prime filter $\Phi(P) = C \sim P$, where C denotes the set-theoretical complement and $\sim P = \{\sim x : x \in P\}$.

This mapping Φ is called the Birula-Rasiowa transformation.

It is easily checked that:

1. $\Phi(\Phi(P)) = P$ for each prime filter P of A.
2. If P and Q are both prime filters of A such that $P \subseteq Q$, then $\Phi(Q) \subseteq \Phi(P)$.

Let now π_0 be a family of prime filters of a tetravalent modal algebra A, such that $\Phi(P) \in \pi_0$ for each $P \in \pi_0$. Consider the following definition.

1.3. Definition. For $a, b \in A$ we set $a \equiv b \pmod{\pi_0}$ if the following conditions are satisfied:

1. $\Phi(P) = \Phi(Q) \Rightarrow a \equiv b \pmod{\pi_0}$ for each $P, Q \in \pi_0$.
2. $\Phi(P) = \Phi(Q) \Rightarrow a \equiv b \pmod{\pi_0}$ for each $P, Q \in \pi_0$.

We have then the following results:

1.4. Proposition. The relation $\equiv \pmod{\pi_0}$ is a congruence relation on A.

1.5. Proposition. The quotient set $A' = A/\equiv = A/\pi_0$ algebraized in the usual way, is a tetravalent modal algebra. Moreover the kernel of the natural homomorphism h from A onto A' (i.e. the set $\{x \in A : h(x) = 1\}$) is the set $N = \bigcap_{P \in \pi_0} P$.

1.6. Proposition. Let A' be a homomorphic image of A by the homomorphism h whose kernel is N. Let π' be the set of all prime filters of A' and define the set
\[\pi_0 = \{ h^{-1}(P') : P' \in \pi \}. \] Then we have:

1. \(\pi_0 \) is a family of prime filters of \(A \) such that \(\Phi(P) \in \pi_0 \) for each \(P \in \pi_0 \).
2. \(A' \) is isomorphic to \(A/\pi_0 \).
3. \(N = \cap_{P \in \pi_0} P \).
4. If \(a, b \in A \), \(a \equiv b \pmod{\pi_0} \) iff \(h(a) = h(b) \).
5. \(h = \theta^{-1} \circ h' \), where \(\theta \) is the isomorphism from \(A' \) onto \(A/\pi_0 \) referred into (2) and \(h' \) is the natural homomorphism from \(A \) onto \(A/\pi_0 \).

1.7. Remark. From [5] we have the important result that each prime filter of a tetravalent modal algebra is either an ultrafilter or the image of an ultrafilter by the Birula–Rasiowa transformation \(\Phi \).

In a tetravalent modal algebra \(A \) we can define an implication operator \(\rightarrow \) by the formula: \(a \rightarrow b = \forall \sim a \lor b \). Then we have:

1.8. Definition. A subset \(D \) of \(A \) is a deductive system if \(D \) verifies:

(D1) \(1 \in D \).
(D2) If \(a, a \rightarrow b \in D \), then \(b \in D \).

We have then:

1.9. Theorem. A subset \(D \) of \(A \) is a maximal deductive system iff there is an ultrafilter \(\mathcal{U} \) of \(A \) such that \(D = \mathcal{U} \cap \Phi(\mathcal{U}) \). Moreover this representation of \(D \) is unique.

Let us suppose that \(D \) is a maximal deductive system of \(A \) and \(\mathcal{U} \) is an ultrafilter of \(A \) such that \(D = \mathcal{U} \cap \Phi(\mathcal{U}) \). Since this representation of \(D \) is unique, by the above result, we denote the tetravalent modal algebra \(A/\equiv(\mathcal{U}, \Phi(\mathcal{U})) \) by \(A/D \).

The following representation theorem should be retained, since it will be needed later:

1.10. Theorem. A nontrivial tetravalent modal algebra \(A \) is isomorphic to a subdirect product of the quotient algebras \(A/M_i \), where \(\{M_i\}_{i \in I} \) is the family of all maximal deductive systems of \(A \).

We have proved also that if \(A \) is finite, then \(A \) is isomorphic to the direct product of the quotient algebras \(A/M_i \).

Let us consider now the following definition:

1.11. Definition. A tetravalent modal algebra \(A \) is simple if \(A \) is nontrivial and each homomorphic image of \(A \) is either trivial or isomorphic to \(A \).
We have obtained the following results:

1.12. **Theorem.** If \(D \) is a maximal deductive system of a tetravalent modal algebra \(A \), the quotient algebra \(A/D \) is isomorphic to \(S_2 \) or \(S_3 \) or \(S_4 \).

1.13. **Theorem.** The only simple tetravalent modal algebras are the algebras \(S_2 \), \(S_3 \) and \(S_4 \).

2. **Finitely generated tetravalent modal algebras**

Let \(G \) be a subset of a tetravalent modal algebra \(A \), we shall denote by \(T(G) \) the tetravalent modal subalgebra generated by \(G \).

We shall prove now that if \(G \) is a finite subset of a tetravalent modal algebra \(A \) with \(n \) elements \((N(G) = n) \) such that \(T(G) = A \), then \(A \) is finite.

By Theorem 1.10 we know that \(A \) is isomorphic to a subalgebra of the direct product \(\prod_{i \in I} A/M_i \), where \(R = \{ M_i \}_{i \in I} \) is the set of all maximal deductive systems of \(A \). By Theorem 1.12 we have that the quotient algebras \(A/M_i \) \((M_i \in R) \) are finite and \(N(A/M_i) = 2 \) or \(N(A/M_i) = 3 \) or \(N(A/M_i) = 4 \) according as \(A/M_i = S_2 \) or \(A/M_i = S_3 \) or \(A/M_i = S_4 \). It is sufficient then to prove that \(R \) is finite.

Let us consider \(R_2 = \{ M_i \in R : A/M_i = S_j \} \) for each \(j = 2, 3, 4 \). For each \(j = 2, 3, 4 \), let us denote by \(Epi(A, S_j) \) the set of all epimorphisms from \(A \) onto \(S_j \), by \(F(G, S_j) \) the set of all mappings from \(G \) into \(S_j \) and by \(F^*(G, S_j) \) the set of all mappings \(j \) from \(G \) into \(S_j \) such that \(T(h(G)) = S_j \).

It is clear that we have:

(I) The sets \(R_j \) \((j = 2, 3, 4) \) form a partition of \(R \).

(II) \(N(F^*(G, S_j)) \leq N(F(G, S_j)) = j^n \) \((j = 2, 3, 4) \), having the equality for \(j = 2 \).

(III) \(N(Epi(A, S_j)) \leq N(F^*(G, S_j)) \) \((j = 2, 3, 4) \), since from \(h \in Epi(A, S_j) \) it follows that \(S_j = h(A) = h(T(G)) = T(h(G)) \) and it is well known that every mapping \(f : G \to S_j \) has at most one homomorphic extension.

Let us prove:

(IV) \(N(R_j) \leq N(Epi(A, S_j)) \) \((j = 2, 3, 4) \).

Let \(h \in Epi(A, S_j) \) \((j = 2, 3, 4) \) and \(M_i = \text{Ker} \, h \). From Proposition 1.6, Remark 1.7 and Theorem 1.9 it follows that \(M_i \in R_j \).

Let us consider then the mapping \(\psi_j : Epi(A, S_j) \to R_j \) \((j = 2, 3, 4) \) defined by \(\psi_j(h) = \text{Ker} \, h = M_i \). Let us prove that \(\psi_j \) is surjective \((j = 2, 3, 4) \) which implies (IV).

Let \(M_i \in R_j \) \((j = 2, 3, 4) \), then \(A/M_i = S_j \); if \(\delta : A/M_i \to S_j \) is the isomorphism and if \(\alpha : A \to A/M_i \) is the natural homomorphism, then \(h = \delta \circ \alpha \) is an epimorphism from \(A \) onto \(S_j \) whose kernel is \(M_i \), that is \(\psi_j(h) = M_i \). Thus we have (IV).

From (I), (II), (III) and (IV) it follows that \(R \) is finite and then \(A \) is finite, that is:
2.1. Theorem. Every finitely generated tetravalent modal algebra is finite.

In these conditions we have that if A is a finitely generated tetravalent modal algebra, then $A = S_2^{N(R_1)} \times S_3^{N(R_2)} \times S_4^{N(R_3)}$.

Let us prove now:

(V) $N(Epi(A, S_j)) \leq N(R_j) \ (j = 2, 3)$, and

(VI) $N(R_4) = \frac{1}{2} N(Epi(A, S_4))$.

To prove the condition (V) we will show that the mapping $\psi_j \ (j = 2, 3)$ is injective. Consider then $h_1, h_2 \in Epi(A, S_j) \ (j = 2, 3)$, $\psi_j(h_1) = Ker h_1 = M_1$, $\psi_j(h_2) = Ker h_2 = M_2$ and suppose $M_1 = M_2$.

Let $x \in A$. If $x \notin M_1 = M_2$, then we have:

(a) $h_1(x) = 1 = h_2(x)$.

If $x \notin M_1 = M_2$, then if $j = 2$ we have $h_1(x) = 0 = h_2(x)$ an therefore $h_1 = h_2$. If $j = 3$ let us suppose that $h_1(x) \neq h_2(x)$. Then we have either:

(b) $h_1(x) = a$ and $h_2(x) = 0$, or

c) $h_1(x) = 0$ and $h_2(x) = a$.

From (b) it follows that $h_1(\neg x) = \neg h_1(x) = \neg a = a$ and $h_2(\neg x) = \neg h_2(x) = \neg 0 = 1$. Then $\neg x \in M_2$ and $\neg x \notin M_1$ and therefore $M_1 \neq M_2$ which contradicts the hypothesis. So we cannot have (b). Similarly we cannot have (c). Hence we have $h_1 = h_2$ and $\psi_j \ (j = 2, 3)$ is an injective mapping, which proves condition (V).

To prove the condition (VI), let $h \in Epi(A, S_4)$, $\psi_4(h) = Ker h = M_i$ and let us prove:

(d) $\psi_4^{-1}(M_i) = \{\alpha \circ h: \alpha \in Aut(S_4)\}$

where $Aut(S_4)$ is the set of all automorphisms of S_4. It is easily checked that:

(e) $\{\alpha \circ h: \alpha \in Aut(S_4)\} \subseteq \psi_4^{-1}(M_i)$.

We shall prove then:

(f) $\psi_4^{-1}(M_i) \subseteq \{\alpha \circ h: \alpha \in Aut(S_4)\}$.

Let $h' \in \psi_4^{-1}(M_i)$ that is $h' \in Epi(A, S_4)$ and $\psi_4(h') = Ker h' = M_i = Ker h$.

Since $h \in Epi(A, S_4)$, we have seen that $M_i \in R_4$ and so there is an isomorphism $\theta: A/M_i \rightarrow S_4$.

Let ϕ be the natural homomorphism from A onto A/M_i.

On the other hand, since $h' \in Epi(A, S_4)$ and $Ker h' = M_i$, there is an isomorphism $\theta': A/M_i \rightarrow S_4$. By Proposition 1.6, we can then consider the following two commutative diagrams:

$$
\begin{array}{ccc}
A & \xrightarrow{h} & S_4 \\
\downarrow{\phi} & \downarrow{\theta} & \\
A/M_i & \xrightarrow{\theta'} & S_4
\end{array}
$$

Since θ is an isomorphism, θ^{-1} exists which is also an isomorphism. We have
then:

\[(g) \phi = \theta^{-1} \circ h \quad \text{and} \quad (h) h' = \theta' \circ \phi.\]

From (g) and (h) we obtain:

\[(i) \quad h' = \theta' \circ (\theta^{-1} \circ h) = (\theta' \circ \theta^{-1}) \circ h.\]

Consider \(\alpha = \theta' \circ \theta^{-1}\) which is an isomorphism from \(S_4\) into \(S_4\) and therefore it is an automorphism of \(S_4\). Hence \(h' \in \{\alpha \circ h : \alpha \in \text{Aut}(S_4)\}\) and we have (f). Thus we have (d). From (IV) it follows that \(N(R_4) = N(\text{Epi}(A, S_4))/N(\text{Aut}(S_4))\). But there are only two automorphisms in \(S_4\): the identity automorphism and the automorphism \(\alpha(0) = 0, \alpha(1) = 1, \alpha(a) = b\) and \(\alpha(b) = a\). Therefore we have proved the condition (VI).

3. Finitely generated free tetravalent modal algebras

Given a cardinal number \(\beta > 0\), we shall denote by \(L(\beta)\) the free tetravalent modal algebra with a set \(G\) of free generators, whose cardinal is \(\beta\).

Since tetravalent modal algebras are equational, we can state, by a theorem of universal algebra of G. Birkhoff [3], the existence and uniqueness, up to isomorphisms, of \(L(\beta)\).

From the preceding section it follows that \(L(n)\) is finite for every natural number \(n > 0\). Furthermore:

\[L(n) = S_2^{N(R_2)} \times S_3^{N(R_3)} \times S_4^{N(R_4)}.\]

Let us consider that \(G\) is the set of \(n\) free generators of \(L(n)\). We shall now compute \(N(R_j)\) \((j = 2, 3, 4)\). Let us prove:

\[(\text{VII}) \quad N(F^*(G, S_j)) \leq N(\text{Epi}(L(n), S_j)) \quad (j = 2, 3, 4).\]

Consider then the mapping \(K_j : \text{Epi}(L(n), S_j) \to F^*(G, S_j) \quad (j = 2, 3, 4)\) defined by \(K_j(h) = h \mid G = f \in F^*(G, S_j)\) for each \(h \in \text{Epi}(L(n), S_j)\). Let us prove that \(K_j\) is surjective \((j = 2, 3, 4)\) which implies (VII).

If \(f \in F^*(G, S_j) \quad (j = 2, 3, 4)\) we know that \(f \in F(G, S_j)\) and \(T(f(G)) = S_j\). Since \(L(n)\) is free, \(f\) can be extended to a homomorphism \(h : L(n) \to S_j\), which is an epimorphism because \(h(L(n)) = T(h(G)) = T(f(G)) = S_j\). Therefore \(K_j(h) = h \mid G = f\) and so \(K_j\) is surjective \((j = 2, 3, 4)\) and we have condition (VII).

From (IV), (V), (III) and (VII) it follows:

\[N(R_j) = N(F^*(G, S_j)) \quad (j = 2, 3).\]

From (j) and (II) we obtain: (1) \(N(R_2) = 2^n\).

Let \(F'(G, S_3)\) be the set of all mappings \(f \in F(G, S_3)\) such that \(T(f(G)) = S_2\) (the
unique proper subalgebra of S_3, then we have:

(i) \{F'(G, S_3), F^*(G, S_3)\} form a partition of $F(G, S_3)$.

(m) $N(F'(G, S_3)) = N(F(G, S_2))$.

From (j), (II), (l) and (m) it follows: (2) $N(R_3) = 3^n - 2^n$.

Finally let $F'(G, S_a)$ be the set of all mappings $f \in F(G, S_a)$ such that $T(f(G)) = S_2 \cap S_a$. We know that S_a has two subalgebras S_3, $A_1 = \{0, a, 1\}$ and $B_1 = \{0, b, 1\}$ with the induced operations. S_2, A_1 and B_1 are the unique proper subalgebras of S_a.

Let $F''(G, S_a)$ be the set of all mappings $f \in F(G, S_a)$ such that $T(f(G)) = A_1$ and let $F'(G, S_a)$ be the set of all mappings $f \in F(G, S_a)$ such that $T(f(G)) = B_1$. Then we have:

(n) \{F'(G, S_4), F''(G, S_4), F'''(G, S_4), F^*(G, S_4)\} form a partition of $F(G, S_4)$,

(o) $N(F'(G, S_4)) = N(F'(G, S_2))$,

(p) $N(F''(G, S_4)) = N(F'''(G, S_4)) = N(F^*(G, S_3))$.

From (II), (j), (2), (n), (o) and (p) it follows:

(q) $N(F''(G, S_4)) = 4^n - (2^n + 2(3^n - 2^n))$.

From (III), (VII), (VI) and (q) we obtain:

(3) $N(R_4) = [4^n - (2^n + 2(3^n - 2^n))] / 2 = 2^{n-1}(2^n + 1) - 3^n$.

From (L), (1), (2) and (3) we get:

$$N(L(n)) = 2^{2n-3n-2}4^{2n-1}(2^n+1)-3^n = 2^{2n+2n-1}-2^{3n-3}-2n.$$

Remark. The technique used in Sections 2 and 3 is similar to the one employed by M. Abad and L. Monteiro in [1].

Acknowledgement

The author is very grateful to the referee for his valuable suggestions.

Note added in proof

After the acceptation of this paper, the author learned that Peter Fowler, in his Ph.D. Thesis (Australia), has obtained, independently and with a completely different proof, the last formula contained in Section 3.

References