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Abstract

This paper presents a nonlinear, multi-phase and stochastic dynamical system according to engineering background. We show
that the stochastic dynamical system exists a unique solution for every initial state. A stochastic optimal control model is constructed
and the sufficient and necessary conditions for optimality are proved via dynamic programming principle. This model can be
converted into a parametric nonlinear stochastic programming by integrating the state equation. It is discussed here that the local
optimal solution depends in a continuous way on the parameters. A revised Hooke–Jeeves algorithm based on this property has
been developed. Computer simulation is used for this paper, and the numerical results illustrate the validity and efficiency of the
algorithm.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The research on designing the trajectory of horizontal wells considerably developed over these last years. Many
methods in dealing with specific problems have been put forward, respectively. In general, the well path is a three-
dimensional curve that reaches a given target from a given starting location subject to several constraints. There are
some well planning programs available commercially to solve the problem of designing an appropriate trajectory of
a horizontal well. However, those methods belong to the category of trial-and-error or human–computer interaction
essentially, in which the identification of some control parameters depends to a great extent on the designers’experience
and intuition. In recent years, very few references have discussed the horizontal well planning in the mathematical
literature. Foreign and domestic experts mainly put forward nonlinear programming models [2,4,6], a fuzzy model [9]
and an optimization model [8]. In fact, there are more unknown parameters for complete well than there are defining
equations. Consequently, the problem of finding a well path is underdetermined in existing results. Due to the effects of
some factors such as stratum and tools, the real trajectory of horizontal wells is deviant from the theoretically optimal
one in drilling. But such perturbations have been ignored or only been given a little qualitative consideration in the
previous designs. If the parameters provided by the optimal design are applied into practice, the trajectory may not
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achieve optimal, or even deviates from the target. Therefore, we establish a nonlinear, multi-phase and stochastic control
system of the trajectory of horizontal wells based on the dynamic model [8] Stochastic control is the study of dynamical
systems subject to random perturbations and which can be controlled in order to optimize some performance criterion.
Our chief concern is to derive some tractable characterization of the value function and optimal control. This article
is intended to prove the sufficient and necessary conditions of optimal solution and that the optimal solution depends
in a continuous way on the parameters (perturbations). In addition, a revised Hooke–Jeeves algorithm is proposed and
the corresponding software is programmed to calculate the practical problems. The numerical results demonstrate the
correctness and effectiveness of the stochastic control model and algorithm.

The rest of this paper is organized as follows. Section 2 consist of the problem description and the mathematical
model. The existence and uniqueness of the solution of stochastic differential equation are discussed in Section 3.
Section 4 give the key results on the characterization of optimality. In Section 5, the parametric nonlinear stochastic
programming problem is introduced and some important properties are proved. Finally, the optimization algorithm is
proposed to solve the nonlinear stochastic programming with a numerical issue and the conclusions of the paper are
mentioned.

2. Problem formulation

As is shown in Fig. 1, the trajectory of a horizontal well can be described in a cartesian coordinate system having
its origin at the initial point (Kick-off Point), with x-axis representing North, y-axis representing East, and z-axis
representing the vertical depth. Any point on the curve is completely described by its inclination �, azimuth �, and
coordinates x, y, z. In order to simplify the problem, we idealize the trajectory of horizontal wells to be a combination
of alternately n constant-curvature smooth quasi-helix segments. Tool-face angle w and curvature K are key parameters
to drill a horizontal well, which are governed by the general build-up rate of bottle-hole assembly (BHA) in the drilling
operation. Under such assumptions, the rate of change of inclination K� and the rate of change of azimuth K� obey
the following rules, respectively,

K� = K cos w, K� = K sin w

sin �
.
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Fig. 1. Horizontal Well’s terminology.
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Differential geometry shows the rate of change of coordinates with respect to arc length,

dx

ds
= sin � cos �,

dy

ds
= sin � sin �,

dz

ds
= cos �.

Anypoint of the trajectory can be completely determined by ordinary equations in terms of several independent param-
eters such as tool-face angle, curvature.

Let In = {1, . . . , n}, s stands for the trajectory’s arc length from the Kick-off point, s0 = 0 stands for the Kick-off
point, and si stands for the arc length of the ith terminal point. Let � = [�, �

2 ] × [0, 2�] × R3, � > 0 is a positive
small constant which guarantee that the curve first begins to deviate from the vertical. In general, � is chosen on
an empirical basis. Xi(s) = (Xi1(s), Xi2(s), Xi3(s), Xi4(s), Xi5(s))

T ∈ � stands for the state variable at any point
s ∈ [si−1, si] (each component represents inclination, azimuth, north coordinate, east coordinate and vertical depth
coordinate, respectively); X0 ∈ � and XT ∈ � mean the state of the Kick-off Point and the target, respectively,
which are given. Let the radius of curvature, the reciprocal of curvature, be ui1, the tool-face angle be ui2, which
are constants in the same curve segment; let the arc length of the ith curve segment be ui3, then ui3 = si − si−1.
Let ui = (ui1, ui2, ui3) ∈ R3 be control variable, according to the engineering constraints its control domain is
Uad =[a1, b1]× [a2, b2]× [a3, b3] ⊂ R3+, ai < bi, i =1, 2, 3. Let u= (u1, u2, . . . , un) ∈ R3n, then its control domain
is Ũad = {u ∈ R3n : ui ∈ Uad, i ∈ In}. Let (�,F, P ) be a filtered probability space and {Fs , s ∈ [0, +∞)} be its
filtration satisfying the usual conditions. The stochastic perturbations that we consider in this paper are assumed the
Normal Wiener process on R5n, donated by w(s) = {(wT

1 (s), . . . , wT
n (s))T : wi(s) ∈ Fs , i ∈ In, s ∈ [0, +∞)}. We

make the problem stochastic by adding a white noise term, with small coefficients �1/2, in each component of Xi(s).
Consider the perturbed state process Xi(s) valued in R5 satisfying

dXi(s) = f (Xi, ui) ds + 	� dwi(s), s ∈ (si−1, si), i ∈ In

X1(0) = X0, Xi(si−1) = Xi−1(si−1), i = 2, . . . , n

ui ∈ Uad, i ∈ In, (1)

where

f (Xi, ui) =
(

cos ui2

ui1
,

sin ui2

ui1 sin Xi1
, sin Xi1 cos Xi2, sin Xi1 sin Xi2, cos Xi1

)T

, (2)

	� = �1/2I , I is the identity matrix.

3. Existence and uniqueness of the solution of stochastic dynamical system

In this section we will prove the existence and uniqueness of the solution of (1) for any given initial condition. First
we prove some properties as follows:

Property 1. The function f in (2) is continuous on � × Uad, and satisfies the following properties:
(a) f satisfies linear growth property, namely, there exists a constant K such that for s ∈ [si−1, si], i ∈ In

‖f (Xi, ui)‖�K(‖Xi‖ + 1) ∀Xi ∈ �, ∀ui ∈ Uad.

(b) f is Lipschitz relatively to �, namely, there exists a constant L such that for s ∈ [si−1, si], i ∈ In

‖f (X′
i , ui) − f (X′′

i , ui)‖�L‖X′
i − X′′

i ‖ ∀X′
i , X

′′
i ∈ �, ∀ui ∈ Uad.
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Proof. (a) Obviously from (2) f does not explicitly depend on s, and f is continuous on � × Uad. Furthermore,

‖f (Xi, ui)‖ =
⎛
⎝ 5∑

j=1

f 2
j (Xi, ui)

⎞
⎠

1/2

= 1

ui1 sin Xi1
(cos2ui2 sin2Xi1 + sin2 ui2 + u2

i1sin2Xi1)
1/2

� 1

ui1 sin Xi1
(X2

i1 + u2
i2 + u2

i1X
2
i1)

1/2

� 1

a1 sin �
(X2

i1 + b2
2 + b2

1X
2
i1)

1/2.

let K = max{
√

b2
1 + 1/a1 sin �, b2/a1 sin �}, it follows that

‖f (Xi, ui)‖�K(|Xi1| + 1)�K(‖Xi‖ + 1) ∀Xi ∈ � ∀ui ∈ Uad.

(b) Let X′
i and X′′

i be any two distinct points in �, applying mean value theorem for derivatives we have

fj (X
′
i , ui) − fj (X

′′
i , ui) = (X′

i − X′′
i )Tf ′

j (
X′
i + (1 − 
)X′′

i , ui), 0 < 
 < 1, j ∈ I5.

Hence,

‖f (X′
i , ui) − f (X′′

i , ui)‖ =
⎛
⎝ 5∑

j=1

(fj (X
′
i , ui) − fj (X

′′
i , ui))

2

⎞
⎠

1/2

=
⎛
⎝ 5∑

j=1

((X′
i − X′′

i )Tf ′
j (
X′

i + (1 − 
)X′′
i , ui))

2

⎞
⎠

1/2

,

�f (Xi, ui)

�Xi

=

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0
− sin ui2 cos Xi1

ui1sin2Xi1
0 0 0 0

cos Xi1 cos Xi2 − sin Xi1 sin Xi2 0 0 0

cos Xi1 sin Xi2 sin Xi1 cos Xi2 0 0 0
− sin Xi1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ .

Setting L′ = max(Xi ,ui )∈�×Uad maxj,k∈I5 |�fj (Xi, ui)/�Xik|, we get L′ is finite since � × Uad is bounded, so we can
write

‖f (X′
i , ui) − f (X′′

i , ui)‖�
√

5L′‖X′
i − X′′

i ‖.

let L = √
5L′, so f is Lipschitz relative to �. �

Theorem 1. For any given ui ∈ Uad, wi(s) ∈ Fs and X0 ∈ �, there exist a unique piecewise continuous solution
Xi(s, ui, wi(s)) of the stochastic differential equation (1) with probability 1, and Xi(s, ui, wi(s)) is a Markov process.

Proof. Using Property 1 and existence and uniqueness theory for stochastic differential equations in [5], the theorem
is proved directly. �

4. Optimal control problem and Bellman’s optimality principle

Assume Xi(s, ui, wi(s)), s ∈ [si−1, si], i ∈ In is the piecewise solution of the stochastic differential equation (1),
and denote the solution on [0, sn] by X(s, u, w(s)) = (X1(s, u1, w1(s))

T, . . . , Xn(s, un, wn(s))
T)T ∈ R5n. Define
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the solution set of (1) relative to Ũad by Vx(Ũad,Fs) = {X(s, u, w(s)) ∈ R5n : X(s, u, w(s)) is the solution of (1)
corresponding to u ∈ Ũad, w(s) ∈ Fs}.

The expected performance criterion are the precision of hitting target and the total length of the trajectory, that is

J (u) := E

⎡
⎣�0

∫ sn

0
ds +

5∑
j=1

�j (Xj (sn, u, w(sn)) − XTj )
2

⎤
⎦ , (3)

where �j (j = 0, . . . , 5) are weighting scalars. So we establish the stochastic optimal control model of the trajectory
of horizontal wells as follows:

OCP : inf J (u)

s.t. X(s, u, w(s)) ∈ Vx(Ũad,Fs)

u ∈ Ũad, w(s) ∈ Fs .

From the theory on continuous dependence of solutions on parameters we know that X(s, u, w(s)) is continuous
relative to u, so J (u) is continuous on u ∈ Ũad. Moreover Ũad is a closed bounded convex subset of R3n. Hence we
know the optimal control must exist by Theorem V.6.3 in [5], namely, ∃u∗ ∈ Ũad such that J (u∗)�J (u), ∀u ∈ Ũad.

For any point s ∈ [0, sn], define the value function

V (s, X) := inf
u∈Ũad

E[�0

∫ sn

s

ds +
5∑

j=1

�j (Xj (sn, u, w(sn)) − XTj )
2],

and the operator Lu
X(s) takes the form

Lu
X(s) = �

2

∑
i,j∈I5

�2

�Xi�Xj

+
∑
i∈I5

fi(X, u)
�

�Xi

.

Theorem 2. Assume that V (s, X) be a solution of the dynamic programming equation

�V

�s
= − inf

u∈Ũad

[Lu
X(s)V + �0], (s, X) ∈ [0, sn] × �

with the boundary data

V (sn, X) =
5∑

j=1

�j (Xj (sn, u, w(sn)) − XTj )
2.

If u∗ is an admissible feedback control, then u∗ is optimal if and only if

Lu∗
X (s)V + �0 = inf

u∈Ũad

[Lu
X(s)V + �0].

Proof. Sufficiency. For each v ∈ Ũad(s, X) ∈ [0, sn] × �,

�V

�s
+ Lv

X(s)V + �0 �0.

Let us replace s, X, v by t, X(t), u(t) = u(t, X(t)), s� t ��. We get

�V

�s
+ Lu

X(t)V + �0 �0. (4)
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we apply Theorem V.5.1 in [5] with M = �0,  = V . It is obvious that

E

∫ �

s

|M(t, X(t))| dt = E

∫ �

s

�0 dt < ∞.

we get

V (s, X)�E

⎡
⎣�0

∫ sn

0
ds +

5∑
j=1

�j (Xj (sn, u, w(sn)) − XTj )
2

⎤
⎦= J (u)

We have equality in (4) for u = u∗. Therefore, V (s, X) = J (u∗) using Theorem V.5.2 in [5]. Thus u∗ is optimal.
Necessity. Applying the principle of optimality in dynamic programming we get

V (s, X) = inf
u∈Ũad

E

⎡
⎣�0

∫ sn

s

ds +
5∑

j=1

�j (Xj (sn, u, w(sn)) − XTj )
2

⎤
⎦

= inf
u∈Ũad

E

⎡
⎣�0

∫ s+h

s

ds + �0

∫ sn

s+h

ds +
5∑

j=1

�j (Xj (sn, u, w(sn)) − XTj )
2

⎤
⎦

= inf
u∈Ũad

E

[
�0

∫ s+h

s

ds

]
+ V (s + h, X(s + h))

�E

[
�0

∫ s+h

s

ds

]
+ V (s + h, X(s + h))

that is

V (s + h, X(s + h)) − V (s, X) + E[�0

∫ s+h

s

ds]�0. (5)

Multiplying h−1 on both sides of above formula and letting h → 0+, we find

lim
h→0+

1

h
E

[
�0

∫ s+h

s

ds

]
= �0. (6)

Noticing that X(s) is controlled by Itô differential equation (1), we can deduce by Itô differential formula

lim
h→0+

1

h
[V (s + h, X(s + h)) − V (s, X)]

= 1

ds
lim

h→0+

∫ s+h

s

{
�V (�, X)

�s
+ Lu

X(s)V (�, X)

}
d� = �V

�s
+ Lu

X(s)V . (7)

From (5)–(7) we get

�V

�s
+ Lu

X(s)V + �0 �0. (8)

On the other hand, assume the optimal control u∗ can be achieved on [s, s + h], then

�V

�s
+ Lu

X(s)V + �0 = 0. (9)
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From (8) and (9) we get

�V

�s
= − inf

u∈Ũad

[Lu
X(s)V + �0] = −(Lu∗

X (s)V + �0). (10)

Thus the proof is completed. �

5. Nonlinear stochastic programming of OCP

By integrating the state equation of (1) for s ∈ [si−1, si], we get that

Xi(s, ui, wi(s)) = Xi−1(si−1, ui−1, w(si−1))

+
∫ s

si−1

f (Xi, ui) d� +
∫ s

si−1

	� dw(�), i ∈ In. (11)

By taking s = si in (11), we obtain that

Xi(si, ui, wi(si)) = Xi−1(si−1, ui−1, w(si−1)) + f̃ (ui, �i ) + �i , i ∈ In, (12)

where

f̃ (ui, �i ) :=
∫ si

si−1

f (Xi, ui) d� =
{

f̂ (ui, �i ) cos ui �= 0,

f̄ (ui, �i ) cos ui = 0,

�i :=
∫ si

si−1

	� dw(�) ∈ V, i ∈ In,

f̂ (ui, �i ) = (f̂1, f̂2, f̂3, f̂4, f̂5)
T

f̂1 = ui3 cos ui2

ui1
, f̂2 = tan ui2 ln

tan( 1
2Xi1(si, ui, w(si)))

tan( 1
2Xi−1,1(si−1, ui−1, w(si−1)))

,

p(x) = Xi−1,2(si−1, ui−1, w(si−1)) + tan ui2 ln
tan( 1

2x)

tan( 1
2Xi−1,1(si−1, ui−1, w(si−1)))

f̂3 = 1

ui1 cos ui2

∫ Xi1(si ,ui ,w(si ))

Xi−1,1(si−1,ui−1,w(si−1))

sin x cos p(x) dx,

f̂4 = 1

ui1 cos ui2

∫ Xi1(si ,ui ,w(si ))

Xi−1,1(si−1,ui−1,w(si−1))

sin x sin p(x) dx,

f̂5 = 1

ui1 cos ui2
(sin Xi1(si, ui, w(si)) − sin Xi−1,1(si−1, ui−1, w(si−1))),

f̄ (ui, �i ) = (f̄1, f̄2, f̄3, f̄4, f̄5)
T,

f̄1 = 0, f̄2 = ui3

ui1 sin Xi−1,1(si−1, ui−1, w(si−1))
,

f̄3 = ui1sin2Xi−1,1(si−1, ui−1, w(si−1))

× (sin Xi2(si, ui, w(si)) − sin Xi−1,2(si−1, ui−1, w(si−1))),

f̄4 = ui1sin2Xi−1,1(si−1, ui−1, w(si−1))

× (cos Xi−1,2(si−1, ui−1, w(si−1)) − cos Xi2(si, ui, w(si))),

f̄5 = ui3 cos Xi−1,1(si−1, ui−1, w(si−1)).

By [1, Theorem 10.1, Chapter 3], we infer that �i is an independent normal random variable whose expectancy is
zero by making Itô stochastic integral of {wi(s) ∈ Fs : s ∈ [si−1, si], i ∈ In}, in which V = B(0, M) ⊂ R5, M is a
positive real number.
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From the recurrent formula of (12), we obtain that

X(sn, u, w(sn)) ≡ Xn(sn, un, w(sn)) = X0 +
n∑

i=1

(f̃ (ui, �i ) + �i ). (13)

Substitute (13) for X(sn, u, w(sn)) in (3), and set

F(u, �) := �0

n∑
i=1

ui3 +
5∑

j=1

�j

(
X0j +

n∑
i=1

(f̃j (ui, �i ) + �ij ) − Xtj

)2

, (14)

where � = (�1, �2, . . . , �n)
T ∈ Ṽ , Ṽ = {v = (v1, v2, . . . , vn) ∈ R5n : vi ∈ V, i ∈ In}.

Assume (R3n+ × Ṽ ,L(R3n+ )×Ft , �×P) is a measurable space, L(R3n+ ) is Lebesgue 	-field on R3n+ , � is Lebesgue
measure on R3n+ . By (11)–(14) together with differentiability property of compound function, we can easily prove that

Theorem 3. F(u, �) is continuously differentiable on R3n+ ×Ṽ , and F(·, �) is twice continuously differentiable relative
to u on R3n+ .

Let c=(a1, a2, a3, . . . , a1, a2, a3) ∈ R3n+ , d=(b1, b2, b3, . . . , b1, b2, b3) ∈ R3n+ , and k=3(i−1)+j , hk(u)=uij −dk ,
gk(u) = ck − uij , i ∈ In, j = 1, 2, 3. Then the model OCP equals to

min
u∈R3n+

E[F(u, �)]
s.t. hk(u)�0, k ∈ I3n,

gk(u)�0.

(15)

As the system (1) has complete state information, by Lemma 3.1 of Chapter 8 in [1], we know

min
u∈R3n+

E[F(u, �)] = E

[
min

u∈R3n+
F(u, �)

]
.

So (15) equals to seeking the expectancy of the parametric nonlinear stochastic programming:

NLP(�) : min
u∈R3n+

F(u, �)

s.t. hk(u)�0, k ∈ I3n

gk(u)�0,

where � ∼ N(0, �2) is a stochastic parameter.
Let the active set of NLP(�) at any feasible point u be

I (u) = {k ∈ I3n : hk(u) = 0} = {i1, . . . , ir},
J (u) = {k ∈ I3n : gk(u) = 0} = {j1, . . . , js}.

From the characterization of hk(u) and gk(u), we know that I (u) ∩ J (u) = �. Let

∇uG1(u) = {∇hk(u) : k ∈ I (u)},
∇uG2(u) = {∇gk(u) : k ∈ J (u)},
∇uG(u) = ∇uG1(u) ∪ ∇uG2(u).

By the definition of hk(u) and gk(u), the row vectors of ∇uG1(u) and ∇uG2(u) are linearly independent respectively.
Since I (u) ∩ J (u) = �, the row vectors of ∇uG(u) are linearly independent.

Let the Lagrangian function of NLP(u, �) be

L(u, �, �, �) = F(u, �) +
3n∑

k=1

�khk(u) +
3n∑

k=1

�kgk(u),
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so the KKT conditions of NLP(u, �) are

%uF (u, �) +
3n∑

k=1

(�k − �k) = 0,

�k �0, �khk(u) = 0; �k �0, �kgk(u) = 0, k ∈ I3n.

Define the following set at any feasible point u∗

G =
{

d ∈ R3n

∣∣∣∣∣
d �= 0

%hk(u
∗)d = 0, k ∈ I (u∗) �k > 0

%gk(u
∗)d = 0, k ∈ J (u∗) �k > 0

}
.

Theorem 4. Suppose that u∗ is a local solution of NLP(�∗), and let �∗ = (�∗
1, �

∗
2,. . . , �∗

3n), �∗ = (�∗
1, �

∗
2, . . . , �

∗
3n) be

Lagrange multipliers such that the KKT conditions are satisfied, then

dT∇2
uuF (u∗, �∗)d �0 ∀d ∈ G

Proof. Since ∇uG(u) is linearly independent, the linear independence constrained qualification is satisfied. Taking
�∗ as a parameter vector, by the same argument as in [7, proof of Theorem 12.5, Chapter 12], we conclude that the
proposition is true. �

Suppose that u∗ is a local solution of NLP(�∗), it is obvious that there exists � such that NLP(�) has a unique solution
ũ∗(�) ∈ B(u∗, �) when � ∈ B(�∗, �), so the function f : � −→ ũ∗(�) can be well defined.

Theorem 5. Suppose that u∗ is a local solution of NLP(�∗), and let �∗ = (�∗
1, �

∗
2, . . . , �

∗
3n), �∗ = (�∗

1, �
∗
2, . . . , �

∗
3n) be

Lagrange multipliers such that the KKT conditions are satisfied, then there are open neighborhoods U of �∗ and V ′ of
u∗ and a function ũ∗(·) mapping U to V ′ such that ũ∗(�) is continuous, and for each � ∈ U , ũ∗(�) is the unique local
solution of NLP(�) in V ′.

Proof. By Theorem 3 we get that F(u, �) is continuously differentiable in R3n+ ×Ṽ and twice continuously differentiable
of u in R3n+ . It is clear that hk(u) and gk(u) are twice continuously differentiable in R3n+ . So the Assumption (A1) in
[10] is satisfied.

Let I (u∗) = {i∗1 , . . . , i∗r }, J (u∗) = {j∗
1 , . . . , j∗

s }, and represent ∇uG1(u
∗) and ∇uG2(u

∗) with the matrix, namely

∇uG1(u
∗) =

i∗1 · · · i∗m · · · i∗r · · ·⎛
⎜⎜⎜⎜⎝

0 · · · 1 · · · 0 · · · 0 · · · 0
...

...
...

...
...

0 · · · 0 · · · 1 · · · 0 · · · 0
...

...
...

...
...

0 · · · 0 · · · 0 · · · 1 · · · 0

⎞
⎟⎟⎟⎟⎠ ∈ Rr×3n,

∇uG2(u
∗) =

j∗
1 · · · j∗

n · · · j∗
s · · ·⎛

⎜⎜⎜⎜⎜⎝

0 · · · −1 · · · 0 · · · 0 · · · 0
...

...
...

...
...

0 · · · 0 · · · −1 · · · 0 · · · 0
...

...
...

...
...

0 · · · 0 · · · 0 · · · −1 · · · 0

⎞
⎟⎟⎟⎟⎟⎠ ∈ Rs×3n,

∇uG(u∗) = ∇uG1(u
∗) ∪ ∇uG2(u

∗) =
(∇uG1(u

∗)
∇uG2(u

∗)

)
.
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Since I (u∗)
⋂

J (u∗) = �, the row vectors of ∇uG(u∗) are linearly independent. So the elementary column transfor-
mation of ∇uG(u∗) is equal to the following matrix

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 |
. . . |

1 |
−1 | 0

. . . |
−1 |

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

1
...

r

1
...

s

that is, there exists an invertible matrix such that

∇uG(u∗)Q = R.

By taking � = (−1, . . . ,−1, 1, . . . , 1, 0, . . . , 0) ∈ R3n, we yield that R� < 0. Let �′ = Q�, then

∇uG(u∗)�′ = ∇uG(u∗)Q� = R� < 0.

So the Assumption (A2) in [10] is satisfied.
Because ∇2

uuL(u∗, �∗, �∗, �∗) = ∇2
uuF (u∗, �∗), together with Theorem 4, we get

dT∇2
uuL(u∗, �∗, �∗, �∗)d = dT∇2

uuF (u∗, �∗)d �0 ∀ d ∈ G

So the Assumption (A3) in [10] is satisfied. By Theorem 1 in [10], we obtain that the conclusion is correct. �

6. Optimization algorithm and computer simulation

According to Theorem 5, we know that there exists a � > 0 such that � ∈ B(0, �) implies that the local solution of
NLP(�) is in the neighborhood of that of NLP(0). Therefore, we can take the local solution of NLP(0) as the initial
feasible point to gain that of NLP(�).

The uniform designs proposed by Wang and Fang (1981) scatter points uniformly over the experimental domain.
They have the advantage of providing a good representation of the experimental domain with fewer runs. Computer
experiments using uniform designs have attracted considerable attention in recent years. Traditionally the uniform
designs were generated by so-called good lattice point method, cutting method and resolvable balanced incomplete
block designs [3] etc.

Hooke–Jeeves algorithm is a pattern search method to unconstrained optimization of nonlinear functions that are not
necessarily continuous or differentiable. It does not require the derivatives of the objective function, and the iterative
operation is very simple. For each iteration, the algorithm goes through a series of exploratory (directional) searches
and one pattern search. However, its convergence rate is slow, and what we want to solve is the optimization in a
bounded domain. Moreover, since the objective function is not unimodal, the choice of initial point determines how
fast the algorithm converges. So we take some modifications to the Hooke–Jeeves algorithm:

(i) Use uniform design algorithm to generate the initial points in control domain, and decompose the control domain
into finite subdomains.

(ii) Assess and modify the iterative point to make it satisfy the constraints and guarantee the descent of objective
function. When the iterative point is out of the subdomain in some exploratory search or pattern search, we adopt the
bound of subdomain as its value.

(iii) In order to improve the convergence rate, we use an acceleration factor such that the descent degree of objective
function is increased. Our revised Hooke–Jeeves algorithm use the following line search scheme in each exploratory
search and pattern search. Let [a, b] be the interval on which the line search is to be performed. Let x and d be the
initial point and search direction, respectively. Given step-size �, acceleration factor �, accuracy �, perform the following
steps:

(1) h∗ := h := a, min := f (x + h∗d).
(2) h := h + �. If h > b, go to step (4); otherwise go to step (3).
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Table 1
Control parameter

NLP(0) E[ũ∗(�)] NLP(0) E[ũ∗(�)]
Radius of curvature (m) 59.7383 54.9761 48.0277 48.6275

1 Tool-face angle (rad) 0.8717 0.8714 0.5769 0.5672
Curve length (m) 12.3003 12.3013 21.1415 21.1415

Radius of curvature (m) 40.1720 40.7798 40.0000 40.1511
2 Tool-face angle (rad) 0.8159 0.8481 0.7309 0.7190

Curve length (m) 14.3403 14.3391 31.9019 31.9019

Radius of curvature (m) 42.7674 42.9243 42.2298 40.1512
3 Tool-face angle (rad) 0.2571 0.2579 0.6407 0.7069

Curve length (m) 53.4009 54.0764 26.9231 26.9231

Precision of hitting target (m) 0.4217 0.2277 0.7933 0.8211
Total curve length (m) 80.0416 80.7170 79.9665 79.9665

(3) If f (x + hd) < min, then h∗ := h, min := f (x + h∗d), go to step (2); otherwise h := h − �, � := 1.1�, go to
step (2).

(4) a := h∗ − �, b := h∗ + �, min := f (x + h∗d), h∗ := h := a, � := 0.9�, h := h + �. If h > b, go to step (5);
otherwise go to step (3).

(5) � := 0.9�. If � < �, output h∗, stop; otherwise go to step (4).

The basic steps of the algorithm are given as follows.

Algorithm 1. Step 1: Construct m initial points in Ũad by the good lattice point method [3], and decompose Ũad into
m subdomains.

Step 2: Use the revised Hooke–Jeeves algorithm to gain the local solution of NLP(0) for each initial point in the
corresponding subdomain.

Step 3: Take the local solution of NLP(0) as the initial point of NLP(�), and generate a sequence of independent
normal random vector {�k} whose expectancy is zero. Use the revised Hooke–Jeeves algorithm to gain the local solution
of NLP(�k), named as ũ∗(�k).

Step 4: Calculate E[u∗(�k)] and the expectancy of performance criterion.

Example. According to the model and algorithm mentioned above, we have programmed the software and applied it
to the optimal design of several horizontal wells in Liaohe oil field. Here the optimal design of the trajectory of Well
Ci − 16 − Cp146 is given. It is a short-radius well, and the basic data are listed, respectively, as follows:

Kick-off point:
X01 = 0.18 rad, X02 = 3.98 rad, X03 = 102.7 m, X04 = −156.4 m, X05 = 1673.2 m
Target:
XT 1 =1.56 rad, XT 2 =3.53 rad, XT 3 =62.5 m, XT 4 =−192.9 m, XT 5 =1718.0 m the range of Radius of curvature,

tool-face angle and curve length are [40, 60], [0, 1.4], [10, 100], respectively.

We adopt n = 3, m = 50 and � = 0.1 rad in the procedure. We take E[ũ∗(�)] as the local solution of OCP and
acquire 16 local solutions. Two groups are arranged in Table 1. to show control parameters’ comparisons of NLP(0)

and E[ũ∗(�)]. By comparison of a large quantity of calculation results, we find that the solution of NLP(�) distributes
around that of NLP(0) densely, which coincides with the conclusion of Theorem 5. The example shows the revised
Hooke–Jeeves algorithm is reliable and efficient.

7. Conclusions

Unlike the approaches in [6,9], the presented model in the paper specifies the effects of random perturbations while
drilling. Therefore, the results of this research are much more rational and practical. It is shown from the real examples
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that the revised Hooke–Jeeves method is efficient and robust. The algorithm is technically superior to the trial-and-error
techniques traditionally used for designing the trajectory of horizontal wells.
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