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Renal catabolism of advanced glycation end products: The fate of
pentosidine. Advanced glycation end products (AGEs) generated through
the Maillard reaction significantly alter protein characteristics. Their
accumulation has been incriminated in tissue injury associated with aging,
diabetes, and renal failure. However, little is known about their clearance
from the body. The present study delineates the catabolic pathway of a
well-defined AGE product, pentosidine. Synthesized pentosidine given
intravenously in rats with normal renal function was rapidly eliminated
from the circulation through glomerular filtration, but was undetectable in
the urine by chemical analysis. Immunohistochemistry with anti-pentosi-
dine antibody disclosed that pentosidine accumulated transiently in the
proximal renal tubule one hour after its administration, but had disap-
peared from the kidney at 24 hours. After an intravenous load of
radiolabeled pentosidine, radioactivity peaked in the kidney at one hour
and subsequently decreased, whereas it rose progressively in the urine.
Over 80% of the radioactivity was recovered in the 72-hour collected
urine. However, only 20% of urine radioactivity was associated with intact
pentosidine chemically or immunochemically. In gentamicin-treated rats
with tubular dysfunction, up to 30% of the pentosidine load was recovered
as intact pentosidine in the urine. The present study suggests that free
pentosidine (and possibly other AGEs) is filtered by renal glomeruli,
reabsorbed in the proximal tubule where it is degraded or modified, and
eventually excreted in the urine. Kidney thus plays a key role in pentosi-
dine disposal.

Advanced glycation and oxidation (glycoxidation) strikingly
modifies proteins. This process, the so-called Maillard reaction,
links protein amino groups with glucose-derived carbonyl groups
and, over the months, yield a variety of advanced glycation end
products (AGEs) [1]. Advanced glycation end product modifica-
tion is instrumental in the catabolism of long-lived matrix proteins
and thus contributes to tissue remodeling [1]. It also alters the
structure and function of tissue proteins [1], stimulates cellular
responses [2-6] through a specific AGE receptor [7-9], and
contributes to the generation of reactive oxygen intermediates [10,
11]. Advanced glycation end product levels increase mildly with
age, more markedly in diabetes [12, 13], and dramatically in
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uremia with or without diabetes [14-16]. The importance of the
oxidative stress in AGE genesis has been demonstrated in a large
number of studies [10, 17, 18].

To date, little attention has been paid to AGE disposal. The
heterogeneity of AGE products ranging from well defined struc-
tures, such as protein-linked and free pentosidine [15, 19] and
N°-(carboxymethyl)lysine (CML) [20], to the ill characterized
so-called AGE peptides [21] contributes to the difficulty of this
task.

In the present study, we evaluated the catabolic pathway of one
AGE structure, pentosidine, present in the serum both in an
albumin-linked and a free form [15]. Preliminary studies have
suggested that the kidney plays a critical role in the removal of
free pentosidine: its half life is directly related to renal function
and pentosidine accumulates in renal failure [15]. Our present
results demonstrate how the kidney plays a central role in the
pentosidine disposal. Free form pentosidine is filtered through the
glomeruli and reabsorbed in the proximal tubules where it is
modified or degraded to be eventually cleared in the urine.

METHODS
Synthesis of pentosidine

Pentosidine was synthesized according to our previous method
[15, 22]. The identity of the final product was confirmed as
pentosidine by nuclear magnetic resonance and fast atom bom-
bardment-mass spectrometry.

For synthesis of radiolabeled pentosidine, a suspension of
N*-t-butoxycarbonyl-L-lysine and D-ribose in methanol was
stirred for three hours at 30°C. Methanol was evaporated under
reduced pressure resulting in a dark brown syrup. The residue was
purified by column chromatography on Dowex 50 W X 2 (Aldrich,
Millwaukee, WI, USA) using a linear gradient from 0.2 m pyridine
acetate, pH 3.1, to 2 m pyridine acetate, pH 5.0. The main fraction
was collected, concentrated in vacuo and lyophilized to yield a
partially purified product [N*-t-butoxycarbonyl- N°*-(1-deoxy-D-
ribulos-1-yl)-L-lysine]. The ¢-butoxycarbonyl group was removed
by treatment with trifluoroacetic acid for one hour at room
temperature. After removal of excess trifluoroacetic acid in vacuo,
the residue was purified on a reverse-phase high-performance
liquid chromatography (HPLC). The thus-obtained product (5
pwmol), L-[2, 3-*H]-arginine (115 nmol, 185 MBq; Du Pont,
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Fig. 1. Absence of pentosidine in the urine of normal rats after intravenous pentosidine administration. Rats with normal renal function were
intravenously given pentosidine (10 nmol/rat). The 24-hr collected urine was injected into an HPLC system and separated on a C18 reverse-phase
column (B). In some experiments, normal rats urine without pentosidine administration was incubated in vitro for 24 hours at room temperature with
synthesized pentosidine (100 pmol/ml) and analyzed by HPLC (C). A representative fluorescence profile of TCA supernatant of urine at an
excitation-emission of 335/385 nm is shown. (4) Synthesized pentosidine (100 pmol/ml). Arrows indicate the peak for pentosidine.

Wilmington, DE, USA), and L-arginine (5 wmol) were incubated
in 0.2 ml of 0.3 M phosphate buffer, pH 12.9, for 48 hours at 60°C.
After adding 6 N HCI, *H-labeled pentosidine was purified on a
reverse-phase HPLC. The yield of *H-labeled pentosidine was 98
nmol (10 kBg/nmol). More than 95% of the thus-prepared
*H-labeled pentosidine was immunoprecipitable with anti-pento-
sidine rabbit IgG, which recognizes free-form pentosidine [22].
The retention time of *H-labeled pentosidine on a reverse-phase
HPLC was completely identical with that of pentosidine.

Animal experiments

Eight-week-old Wistar rats (Charles River Japan Inc., Yoko-
hama, Japan) were fed for one week a casein-based diet (AIN-76;
Clea Japan Inc., Tokyo, Japan) with low pentosidine content as
estimated by HPLC assay (0.3 nmol/g). Rats given an intravenous
load of *H-pentosidine (270 kBg/26.8 nmol/rat), were housed in a
metabolic cage with a trap for expired air. Whole blood and
plasma samples, kidney and liver homogenates in distilled water,
were dissolved in tissue solubilizer (Soluene-350; Packard Instru-
ments Company, Meriden, CT, USA). Specimen radioactivity was
counted on a scintillation counter. Radioactivity was also mea-
sured in the collected urine, in feces homogenized in distilled
water and dissolved in tissue solubilizer, in expired air trapped in

distilled water and, finally, in the final carcass dissolved in 5 N
sodium hydroxide.

To evaluate the role of tubular cells in the handling of
pentosidine, normal rats were given a daily intravenous injection
of gentamicin (80 mg/kg) for nine days. Both gentamicin-treated
and normal control rats then received an intravenous load of
synthesized pentosidine by intravenous injection (10 or 100 nmol/
rat) and were subsequently kept in a metabolic cage. Pentosidine
levels were determined by HPLC assay.

Creatinine clearance, blood urea nitrogen, and excreted frac-
tion of filtered sodium were measured in all rats. All studies were
conducted in accordance with the NIH Guide for the Care and
Use of Laboratory Animals, and protocols were approved by the
institutional Animal Care and Use Subcommittee.

High-performance liquid chromatographic assay

For quantitation of free form pentosidine, urine samples were
mixed with an equal volume of 10% trichloroacetic acid (TCA)
and centrifuged at 5,000 X g for 10 minutes. The supernatant was
filtered through a 0.5 wm-pore filter and diluted with distilled
water. Pentosidine was determined on a reverse-phase HPLC
according to our previous method [15, 22]. The effluent was
monitored using a fluorescence detector (RF-10A; Shimadzu) and
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Fig. 2. Immunohistochemical detection of
pentosidine in renal proximal tubules of rats
administered with pentosidine. Renal tissue
sections from normal rats intravenously given
pentosidine (10 nmol/rat) were immunostained
with either anti-pentosidine rabbit IgG (4 and
C) or anti-pentosidine rabbit IgG preincubated
with an excess of synthesized pentosidine (B). A
and B show the tissue sections one hour after
administration of pentosidine; C is 24 hours
after administration. The nuclei were
counterstained with Meyer’s hematoxylin (A-C
%X200). Note that proximal renal tubules are
stained positive for pentosidine at one hour
after administration (A), but pentosidine
staining is undetectable at 24 hours after
administration (C).
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Table 1. Radioactivity concentration in tissue after intravenous
administration of *H-pentosidine to rats

Radioactivity concentration

nmol Eq of pentosidine/ml nmol Eq of pentosidine/g

Time hours Blood Plasma Kidney Liver
1 0.03 = 0.01 0.04 =0.01 458+0.55 0.03x0.01
3 0.02 = 0.01 0.03=0.01 270 +0.37 0.03 £0.01
8 0.02 = 0.00 0.03=0.00 093 +0.03 0.03=x0.01

Data represent the mean value *= sp (N = 3).

Table 2. Cumulative excretion of radioactivity in urine, feces and
expired air after intravenous administration of *H-pentosidine to rats

Cumulative excretion of radioactivity % of dose

Time hours Urine Feces Expired air Total
1 2742 *6.26 — — —
3 43.53 = 7.64 — — —
8 64.56 = 6.43 — — —
24 7740 = 1492 219 =207 156=*=1.02 81.15=* 15.67
48 80.10 = 14.10 3.16 =2.04 299 +246 56.83 = 13.33
72 8299 = 1337 344 =209 4.00*+286 9042+ 1253
Carcass 72 10.33 = 1.32
hours

Radioactivity was converted to % of dose. Data represent the mean
value = sp (N = 3).

an excitation-emission wavelength of 335/385 nm. Synthesized
pentosidine was used to obtain a standard curve. The limit of the
detection was 10 pmol of pentosidine per ml of urine.

Immunohistochemistry

Rat renal tissues were obtained from three animals given an
intravenous load of synthesized pentosidine (10 nmol/rat). Spec-
imens were fixed in 10% formalin and embedded in paraffin.
Sections cut at 2 uwm were mounted on slides coated with
3-aminopropyltriethoxy silane (Sigma, St. Louis, MO, USA),
deparaffined, rehydrated in distilled water, and then incubated
with 0.5 mg/ml of Pronase (Dako, Glostrup, Denmark) in a buffer
solution containing 0.05 m Tris-HCI, pH 7.2, and 0.1 m NaCl for 15
minutes at room temperature. The sections were washed with PBS
containing 0.05% Tween and blocked in 4% skim milk for two
hours. They were subsequently incubated with 10 ug/ml anti-
pentosidine rabbit IgG [22] overnight in humid chambers at room
temperature, followed by the detection with 3,3-diaminobenzidine
solution containing 0.003% H,O,. Competition experiments was
performed with the anti-pentosidine antibody preincubated at
37°C for five hours with an excess of synthesized pentosidine.
Non-immune rabbit IgG was used as a negative control.

Statistical analysis

Data are expressed as means * sp. Student’s ¢-test was used for
a statistical evaluation of significant difference between the two
groups.
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Fig. 3. Cumulative excretion of radioactivity in the urine, feces, and
expired air after intravenous administration of *H-pentosidine into rats.
Rats with normal renal function (N = 3) were administered intravenously
with *H-pentosidine (270 kBq/26.8 nmol/rat) and kept in the metabolic
cage. The radioactivity in the collected urine, feces, expired air were
counted on a scintillation counter. Radioactivity was converted to % of
dose initially administered. Data are expressed as the means * sD.
Symbols are: (O) total; (@) urine; (A) feces; (M) expired air.

RESULTS
Normal rat studies

No intact pentosidine was detectable by reverse-phase HPLC in
the 24-hour urine collected in normal rats after an intravenous
load of synthetic pentosidine (10 nmol/rat; Fig. 1B). By contrast,
synthetic pentosidine incubated in rat urine for 24 hours at room
temperature yielded an HPLC fluorescent peak (indicated by an
arrow in Fig. 1C) with a retention time identical with that of
pentosidine (Fig. 1A).

Pentosidine accumulation was detected by immunohistochem-
istry in the proximal renal tubule one hour after the intravenous
injection of synthetic pentosidine (Fig. 2A). No immunostaining
was further demonstrable after 24 hours (Fig. 2C). In the absence
of a pentosidine load, no immunostaining was visible in normal
rats (data not shown). Preadsorption of the antibody with pento-
sidine (Fig. 2B) or non-immune rabbit IgG abolished immuno-
staining, demonstrating the specificity of the immunoreaction.

Taken together with our previous demonstration that intrave-
nous pentosidine was rapidly cleared from the plasma of normal
rats [15], these results suggest that synthetic pentosidine was
filtered through the renal glomeruli and reabsorbed by the
proximal renal tubule within 24 hours. Reabsorbed pentosidine
disappeared rapidly from the tubules, its ultimate fate remaining
undefined.

The renal catabolic pathway of synthetic pentosidine was
further evaluated in normal rats given an intravenous load of
radiolabeled pentosidine. One hour after the injection, up to 35%
of the radioactive load accumulated in the kidneys versus only less
than 2% in blood, plasma, and liver (Table 1). At eight hours, less
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Table 3. Urinary excretion of pentosidine in normal rats and gentamicin treated rats with tubular dysfunction
Normal rats Gentamicin treated rats 80 mg/kg/day X 9
Pentosidine nmol/rat Pentosidine nmol/rat
0 10 100 0 10 100
CCr pl/min 1022.32 = 110.08  913.85 = 204.86 1057.88 += 192.97 210.55 = 109.25 185.85 + 48.47 258.17 * 146.80
FENa % 0.43 = 0.10 0.31 = 0.12 0.21 = 0.09 6.00 = 1.57 7.12 = 1.85 6.54 = 3.34
Excretion of pentosidine in ND ND 0.45 = 0.17 ND 3.20 = 1.65 21.17 = 11.56

the 17.5 hours collected urine
nmol

Data represent the mean value = sp (N = 5).

than 7% of the radioactive load was still detectable in the kidney.
At that time, 21.5%, 20.1% and 14.1% of the radioactivity were
found in the TCA precipitable fractions of plasma, liver, and
kidney, respectively, suggesting that a fraction of radiolabeled
pentosidine was associated with tissue proteins.

The cumulative excretion of radioactivity in urine, feces and
expired air is shown in Table 2. At 72 hours, 83% of the initial
dose was eliminated in the urine and only 7% in the feces and
expired air, the remaining 10% being recovered in the carcass
(Fig. 3).

Only ~30% of the 72-hour urine radioactivity was immunopre-
cipitated with the anti-pentosidine antibody. On a reverse-phase
HPLC (Fig. 4B), approximately 20% of urine radioactivity coin-
cided with the retention time of pure radiolabeled pentosidine
(indicated by an arrow in Fig. 4A), the remaining radioactivity
coinciding with fractions with different retention times. These
results demonstrate that most of the urinary radioactivity is
associated with substances chemically and immunochemically
distinct from intact pentosidine, and suggest that, after glomerular
filtration, pentosidine undergoes a degradation or modification
process. Urine per se is not thought to be the cause of pentosidine
modification, because synthetic pentosidine remained completely
immunoprecipitable after a 24-hour incubation with rat or human
urine at room temperature. Furthermore, as shown in Figure 1C,
by reverse-phase HPLC its retention time remained identical with
that of pentosidine.

Gentamicin-treated rat studies

Gentamicin treatment lowered glomerular filtration to 20% of
control (Table 3). The amount of pentosidine recovered in the

urine within 17.5 hours after various intravenous pentosidine
loads is given in Table 3 for both control and gentamicin-
treated rats. In control rats, no intact pentosidine was detected
after a 10 nmol pentosidine load (Fig. 1B) and only minimal
amounts after a 100 nmol load. By contrast, in gentamicin-
treated rats, 30% and 20% of the load were recovered after a
10 and 100 nmol/rat load, respectively. Intact pentosidine is
recovered in the urine of gentamicin-treated rats as demon-
strated by the presence, on a HPLC profile, of peaks (Fig. 5 B,
C) with the same retention time as synthetic pentosidine. The
pentosidine peaks were immunoprecipitated with anti-pentosi-
dine antibody (Fig. 5D). No pentosidine was detected in the
urine of gentamicin-treated rats in the absence of a pentosidine
load (Fig. 5A).

DISCUSSION

The present study demonstrates the key role of the kidney in
the disposal of an AGE product, pentosidine, and provides new
insights in the renal catabolic pathway for AGEs. We have
previously shown that the half-life of synthetic pentosidine given
to rats is prolonged by renal failure, suggesting its removal by
glomerular filtration [15]. Interestingly, however, we now report
that, for the same load, no pentosidine appears in the urine, a
finding compatible with extensive tubular reabsorption. This
hypothesis is further supported by the demonstration by immu-
nohistochemistry of the transient accumulation of pentosidine in
proximal tubules.

The reabsorbed pentosidine is rapidly cleared as it disappears
from the tubules within 24 hours. Its fate is elucidated by an
analysis of the kinetics of labeled pentosidine injected to normal
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rat. During the first hour, radioactivity accumulates mainly in the
kidney. After 72 hours, more than 80% of the radioactivity is
recovered in the urine. However, less than a third of the urinary
radioactivity is immunoprecipitable with anti-pentosidine anti-
body, and only 20% migrates with intact pentosidine on HPLC.
These findings suggest that the majority of pentosidine has been
catabolized during the tubular reabsorptive process.

The claim that filtered pentosidine is reabsorbed to a major
extent is supported by our observations in gentamicin-treated rats.
This model is characterized by a primary lesion of tubular cells, an
early step of which is a disturbance of lysosomal function [23] with
a subsequent degradation of glomerular filtration. In this experi-
mental group, up to 20 to 30% of the injected pentosidine are
recovered intact in the urine. This observation further raises the
hypothesis that pentosidine handling by tubular cells is linked with
lysosomal function.

Is the present model of pentosidine disposal, that is, filtration
and catabolism during the reabsorptive process, applicable to
other AGE epitopes? Bendayan et al [24] has demonstrated, in

20 30

Fig. 5. Presence of intact pentosidine in the
urine of rats with tubular dysfunction. Rats
with tubular dysfunction due to administration
with gentamicin (80 mg/kg/day) for nine days
were intravenously given pentosidine (10 or 100
nmol/rat). The 17.5-hour collected urine was
injected into an HPLC system and separated on
a C18 reverse-phase column. Representative
fluorescence profiles of TCA supernatant of
urine at an excitation-emission of 335/385 nm
are shown. (4) The urine of rats without
pentosidine administration; (B) the urine of rats
with 10 nmol/rat of pentosidine administration;
(C) the urine of rats with 100 nmol/rat of

pentosidine administration; and (D) the urine
of rats with 100 nmol/rat of pentosidine

20 30 administration, which were incubated with anti-
pentosidine rabbit IgG. Arrows indicate the
peak for pentosidine.

the cellular compartment of mice proximal tubular cells, the
presence of tagged glycated bovine serum as well as native bovine
serum albumin in their cellular compartment. Of greater interest,
the same group [25] followed the fate of intact as well as
proteolysed AGE-BSA, the so-called AGE peptides injected in
rats. On immunoelectron microscopy with a polyclonal anti-AGE
antibody, this group demonstrated the presence of AGE peptide,
but not of AGE-BSA, in proximal tubular cells, first in early then
in late endosomes and lysosomes. The recognized AGE epitopes
were not identified. Nevertheless, these observations fit very well
with our hypothesis that AGEs are destroyed in the kidney by a
process of filtration and tubular reabsorption, reminiscent of
many other substances such as low molecular weight proteins,
insulin, and various other hormones.

Our present observations demonstrate that exogenous, syn-
thetic pentosidine binds rapidly to tissue proteins as evidenced by
the radioactivity present at eight hours in TCA-precipitable
fractions of plasma, liver, and kidney. This finding raises the
question of a possibly deleterious role of pentosidine contained in
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various prepared foods. If a protein binding exogeneous pentosi-
dine develops the same characteristics as proteins transformed
into AGE proteins by the glycoxidative stress, prevention of
AGE-related disorders such as atherosclerosis, diabetic compli-
cations, and dialysis-related amyloidosis might benefit from di-
etary adaptations.

The relevance of our results for humans remains to be estab-
lished. Preliminary immunohistochemical studies in normal hu-
man kidney suggest that it might be the case. Indeed, pentosidine
is demonstrable in renal proximal tubules (unpublished observa-
tions).
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APPENDIX

Abbreviations used in this article are: AGEs, advanced glycation end
products; CML, N¢-(carboxymethyl)lysine; HPLC, high-performance lig-
uid chromatography; TCA, trichloroacetic acid.
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