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Transient receptor potential (TRP) proteins are a family of ion channels central for sensory signaling. These recep-
tors and, in particular, those involved in thermal sensing are also involved in pain signaling. Noteworthy,
thermosensory receptors are polymodal ion channels that respond to both physical and chemical stimuli, thus
integrating different environmental clues. In addition, their activity is modulated by algesic agents and lipidergic
substances that are primarily released in pathological states. Lipids and lipid-like molecules have been found that
can directly activate some thermosensory channels or modulate their activity by either potentiating or inhibiting
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TRP channels comprise lipids from a variety of metabolic pathways, including metabolites of the cyclooxygenase,
lipoxygenase and cytochrome-P450 pathways, phospholipids and lysophospholipids. Therefore, TRP-channels
are able to integrate and interpret incoming signals from the different metabolic lipid pathways. Taken together,

Thermodynamics the large number of lipids that can activate, sensitize or inhibit neuronal TRP-channels highlights the pivotal role
of these molecules in sensory biology as well as in pain transduction and perception. This article is part of a Spe-
cial Issue entitled: Lipid-protein interactions. Guest Editors: Amitabha Chattopadhyay and Jean-Marie
Ruysschaert.
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1. Introduction

Survival of organisms critically depends on sensing environmental
signals and transducing the information to the brain for proper re-
sponse. For this purpose, the peripheral nervous system has specialized

* This article is part of a Special Issue entitled: Lipid-protein interactions. Guest Editors:
Amitabha Chattopadhyay and Jean-Marie Ruysschaert.

* Corresponding authors at: Instituto de Biologia Molecular y Celular, Universidad
Miguel Hernandez, Av. de la Universidad s/n, 03202 Elche (Alicante), Spain. Tel.: 434
966658727; fax: +34 966658758.

E-mail addresses: asia.fernandez@umh.es (A. Fernandez-Carvajal), aferrer@umbh.es
(A. Ferrer-Montiel).

http://dx.doi.org/10.1016/j.bbamem.2015.03.022
0005-2736/© 2015 Elsevier B.V. All rights reserved.

neurons that contain the sensing molecular machinery, namely ion
channels that respond to chemical and physical stimuli. An important
family of sensory channels is the Transient Receptor Potential (TRP).
These are non-selective cation channels, which are organized in six sub-
families, namely Ankyrin (TRPA), Canonical (TRPC), Melastatin (TRPM),
Mucolipin (TRPML), Polycistin (TRPP) and Vanilloid (TRPV) [1-4]. In
sensory neurons, they contribute to a plethora of activities including
thermal sensation, homeostasis of body temperature and pain [5,6]. In
the central nervous system (CNS), TRP channels have been associated
with neurogenesis, brain development and synaptic transmission
[7,8]. Moreover, TRPV1 and TRPA1 have also been related to immuni-
ty, obesity and thermogenesis [9]. Therefore, it is not surprising that
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dysfunction of TRP channels is involved in the etiology of several diseases
[10].

Structurally, TRP channels are tetrameric assemblies of basic sub-
units organized around a central aqueous pore. Akin to voltage-gated
K™ channels, each subunit is composed of a membrane region contain-
ing 6 transmembrane segments. The recent structural model derived
from cryo-electron microscopic images has clearly shown this molecu-
lar analogy [11]. TRP channels mainly differ in their cytosolic N- and
C-terminal domains, which are involved in channel gating and mediat-
ing intracellular signaling. Indeed, most of TRP channels, if not all, are
part of protein complexes known as signalplexes [12-14].

TRPs are activated by a myriad of physical and chemical stimuli such
as temperature, pressure, voltage, irritant agents, inflammatory mole-
cules, pH, osmolality changes, UVB radiation and a large list of natural
chemical compounds [2,5,6,15-17]. TRP-evoked ionic currents are
pivotal for the modulation of action potential in peripheral terminals,
and to modify signaling pathways. Notably, TRP channel functionality
is modulated by intracellular signaling pathways such as those mediat-
ed by protein kinase C (PKC), protein kinase A (PKA) and phospholipase
C (PLC) [6,18]. This interplay makes TRP channels highly dynamic signal
integrators whose activity depends on the cellular context and state.

As integral membrane proteins, TRP channels are highly sensitive to
the lipid environment, although studies in reconstituted controlled sys-
tems are still scarce. Furthermore, some potent TRP agonists are lipids.
The effect of lipids on TRP channels function has attracted the interest
of the pharmaceutical industry and the academic research, as reflected
by the number of research articles and reviews of this field [19-23].

A great variety of channels, including TRPs, is modulated by endog-
enous and exogenous lipids [21,24-29]. Cholesterol has been reported
to potentiate or diminish the activity of ion channels [30]. Phos-
phatidylinositol 4-5-bisphosphate (PIP2) is a special case since it mod-
ulates the activity of many types of ion channels in a variety of modes
[31-33]. A notable interest is currently centered on understanding the
structure-function relations for TRP-lipid interactions. Information on
the functional and structural interactions between lipids and TRP chan-
nels offers mechanistic insights into TRP-mediated cellular processes.
Furthermore, such knowledge may shed light into pathological process-
es, and the structural information may be utilized to pave the way to
develop TRP channel modulators with therapeutic potential. The history
of lipid studies in the TRP field started in the late 1990s [34-36], and
knowledge has thus far expanded to cover various aspects such as
ligand binding, sensitivity shift, bilayer-protein interactions, and up-
stream metabotropic signaling. However, it has not been established
yet whether TRP-lipid interactions act as second messengers, intercel-
lular transmitters, or function to simply transform the plasma mem-
brane properties affecting channel protein structure.

To date, more than 50 endogenous lipids that can regulate TRP chan-
nel activity in sensory neurons have been described, thus representing
the majority of known endogenous TRP channel modulators (Fig. 1).
Lipid modulators of TRP channels comprise lipids from a variety of
metabolic pathways, including metabolites of the cyclooxygenase
(COX), lipoxygenase (LOX) and cytochrome-P450 (CYP) pathways,
phospholipids and lysophospholipids [37-40]. In addition, recent
studies have identified lipid families previously not known to be
connected to sensor signaling as modulators of TRP channels. These
newly identified lipid modulators belong to hepoxilin A3 [41], 9-(S)-
hydroxyoctadecadienoic acid (9-(S)-HODE) and 13-(S)-HODE from
the LOX-pathway [42,43], 5(6)-epoxy-8Z,11Z,14Z-eicosatrienoic acid
(5,6-EET) from the CYP-pathway and 20-hydroxyeicasatetraenoic acid
(20-HETE) an a-hydroxide of arachidonic acid (AA) [44,45], as well as
the lysophosphatidic acid (LPA) [46]. Furthermore, molecules like the
LOX-derived ®»-3 lipid Resolvin D1 (RvD1) and Resolvin D2 (RvD2) act
as endogenous inhibitors of TRPA1, TRPV1, TRPV3 and TRPV4 [47],
thus expanding the functionality of lipid-mediated TRP channel modu-
lation. Therefore, TRP-channels are able to integrate and interpret
incoming signals from the different metabolic lipid pathways. Taken

together, the large number of lipids that can activate, sensitize or inhibit
neuronal TRP-channels highlights the pivotal role of these molecules
in sensory biology as well as in pain transduction and perception.
Here we review the current state of this exciting topic in classical
thermoTRP biology, focusing on the structure-function data for
TRP channels regulation by different lipid mediators such as lipid
metabolites, phosphoinositides and components of lipid rafts. Novel
thermosensory channels (TRPM2, TRPM3 and TRPM5) have been
excluded because of yet limited data.

2. Lipid metabolites as modulators of TRP channel function

Original efforts to deorphanize TRPV1 channels [63] suggested that
endocannabinoids, such as anandamide, were TRPV1 agonists [35].
Later, N-arachidonoyl-dopamine (NADA) and the N-oleyl-dopamine
(OLDA) [38,60] were also determined to be TRPV1 agonists. Lipidergic
endovanilloids may bind to the intracellular receptor side like capsaicin
but compelling evidence is yet lacking. Similarly, nonpsychoactive can-
nabinoids such as cannabidiol and cannabinol have been described as
TRPV2 agonists [64]. These results suggested that lipid metabolites
may be critical modulators of TRP channel function.

Lipids from cell membranes can be metabolized by Phospholipase A,
(PLA;) which release free polyunsaturated fatty acids (PUFAs) and
lysophospholipids (LPLs) or by PLC that produce Diacylglycerol (DAG)
and Inositol trisphosphate (IP3) (Fig. 2). PUFAs can be additionally
metabolized by COX, LOX and CYP enzymes given a plethora of lipids
molecules able to modulate thermoTRP channels activity [65]. LPLs
produced by PLA; are also able to regulate the activity of TRP channels.
For instance, LPA, increased upon tissue injury, activates TRPV1 through
a direct mechanism by apparently interacting with the channel C termi-
nus [46], indicating a key role of this lipid in pain transduction.

Other LPLs that have been shown to modulate TRP channels
are lysophosphatidylcholine (LPC), lysophosphatidylinositol (LPI),
and lysophosphatidylserine (LPS) that alter the thermal sensitivity of
TRPMS, raising the temperature threshold toward normal body temper-
ature. This positive modulation by LPLs provides a potential physiolog-
ical mechanism for sensitizing and activating TRPMS in the absence
of temperature variations [56,66]. However, direct binding of these
lipidergic metabolites to TRPM8 has not yet been demonstrated; and,
LPLs may just affect the plasma membrane physico-chemical properties
and thus indirectly influence channel gating.

LPC and LPI are also able to induce calcium influx via TRPV2
channel [67]. This activation, which involves Gq/Go-protein and
phosphatidylinositol-3,4 kinase (PI3,4K) signaling, appears to be mainly
due to TRPV2 translocation to the plasma membrane and is dependent
on the length of the side-chain and the nature of the lysophospholipid
head-group. A potential pathological role of TRPV2 activation by LPC
and LPI has been suggested in prostate cancer as it increases cell migra-
tion of the prostate cancer cell line PC3 [67].

Diacylglycerol is a signaling molecule generated by Gq-coupled
GPCR receptors. DAG activates TRPV1 in a membrane-delimited
manner [59]. Multiple DAG analogues, 1-oleoyl-2-acetyl-snglycerol
(OAG), 1-Stearyl-2-arachinonyl-sn-glycerol (SAG), and 1,2-dioctanoyl-
sn-glycerol (DOG) have this capability but with different potencies
[59]. This activation is likely due to direct binding of the lipid to the
channel because DAG downstream signaling such as DAG lipase and
TRPV1 phosphorylation by DAG-activated protein kinase is not involved.
More relevant, a TRPV1 mutant channel unable to bind capsaicin does
not react with DAG. Diacylglycerol is also a TRPA1 activator and may
contribute to the downstream mechanism of GPCR-induced pain [48].

Endogenous TRPV1 lipid ligands also include LOX metabolites
such as 12-(S)-hydroperoxyeicosa-5Z,8Z,10E,14Z-tetraeonic acid 12-
(S)HPETE, 15-(S)HPETE and leukotriene B4 (LKB4) [36]. The signaling
leading to LOX metabolites includes bradykinin (BK) stimulation of
the B2 receptor and PLA2 activation [68]. BK-induced excitation of
sensory neurons via TRPV1 has been proposed to involve mobilization
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Fig. 1. Lipidergic metabolites that activate (blue) or inhibit (red) TRP channels. References: [48] for arachidonic acid and OAG (TRPA1); [49] for PGA1, PGA2 (TRPA1); [50] for nitrooleic
acid (TRPA1); [51,52] for PIP2 (TRPA1); [45] for 5,6-EET (TRPAT1); [53] for Resolvin D1 (TRPA1, TRPV3 and TRPV4); [47] for Resolvin D1, D2 and E1 (TRPA1, TRPV1); [54] for nitrooleic acid
O0A-NO; (TRPA1,TRPV1); [55] for PIP2 (TRPMS8); [56] for LPC, LPI, LPS, docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and arachidonic acid (AA) (TRPMS); [57] for 5,6-EET and
8,9-EET epoxyeicosatrienoic acids (TRPV4, TRPA1); [58] for FPP (TRPV3); [36] for 12(S)-HPETE, 15(S)-HPETE, 5(S)-HETE and leukotriene B4 (TRPV1); [35,36] for anandamide (TRPV1);
[59] for OAG (1-oleoyl-2-acetyl-snglycerol), SAG (1-Stearyl-2-arachinonyl-sn-glycerol), and DOG (1,2-dioctanoyl-sn-glycerol) (TRPV1); [42,43] for13-HODE, 13-0x0-HODE, 9-HODE and
9-oxo-HODE (TRPV1); [60] for NADA and OLDA (TRPV1); [59] for OAG, (TRPV1); [61] for LPC (TRPV2); [62] for cannabinoids CB (TRPV2).

of arachidonic acid by PLA; and generation of 12-(S)HPETE [36,68]. LOX
also produces 9-HODE and 13-HODE from linoleic acid [42,43]. HODEs
selectively act on TRPV1. This cascade seems to be initiated by noxious
heat and contributes to heat sensitivity. Since HODEs are released
during cell injury, their production could represent a mechanism for
inflammatory hyperalgesia and mechanical allodynia [42,43].

In addition to LOX metabolites, pro-inflammatory lipidergic media-
tors that affect TRPV1 activity include prostaglandins [69]. Their effect
is mediated through different intracellular pathways, which culminate
in the phosphorylation of the channel through PKC or PKA [70]. Further-
more, prostaglandins like PGA;, PGA,, 8-iso-PGA,, 15-deoxy-PG]J, and
D12-PGJ,, formed by non-enzymatic dehydration of the respective PGs
(PGD-, PGE, and PGE;), are also TRPA1 ligands and directly gate the
channel to cause acute nociception [50,71,72]. Based on the recent
evidence that TRPA1 antagonists alleviate visceral nociception, the
blockade of cyclopentone prostaglandin formation may represent a
novel avenue for therapeutic intervention in inflammatory visceral
pain [72]. Other prostaglandins like PGE2 activate GPCRs leading to
TRPV4 channel phosphorylation and activation [73].

CYP-derived endogenous signaling lipids, the epoxyeicosatrienoic
acids (EETs) and epoxymetabolites of arachidonic acid, have also been
identified to interact with thermosensory TRP channels. Lipids 5,6-EET
and to a lesser extent 8,9-EET have been identified to directly activate
TRPV4 in vascular endothelial cells, promoting vasorelaxation [74].
Moreover, at high concentrations (>10 uM), 5,6-EET can activate
TRPV4 in colonic afferents where it may cause visceral hyperalgesia
[75,76]. However, in lumbal DRG L4 and L5 neurons, 5,6-EET causes
Ca?™ transients independently of TRPV4 and acts as an endogenous
TRPAT1 activator. 5,6-EET is synthesized in dorsal root ganglia and the
dorsal horn of the spinal cord during acute pain and causes mechanical
hypersensitivity by activating TRPA1 on primary afferent terminals in
the L4-L5 section of the dorsal horn [45]. Also, 8,9-EET is able to sensi-
tize AITC-induced TRPA1 responses in DRG-neurons through still
unknown mechanisms [45].

Nitrate fatty acids such as 9-nitroleic acid (OA-NO,) that are gener-
ated during inflammation by phospholipids and nitric oxide (NO) are
other endogenous lipidergic TRPA1 and TRPV1 activators [54]. The ef-
fect of OA-NO, on afferent neurons is initially excitatory; however,
prolonged exposure to OA-NO, may desensitize the TRPV1 and TRPA1
channels and, in turn, suppress nociceptive and inflammatory responses
[54]. 1t has been shown that subcutaneous injection of OA-NO, into a rat
hindpaw induced delayed and prolonged nociceptive behavior. These
results raise the possibility that OA-NO, might be useful clinically to re-
duce neurogenic inflammation and certain types of painful sensations
by desensitizing TRPA1 expressed in nociceptive afferents [77].

It is interesting that resolvins, the most potent endogenous lipid
ligands described thus far, selectively inhibit the TRPV1 and TRPA1
gating. RvD2 and RvET1 inhibit the capsaicin-activated currents at IC50
values of 0.1 nM and 1 nM concentrations, respectively [47], and AITC-
activated currents with IC50 values of 2 nM and 9 nM, respectively.
These results suggest distinct roles of resolvins in regulating TRP chan-
nels and identify RvD2 as a very potent endogenous inhibitor of
inflammatory pain [47].

Another lipid that modulates thermosensory channels is the choles-
terol intermediate lipid farnesyl pyrophosphate (FPP). This lipid is the
sole known endogenous TRPV3 activator and made its effect via direct
channel interaction. FPP has a strong potency and it produces a
hyperalgesic effect in vivo [58]. FPP synthase is inhibited by nitrogen con-
taining biphosphonates, which proved to be useful in certain types of
bone cancer and neuropathic pain [80]. In contrast, RvD1 inhibits periph-
erally expressed TRPV3 leading to a modality-specific antinociception.
Thus, stimulating the endogenous production of RvD1 or the extraneous
administration of it and even its possible synthetic analogues might help
reverse TRPV3-mediated pain states [53]. Since TRPV3 has been implicat-
ed in inflammatory pain [58] and skin disorders [81], manipulation of
TRPV3 activity by FPP synthase blockers or RvD1 may be exploited for
therapeutic purposes. Taken together, TRP channels have broad spectrum
of chemoceptive sensitivity unlike the canonical ligand gated ion
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Fig. 2. Lipid metabolites implicated in TRP channel modulation. Abbreviations: Phospholipase C (PLC), phospholipase A (PLA,), iPLA,: Ca®™ insensible, cPLA,: citosolic, cytochrome P450
(CYP), cyclooxygenases (COX), lipoxygenases (LOX), HETEs: hydroxyeicosatetraenoic acids, EETs: epoxyeicosatrienoic acids, OLAMs: oxidized linoleic acid metabolites, leukotriene (LK),
resolvin (Rsv) prostaglandins (PG), N-arachidonoyldopamine (NADA), N-oleoyldopamine (OLDA).

channels. This feature of TRP channels makes them the key transducer
molecules to signal a wide range of stimuli from physiological to noxious
stimuli.

3. Membrane micro-domains as modulators of TRP channels

One of the most studied membrane micro-domains are lipid rafts
which are domains rich in cholesterol, sphingomyelin and gangliosides
that play an important role modulating the activity of ion channels as
the nicotinic acetylcholine channel [82-86]. A similar central role has
been reported for TRPM8 channels [29], whose activity is critically reg-
ulated by lipid raft association. Menthol- and cold-mediated responses
of TRPM8 were potentiated when the association of the channel with
lipid rafts was prevented. In addition, lipid raft disruption shifted the
threshold for TRPMS activation to a warmer temperature [29].

Intriguingly, several studies conducted with TRPV1 have provided
controversial results. Depletion of cholesterol, upon incubation with
methyl B-cyclodextrin (MCD), did not change heat activation currents
in TRPV1 expressed in Xenopus laevis oocytes, while in dorsal root
ganglion neurons the amplitude of capsaicin-activated currents was
significantly reduced [87]. In contrast, it was reported that >(H)RTX
binding to TRPV1 receptors was not modulated by cholesterol depletion
inrat C6 glioma cells [88]. However, disruption of lipid rafts by depleting
any of its cardinal constituents, namely cholesterol, sphingomyelin or
gangliosides by pharmacological tools blocked TRPV1 gating by various
agonists [89]. Inhibition of Ca?™ responses occurred when cholesterol
was depleted by MCD [87,90], or when extracellular sphingomyelin
molecules were broken down by sphingomyelinase [91], and also
when the cells were incubated with D-PDMP or myriocin which reduce
the biosynthesis of gangliosides by inhibiting ceramide glucosylation

[92]. However, capsaicin-induced TRPV1 single channel currents in
HEK293-transfected cells were not changed after cholesterol depletion,
but diminished with cholesterol addition. R579D and F758Q substitu-
tions in the S5 helix of TRPV1 reduced this cholesterol inhibitory effect
[93]. Thus, the role of hydrophobic interactions in drug/agonist binding
to the TRP channel/lipid raft interface might be more important in drug
action than it has previously been taken into account [29,89,94].

Apart from lipid rafts, the influence of other membrane micro-
domains has not been described. Similarly, whether lipidic metabolites
exert part of their modulating TRP activity by creating such micro-
domains in the membrane is yet elusive, but very exciting notion.

4. Modulation of TRP channel function by phosphoinositides

The most studied lipid modulator of TRP channel activity is
phosphoinositides, which appear to be a master regulator of this family
of ion channels. The regulatory role of phosphoinositides on ion chan-
nels was first demonstrated by the PI(4,5)P2 requirement of the cardiac
Karp channels [95]. Subsequent publications indicated that members of
inwardly-rectifying and voltage-gated K™ and voltage-gated Ca®™
channel families were also regulated by PI(4,5)P2 (see [19,96]). TRP
channels are also subjected to phosphoinositide regulation. This regula-
tion could be by direct binding or by indirect mechanisms involving
interacting proteins whose function depends on PIP2 binding. A good
example of that is the Erzin-PIP2 interaction that strengthens actin
binding to the cellular membrane and modulates cell adhesion and
morphology [97]. Similarly, it has been proposed that the membrane
protein Pirt can modulate TRPV1 activity trough a PIP2-dependent
mechanism [52]. This mode of regulation has not been intensively
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studied. Therefore, it is plausible that future studies unveil new indirect
PIP2-mediated modulators of TRP channels.

The direct effect of PI(4,5)P2 on channel activity has been well
characterized for TRPM8. Menthol-evoked currents in TRPMS inside-
out patch clamp recordings run down as consequence of the phospha-
tases that eliminate PI(4,5)P2. Similarly, sequestering membrane PIP2
with polylysin or anti-PI(4,5)P2 antibody inactivates the channel [55,
98]. In cells, the inactivation of TRPM8 by the rapamycin-induced 5’
phosphatase or with Ciona intestinalis Voltage Sensitive Phosphatase
(ciVSP) further support that membrane PIP2 depletion inactivates
TRPMS8 [99,100]. Conversely, recovering PI(4,5)P2 levels with the
short acyl chain counterpart diC8-PIP2 or by stimulating the conversion
of PI(4)P into PI(4,5)P2 with MgATP, recovers the activity of the cold re-
ceptor in excised patches [55,98,100]. In terms of specificity the finding
that TRPMS activity in excised patches or in artificial bilayers is not sup-
ported by PI(4)P, PI(3,5)P2 or PI(3,4,5) underscores a strict requirement
for PI(4,5)P2 [101,102]. The requirement of PIP2 for channels activity
has also been reported for TRPM4, TRPM5, TRPM6, TRPM7 and TRPV5
[55,103-107].

The scenario reported for TRPV1 is markedly different. In this case
the hydrolysis of PI(4,5)P2 favors channel function by relieving tonic
channel inhibition or by the action of the generated second messengers
[24,108,109]. However, recent findings on TRPV1 underscore that
besides its inhibitory role, PI(4,5)P2 is also a necessary cofactor for
channel activation. PI(4,5)P2 and PI(4)P enhance the activity of TRPV1
[110-113] and its depletion decrease channel activity [25,111,114].
Furthermore, rundown of PIP2 is determinant for desensitization upon
prolonged exposure to an activating stimulus [25,110,115]. At variance
with TRPMS8, TRPV1 channel activity can be supported, although at a
lower extent, by PI(4)P, PI(3,4)P2 and PIP(3,4,5)P3 and other phospho-
lipids such as phosphatidylglycerol [26,110]. Negative charged lipids
such as oleolyl-CoA or 1,2-dioleoyl-sn-glycero-3-((N-(5-amino-1-
carboxypentyl)iminodiacetic acid)succinyl) (DGS-NTA) can also
hold TRPV1 function as well, implying a low selectivity of TRPV1 in
phosphoinositide binding [26]. Noteworthy, the dependence of the
TRP channel function on specific phosphoinositides offers new layers
of regulation. First, it imposes a temporal constrain to the channel
response such that a sustained signal can be easily terminated. And,
second, the different content on phosphoinositides of the subcellular
membranes spatially restricts the channel activity to the specific
membranes or membrane regions [96].

Virtually any stretch of positive residues can interact with PI(4,5)P2.
Several of such sequences can be found in almost all TRP channels but
not all of them mediate PIP2 regulation. Functionally relevant binding
sites have been characterized by combining molecular biology tech-
niques such as site directed mutagenesis with patch clamp recordings.
In TRPMS, positively charged amino acids in the TRPbox, a 6-mer
conserved domain in the C-terminus near the internal channel
gate, mediate PIP2 effect. When K995, R998 and R1008 are mutated,
the sensitivity for PI(4,5)P2 decreases accompanied with channel
blockade by PIP2 depletion [55]. Mutations in the N-end of the C-
terminus, the so-called TRP domain, also affect the sensitivity for
PIP2 in TRPM5, TRPV1 and TRPVS5 [55,116,117]. However, they have
little effect, if any, on TRPM4 suggesting the existence of other PIP2
binding sites for channel modulation. Indeed, TRPM4-PIP2
interacting region is located in the PH-like domain at the distal C-
terminus of the channel [103].

A group of positive residues downstream the TRPbox of TRPV1 and
TRPV2 has been shown to interact with PIP2, implying that it may be
shared by other TRP channels and serve as a general regulatory region
in this family of ion channels [112]. It is also worth mentioning that
not all PIP2 binding sites reside in the C-terminus of the channel.
A case in point is TRPV4 who has the PIP2 biding site in the cytosolic
N-terminus. It has been proposed that PIP2 binding in TRPV4 favors
the conformational rearrangements that lead to the activation of the
channel by hypotonicity and heat [118].

Structure-function studies pinpoint to the TRP domain as a pivotal
region for channel gating and PIP2 modulation as it contains residues
central for PIP2 binding [119-122]. The functional relevance of this
domain has been further substantiated by its conformation in the
proposed high resolution TRPV1 structural model [11]. Recent studies
have further demonstrated the importance of the TRP domain on allo-
steric channel activation. Mutations targeting W697 in the TRP box of
TRPV1 resulted in a complete loss of voltage sensitivity while retaining
capsaicin response [121]. Interestingly, the W697 is interacting with
S4-S5 loop considered central for voltage sensing [11,121]. In TRPMS,
mutations Y981E and Y981K destabilized the gate resulting in constitu-
tive channel opening [122]. Interestingly, subsequent mutations on
the S6-TRP box linker restored the regulated activity mainly by re-
establishing coupling of stimuli sensing and pore opening. Mutations
in the TRP domain with greater functional impact reside at the predicted
interaction interface between the TRP helix and the loop S4-S5 [122],
suggesting that the TRP helix/S4-S5 loop interaction is central for trans-
mitting different stimuli to the gate. Remarkably, these regions have
also intense PIP2 contacts with residues in the S4-S5 loop such as
those suggested for TRPV1 [116,117]. Thus, PIP2 binding can strengthen
the TRP helix/S4-S5 loop interaction favoring coupling of the putative
voltage sensor and the channel pore. Noteworthy, S4-S5 loop/PIP2 con-
tacts have been shown to control the pore opening in Kv channels [123].
Taking together, it is tempting to propose that by tethering the TRP
domain to the membrane, PIP2 promotes and strengthens the TRP
helix/S4-S5 loop interaction setting the structural framework for the
allosteric regulation of channel gating (Fig. 3).

5. TRP channels contain putative lipid binding sites

A central question arises: are there binding sites for lipids in TRP
channels? Can the channel structure reveal specific lipid docking
sites? Although it has been reported that lipids modulated the channel
activity of TRP channels, there is no information regarding the presence
of lipid binding sites in the receptor. This limitation likely arises from
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Fig. 3. Possible action of PIP2 on TRP channels. PIP2 binding close to the channel pore
allows the interactions of the S4-S5 linker with the TRP domain. Variations of PIP2 levels
regulate channels responsiveness by uncoupling the sensing domains from the channel
gate. The drawing represents a single subunit of the tetramer. The pivotal regions for stim-
uli coupling are named in the picture. The S4-S5 loop (S4-S5)/TRP domain (TRPd) inter-
actions are represented by a green cloud and the PIP2 moiety is colored in purple.
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Fig. 4. TRPV1 in complex with lipids transferred from Kv1.2/Kv2.1 potassium channel. A. Extracellular view of the TRPV1 showing annular and non-annular lipids. Protein chains are
represented in ribbon and color blue, red, yellow and magenta. Lipids in ball representation, with carbon and oxygen colored cyan and red, respectively. B. Side view of TRPV1 showing
the transmembrane a-helices and the inner and outer membrane leaflets. C. Detail of non-annular lipid involved in intrasubunit interactions, putatively assigned to PIP2 binding site.

D. Detail of other non-annular lipids in the inner and outer membrane leaflets.

scarce high-resolution structural information available on TRP channels,
which is restricted to the cytosolic ankyrin domains and peptides from
the C-terminal. The Ankyrin-repeat domain (ARD) from the cytoplasmic
N-terminus of different TRP channels has been characterized by X-ray
crystallography unraveling binding sites for regulatory molecules
[124-128]. At variance, obtaining structures for the full-length channel
is cumbersome as these proteins are hard to crystallize and the crystals
diffract poorly. Alternatively, electron cryo-microscopy structures of
full-length TRPV1, TRPV2, TRPV4 and TRPA1 have disclosed the molec-
ular architecture and subunit organization [127,129-131], although at
a low resolution (13.6 A at most). Recently, however, a breakthrough
in TRP channel structure was reached. Using single particle electron
cryo-microscopy, a 3.4 A structural model of TRPV1 lacking the distal
part of the C-terminus was reported for the closed and open states
[11,132]. Unfortunately, none of these structures were determined in
complex with lipids.

Thus, to uncover putative lipid binding sites on TRP channels, we
used the structural information available for other ion channels.
Hence, we superposed the TRPV1 EM structural model on representa-
tive Kv, Nav and Cav ion channels structures obtained in complex with
lipids. Then, the lipids were transferred to the TRPV1 structural model
to determine whether the TRP channel exhibited similar binding sites.
Small clashes between lipid fragments and TRPV1 residues were
removed by molecular steepest descent minimization.

Fig. 4 shows different views of the TRPV1 channel with lipids trans-
ferred from the Kv1.2/Kv2.1 (paddle-chimera) Kv channel (code 2R9R)
[133]. A top view of TRPV1 in complex with transferred lipids (Fig. 4A)
shows a similar arrangement of annular and non-annular lipid around
the channel, denser in the outer leaflet (Fig. 4B). Annular lipids fit well
on TRPV1 in both leaflets. In the inner leaflet two phospholipidergic
fragments are in deep contact with the S4-S5 linker (Fig. 4C), a region
of the channel that couples voltage-sensor domain and the pore
for channel gating [134-136]. TRPV1 conformation is compatible
with two phospholipids, one is in deep intrasubunit contacts with the
S4-S5 linker (Fig. 4C, left), the TRP domain and the S1-S4 domain. The
other interaction is mediated by inter-subunit contacts with S5 and
the beginning of S4-S5 linker (Fig. 4C, right). The polar head group of

both phospholipids resides at different depths in the membrane,
which has been related to the perturbation that protein exerts on the
membrane at lipid-protein interface [133]. This unusual position for a
phospholipid is related to specific favorable contacts with the protein,
probably influencing its structure and function [137].

PIP2 has been described as a special case since it modulates the
activity of many types of ion channels in a variety of modes [31-33],
including TRPV1 [116,117]. The current understanding of the structural
requirements for PIP2 binding comes from potassium inward rectifying
channels. The crystal structure of Kir2.2 shows that the phosphoinositide
binds at the interface between the transmembrane domain and the C-
terminal domain. A closer look at the binding site discloses hints for
PIP2 interaction: the acyl chains are accommodated by hydrophobic sur-
faces of the transmembrane region and the negative charged phosphate
interact with positively R and K residues in tether helix [138]. Brauchi
et al. [116] hypothesized that the polar head group of PIP2 could contact
with the TRP domain through basic residues (R701 and K710), and the
acyl chain could mediate the interaction between two adjacent subunits.
In the model, the location of the PIP2 head group is compatible with the
interaction with R701 (and probably with K710) in the TRP domain, and
with R575 in the S4-S5 linker.

Fig. 5 depicts TRPV1 channel in complex with lipids transferred from
a Cav ion channel (code 4MS2). Non-annular lipids also fit well on
TRPV1 intersubunit spaces, as observed for lipids transferred from Kv
channels (Fig. 4). A detailed view of the outer leaflet indicates that
non-annular lipids occupy three kinds of intersubunit grooves, includ-
ing regions between S1-54 (blue chain) and pore (red chain), interpore
(red and blue chains), and between pore (blue chain) and the S1-S4
(magenta chain) domains (Fig. 5C). Polar head groups appear to interact
with proximal basic residues such as K535, K603, K656, and R534, while
acyl chains appear to occupy hydrophobic clefts at the transmembrane
level. The most noticeable feature of the TRPV1 in complex with lipids is
that TRPV1 conformation is also compatible with lateral pore fenestra-
tions observed for Nav and Cav channels [139-141]. These lateral
portals revealed a hydrophobic access pathway to the central cavity
(Fig. 5D), which could explain the effect observed for some general
and local anesthetics, which has been shown to activate different TRP
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Fig. 5. TRPV1 in complex with lipids transferred from a Cav channel. A. Extracellular view of the TRPV1 showing lipids derived from the crystal (code 4MS2). Representation similar with
Fig. 4. B. Side view of TRPV1 showing the transmembrane c-helices and the lipids fragments, mainly located in the outer leaflets. C. Detail of annular lipid involved in intersubunit inter-
actions in hydrophobic clefts of three protein subunits (blue, red and magenta). D. Detail of the hydrophobic portals connecting the membrane and the central pore cavity, as observed for

closed Nav and Cav channels.

channels [142,143]. The size of the portal cavities in different ion
channels has been related to the different-sized drugs or hydrophobic
molecules gaining access to the central cavity during different stages
of pore gating [140]. In the case of TRPV1, superposition with Cav and
Nav channels denoted a shorter cavity (4 x 4 A in TRPV1 vs 8 x 10 A
in Nav) due to a displacement of the selectivity filter and pore-helix
that reduces the portal entrance to the inner cavity. Consequently, this
lipid binding site could be restricted in TRPV1 to acyl chain-like mole-
cules rather than to di-acylated molecules such as phospholipids, or
other higher size hydrophobic molecules. Furthermore, the portal
entering is very close to the vanilloid binding site, as described for cap-
saicin and resiniferatoxin in TRPV1 [132]. In addition, the intersubunit
region connecting S5 from one subunit and the beginning of S4-S5
from the adjacent subunit is compatible with the proposed docking-
generated model for cholesterol binding [28], since transference of
lipids to TRPV1 locates phospholipids (Fig. 4C) or acyl chains in this
position. Taken together, these observations indicate that, at least in
TRPV1 channels, there are well-defined binding sites for lipids, suggest-
ing a critical role of these molecules in TRPV1 gating. In addition, the
modeled structures indicate that TRPV1 channels may accommodate a
variety for lipid molecules, thus augmenting the modulatory mecha-
nisms of channel gating. These observations for TRPV1 may be also
extended to other TRP channels, as the transmembrane region is quite
conserved within the TRP channel superfamily.

6. Outlook

Sensory TRP ion channels are crucial molecular components of pain
transduction. Identification of their natural ligands has provided
insights into the molecular basis of peripheral pain. Coincidently,
lipid-derived substances are emerging as important biological media-
tors. The diversity of endogenous lipids as modulators for sensory
TRP-channels demonstrates the complexity of lipid signaling in noci-
ceptive processing. Studies on the modulation of TRP channel function
by lipidergic endogenous agents have contributed to our understanding

of the interaction between sensory nerves and diseased or damaged
tissues, which is central in the generation and maintenance of pain.
However, there are still many unsolved issues. Matching clinical pain
types with TRP subtypes remains a challenge, particularly outside of
TRPV1. For example, the role of TRPV2, a noxious heat receptor, to
pain generation remains elusive. Its lipid interaction is also unclear. In
addition, better information on the ligand binding site (amino acids) is
needed to establish the pharmacological rationale for optimizing
synthetic therapeutic agents targeting TRPs. Future studies are needed
to systematically identify the physiological role for each lipid group in
pain perception by lipidomic approaches.

Unveiling the lipidergic structures that modulate TRP function may
allow for novel lead compound synthesis for analgesics aimed at TRPs.
As lipids participate in other biological phenomena including inflamma-
tion, it is possible to pursue the development of multi-target drugs. De-
pending on TRP expressing sites and their differential functionalities,
other beneficial effects in different disciplines such as dermatology or
cardiovascular physiology can be also envisioned. The advantage of
using potent lipid modulators of TRPs, such as resolvins, for the treat-
ment of inflammatory pain over conventional NSAIDs is that they can
resolve inflammation and pain by restoring cellular/tissue homeostasis
using endogenous signaling pathways. Collectively, an expansion of our
knowledge on lipidergic ligands and the molecular nature of their inter-
actions with sensory TRP channels will improve our understanding of
peripheral pain mechanisms and contribute to clinical intervention for
associated diseases.
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