Very High-p_T Triggered Dihadron Correlations in PbPb Collisions at 2.76 TeV with CMS

Rylan Conway (for the CMS Collaboration)1

University of California, Davis, USA

Abstract

Measurements of dihadron correlations triggered by very high-p_T particles in 2.76 TeV PbPb collisions are presented. The analysis explores the full 2011 PbPb data set corresponding to an integrated luminosity of 150 μb$^{-1}$ collected by CMS. Long-range correlations driven by single-particle azimuthal anisotropies (characterized by the Fourier harmonics, v_n) are measured up to $p_T \sim 50$ GeV/c. After subtracting the v_2-v_4 harmonic components, the associated particle yields on the near and away side of the residual jet-like dihadron correlations are studied over a wide kinematic range in trigger and associated particle p_T, as a function of collision centrality. By comparing to pp data at the same energy, a suppression of about 50% in the away-side associated yield is observed for $p_{T,\text{assoc}} > 3$ GeV/c. The yield is found to be significantly enhanced up to a factor of 3–4 on the away side at $p_{T,\text{assoc}} \sim 0.5$ GeV/c. A moderate enhancement is suggested on the near side.

1. Introduction

One of the key signatures of the QGP is its opaqueness to high-energy quarks and gluons, known as jet quenching. This effect can be measured using dihadron correlations by comparing the integrated-yields in PbPb to pp collision for the near and away-side regions. In order to isolate jet-like correlations the contributions from flow and anisotropies in the interaction region must be subtracted. The amount of suppression observed can be quantified by the I_{AA} modification factor, which is the ratio of the integrated associated yields in PbPb to that in pp collisions as a function of $p_{T,\text{trig}}^{\text{assoc}}$ and $p_{T,\text{assoc}}^{\text{assoc}}$, as in Ref. [1]. These measurements provide important constraints on energy-loss models in a QGP medium.

2. Dihadron Correlations and Integrated Yields

Per-trigger-particle associated yield distributions are constructed using the standard procedure by dividing the signal distribution by the background distribution, which is described in more detail in Refs. [2, 3]. These measurement were done with the CMS experiment, details about the detector can be found here [4]. An example of a dihadron correlation distribution is shown in Fig. 1. The left plot, subfigure (a), shows the 2-D correlation as a function of $\Delta\eta$ and $\Delta\phi$.

1A list of members of the CMS Collaboration and acknowledgements can be found at the end of this issue.

© CERN for the benefit of the CMS Collaboration.
Δφ while the right plot, subfigure (b), shows the 1-D distribution projected onto the Δφ-axis. In order to isolate the jet-like correlations the bulk correlations coming from hydrodynamic flow and geometric anisotropies due to fluctuations in the initial nuclear interaction region need to be removed. This is done by subtracting a flow modulated background term which is characterized by the azimuthal anisotropy parameters, $v_2 - v_4$, which were measured in a separate analysis using the event plane method [5]. The subtraction procedure is done using the Zero Yield at Minimum (ZYAM) procedure and is described in more detail in Ref. [3]. Once the jet-like correlations have been isolated the 1-D distributions are then integrated over two distinct Δφ ranges to obtain the integrated yields. The range of integration to obtain yields is split up into the ”near-side” integrated yields ($0 < |Δφ| < 1$) and the ”away-side” integrated yields ($1 < |Δφ| < π$). The integrated yields are then used to calculate the near and away-side I$_{AA}$ modification factor, which is the ratio of the integrated yields in PbPb collisions to that in pp collisions.

![Figure 1: The per-trigger-particle associated yield of charged particles in (a) two-dimensions (2-D) as a function of $|Δη|$ and $|Δφ|$ and (b) one-dimension (1-D) as a function of Δφ averaged over $0 < Δη < 1$ for $p_T^{\text{trig}} > 20$ GeV/c and $1 < p_T^{\text{assoc}} < 3$ GeV/c from the 0-30% centrality range of PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. The near-side peak in (a) is truncated to better display the surrounding structure.](image_url)

3. Results

Away-side I$_{AA}$ as a function of p_T^{assoc} is shown in Fig. 2 with $|Δη| < 1$ in four different p_T^{trig} bins. The red points on the top row are for the 0–10% most central collisions while the blue points on the bottom row are for the 50–60% central collisions. The near-side I$_{AA}$ values are shown as a function of N_{part} in Fig. 3 for four different p_T^{assoc} bins with $19.2 < p_T^{\text{trig}} < 24$ GeV/c. The blue points show the results derived from the v_n-subtraction method at $0 < |Δη| < 1$ while the black points show the results derived from a different technique, the long-range Δη subtraction method, which is described in more detail in Ref. [3]. The away-side I$_{AA}$ values are shown as a function of N_{part} in Fig. 4 for four different p_T^{assoc} bins with $19.2 < p_T^{\text{trig}} < 24$ GeV/c and $0 < |Δη| < 1$.

Figure 2: Away-side I_{AA} values derived from the v_n-subtraction method at $|\Delta \eta| < 1$ shown for four different p_T^{trig} ranges as a function of p_T^{assoc} for PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, the top for 0–10% centrality and bottom row for 50–60% centrality. The error bars represent statistical uncertainties while the brackets represent the systematic uncertainties.

Figure 3: Near-side I_{AA} shown for four different p_T^{assoc} ranges as a function of N_{part} for $19.2 < p_T^{\text{trig}} < 24$ GeV/c in PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. The solid blue circles show the results derived from the v_n-subtraction method at $|\Delta \eta| < 1$, while the black squares show the results derived from the long-range $\Delta \eta$ subtraction method. The error bars represent statistical uncertainties while the brackets represent the systematic uncertainties.
4. Discussion and Summary

The near and away-side I_{AA} values in $\sqrt{s_{NN}} = 2.76$ TeV PbPb collisions as a function of p_T^{trig} and p_T^{assoc} for different centrality ranges were measured. Long-range, hydrodynamic flow-like behavior is accounted for by a separate measurement of harmonic v_n coefficients using the event-plane method. The away-side I_{AA} for 0-10% central PbPb collisions shows a large enhancement of about factor of 3–4 at low p_T^{assoc} and a suppression of about 50% at high p_T^{assoc} for all p_T^{trig} ranges studied in the analysis. This suggests that the energy loss of the high-p_T partons in the medium is converted into low p_T particles, particularly below $p_T = 2$ GeV/c. For intermediate and higher p_T^{assoc} particles, the near-side I_{AA} results suggest a significantly smaller difference between the pp and PbPb collision, which is consistent with small energy loss of the higher-p_T particle predominantly coming from the surface of the medium. A moderate enhancement of about a factor of 2 is seen for lower p_T^{assoc} in the near-side associated particle yield for the most central collisions. These measurements can be used to investigate the effects of parton energy loss mechanisms in the QGP medium.

References

[3] The CMS Collaboration, "Very high-p_T dihadron correlations in PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV", CMS-PAS-HIN-12-010