

Journal of Computational Design and Engineering Vol. 1, No. 3 (2014) 153~160
www.jcde.org

An alternative method for smartphone input using AR markers

Yuna Kang1 and Soonhung Han2,*
1 1st R&D Institute-3, Agency for Defense Development, 488 Bugyuseong-daero, Yuseong-gu, Daejeon 305-152, Republic of Korea

2 Department of Ocean System Engineering, Korean Advanced Institute for Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701,
Republic of Korea

(Manuscript Received January 8, 2014; Revised March 17, 2014; Accepted March 18, 2014)

--

Abstract

As smartphones came into wide use recently, it has become increasingly popular not only among young people, but among middle-

aged people as well. Most smartphones adopt capacitive full touch screen, so touch commands are made by fingers unlike the PDAs in
the past that use touch pens. In this case, a significant portion of the smartphone’s screen is blocked by the finger so it is impossible to see
the screens around the finger touching the screen; this causes difficulties in making precise inputs. To solve this problem, this research
proposes a method of using simple AR markers to improve the interface of smartphones. A marker is placed in front of the smartphone
camera. Then, the camera image of the marker is analyzed to determine the position of the marker as the position of the mouse cursor.
This method can enable click, double-click, drag-and-drop used in PCs as well as touch, slide, long-touch-input in smartphones. Through
this research, smartphone inputs can be made more precise and simple, and show the possibility of the application of a new concept of
smartphone interface.

Keywords: Smartphone; Augmented reality (AR); Marker; Interface; Human-computer interaction (HCI)

--

1. Introduction

1.1 Current states

In recent years, smartphones, a type of cell phone that per-
form more advanced functions like that of a PC, are widely
available. Most of the smartphones have adopted the full-
touch screen for convenient browsing, such as the PDAs in
the past. Generally, touch screens can be categorized into 2
types. First type is the resistive type which recognizes pres-
sure; another type is the capacitive type which detects chang-
es in the electric current on the screen. PDAs adopted resis-
tive type full-touch screen, but smartphones released recently
use capacitive full-touch screen. The capacitive type can be
operated and scrolled smoother than the resistive type [1].
However, the capacitive touch screens can only detect specif-
ic types of touch pens made for smartphones and cannot de-
tect gloves, nails or general touch pens. In addition, because
of decrease in mobility, people do not generally use touch
pens for smartphones.

Also many problems have occurred in practice because the
capacitive type is more sensitive than the resistive type. Rep-
resentatively, when a user input characters with the soft key-

board (QWERTY), errors occur most frequently. As shown
in Figure 1, the thumb covers several buttons when a user
touches one button. The user cannot see where the thumb is
located exactly, so many typing errors occur. Another com-
mon error occurs at mobile pages (see Figure 2). Currently,
many web sites are providing mobile versions of web sites
for smartphones. The old web pages for PCs are too large to
be seen in a smartphone, so the user needs to zoom into the
page to see a specific region of the page. The mobile pages
are made to fit the screen size of smartphones, so the user can
see

Figure 1. The user cannot see buttons covered by the thumb
on QWERTY soft keyboard. [2, 3].

*Corresponding author. Tel.: +82-42-350-3040, Fax : +82-42-350-3210
E-mail address: shhan@kaist.ac.kr

© Society of CAD/CAM Engineers & Techno-Press

doi: 10.7315/JCDE.2014.015

 Y. Kang et al. / Journal of Computational Design and Engineering Vol. 1, No. 3 (2014) 153~160

the pages without zooming in/out. However, some but tons in
the page are located very close to each other and the mobile
pages don’t support commands for zooming in/out, so the
user cannot press the desired button correctly.

There have been some software approaches to solve this
problem. Currently, the operating system for smartphones
provides an enlarged picture of the selected button when the
user presses it. Also, in the game application, several calibra-
tion algorithms are applied to correct the input which is close
to the exact input. However, these approaches are limited to
input on soft-keyboard or specific games which have correc-
tion the algorithm. It is hard to select the desired input at once
among many small buttons even for people who are familiar
with smartphones. Moreover, if the user’s fingers are dry or
have hardened skin, or if the user is wearing gloves, the static
electricity doesn’t flow; in that case, even a simple input sig-
nal for smartphones does not occur. Touch pens for capaci-
tive screen can solve these problems partially, but it isn’t a
permanent solution to the problem because the touch pen also
partly covers the screen (see Figure 3).

In this study, to solve this problem, we propose a way to
improve the smartphone interface using a simple marker
which is often used when constructing augmented reality.
First, previous studies similar to this study will be introduced
and compared, and the proposed method will be described in
detail. Finally, we will show some results of the implementa-
tion and some experiments which can determine the efficien-
cy of this method.

2. Related works

Smartphones became popular only a few years ago, but the
user interface of mobile devices using camera images has
been developed since the past.

Some studies recognize the gestures of a user’s hands [4-6]
or a user’s face [7, 8] from the camera images and these ges-
tures were recognized and used as the input for PCs. There
are many studies on gesture recognition in real-time for PC

already. However, these methods require a long computation
time in the image processing step, so it is difficult to apply to
the smartphone environment. So in some researches for mo-
bile devices, the system recognizes only shaking or tilting
motions of a mobile device from camera images as the inputs
[9-11].

In other researches, to solve the time-consuming problem
of image processing, markers were used. It is fixed in real
space and the user moves the camera to obtain the relative
position of the marker for making input commands for a mo-
bile device. Hansen et al. [12] located a marker on the floor,
and moved the camera attached on the mobile device in the x,
y, z direction.

On the other hand, Park and Moon [13] placed markers on
fingers and the dummy which looks like a mobile device, and
enabled the user to see the mobile device through a HMD.
Their study is focused on the tangible interaction, but it is
similar to our research in the point that input commands are
made by camera images of the marker on the finger.

Hachet et al. [14] also suggests a navigation method for
large-scale maps in mobile devices using a 3-colored target
plate. Their study is similar to our research in the point which
uses a fixed device and a moving target. However, the goal of
Hachet’s study is limited to the rotation and zoom-in/out of
maps.

Byun and Kim’s research [15], which has the most similar
purpose to our research, proposed a method using the image
processing technique for making input commands to the
small keyboard of mobile devices. In their study, a virtual
point is chosen from the camera image, and the 2D position
of this point on real space is tracked when the camera is be-
ing moved around. As shown in Figure 4, the user can move
the mobile device to match the chosen point to the desired
location, and then click the switch button once to make an
input event. Byun and Kim’s study is most similar to our
research in the approach that the acquired position from the
camera is considered to be the position of the mouse pointer,
but the most interesting characteristic is that the recognized

Figure 3. Example of using a touch pen for capacitive
screen: It also covers the screen partially [3].

Figure 2. Example of input errors on mobile pages [3].

154

 Y. Kang et al. / Journal of Computational Design and Engineering Vol. 1, No. 3 (2014) 153~160

point doesn’t exist in the real world. Therefore, the absence
of actual markers would be an advantage, but if the environ-
ment has dynamic objects, the stability cannot be guaranteed.

Table 1 shows the comparison with the related researches
and this study. In Hachet’s study [14] and Byun’s study [15],
the manipulation is very simple. Only a marker or a mobile
device can be moved in 3D space for making input com-
mands but Byun’s study [15] requires a special device with a
tact switch and the stability is low in dynamic environments.
On the other hand, Hachet’s study [14] has high stability for
dynamic environments because it adopted a marker for the
interface, but its target is the navigation on the map so the
system supported only simple operations. Park’s study [13]
was focused to test digital mockup models, so the most de-
tailed operations are available; however, the most complicat-
ed manipulation is required for the same reason.

There have been many studies which improve mobile inter-
face using markers or the camera, but most of these studies
have adopted the method of moving the mobile device near
the fixed marker or the method of using a large pattern.
However, if the mobile device is moved to enter a command,
it’s uncomfortable to see the display for the user. Also, be-
cause the smartphone should be available to use while carry-
ing around, the method of using big patterns and fixed mark-
ers cannot be seen as a convenient method. To overcome this
issue, this study adopts the method of using a small marker
which can be attached to a finger or an object, and proposes
the method which can make accurate inputs while keeping
high mobility of mobile devices.

3. Interface using an AR marker

Augmented reality (AR) refers to a mixture environment of
real environment and virtual objects [16].
There are many ways for accurate matching be-tween the real
environment and the virtual environment in real-time.
Among these, the method using an AR marker (marker-based
tracking) is the most simple and robust way to get tracking
results [17]. This study proposes the method where the posi-
tion of an AR marker is used as the position of a mouse

pointer on the PC.
The input event on touch pad can be analyzed in two ways:
 The event which occurs when a user presses or releases

a finger on the screen (OnPress / OnRelease)
 The event which occurs when a user’s finger is moving

on the screen (OnMove)
We Through these two inputs, most common functionali-

ties of a mouse on PCs can be implemented. For example, a
quick event of OnPress → OnRelease can be a “click” event,
and the “click” event performed twice can be a “double-
click” event. If OnMove event occurs between the OnPress
event and the OnRelease event, it can be a “drag” event. Also,
if the time interval between the OnPress event and the
OnRelease event is long, it can be a “Long-Press” event
which is often used in touch pads.

In this research, two methods will be introduced as the way
to create the two events explained above on touch pads; first
is the method of using the orientation of the AR marker only
(position and rotation), and the other is the method of using
the position of the marker and touch commands. The 2D
positions of the marker from camera images can be consid-
ered as 2D positions of the mouse pointer in each method.
Two methods were implemented individually.

3.1 Method A: Using a marker only

In the first method, the position and the orientation of the
marker is only considered as a way of creating the input
event in real-time. As in Figures 5(a) and (b), the system
recognizes the symmetrical shape of the marker, and the
OnPress/ OnRelease events occur depending on the change in
the angle of the detected marker. Figure 5(a) can be recog-
nized as an OnPress event, and Figure 5(b) can be recognized

Figure 4. An interface for a mobile device [15].

Table 1. Comparison table for existing studies and this
research.

Hachet
et al.
[5]

Park
et al.
[14]

Byeon
et al.
[2]

This
research

Simplicity of
manipulation

High Low High Medium

Stability of screen High High Low High

Stability for dynamic
environment

High Medium Low High

Possibility of
detailed operation

Low High High High

(a) OnPress (b) OnRelease

Figure 5. The method creating OnPress and OnRelease event.

155

 Y. Kang et al. / Journal of Computational Design and Engineering Vol. 1, No. 3 (2014) 153~160

as an OnRelease event. In practice, the marker doesn’t need
to rotate 90° fully; the recognition error can be increased if
the precise angle is needed to make an event, so the system
only detects the sign (positive/negative) of angles. If the rota-
tion value x in Figure 6 is changed from positive to negative,
OnPress event would occur, and if x is changed from negative
to positive, OnRelease event would occur.

Figure 7 shows the overall flow chart of the method using
the orientation of a marker. The system recognizes the posi-
tion of the marker in the camera images. After determining
the position and rotation of the marker, the system projects
the 3D position of the marker onto the 2D screen of the
smartphone to use as a mouse pointer. The angle of the
marker can be checked in real-time to see whether the sign of
the rotation value is changed; if the sign is changed, an
OnPress or OnRelease event occurs depending on the change
in the orientation and the color of the mouse pointer.

Figure 8 shows an example of the operation for click ac-
tion with the rotation of a marker. The position of the marker
located on the nail becomes the position of the mouse pointer

(see Figure 9) and a series of actions of the marker rotating
90 degrees and returning to the origin, can be used like the
click operation.

3.2 Method B: Using the position of a marker and touch

commands

The method to recognize the rotation of a marker has no
problem theoretically, but it needs a lot of training for the
user to rotate the marker while keeping the exact location in
practice. So we propose an alternate method which is the
method of using both the position of a marker and touch
commands on the screen to compensate for this problem. If
the user places the marker on the desired 2D position, and
then touches the screen, the input command occurs on the
position of the marker, regardless of the location of the touch
command.

The overall flow chart of the method using the position of
a marker and touch commands is shown in Figure 10. The
system recognizes the marker from the camera image and the
position of it, but not the rotation of the marker. The system
checks the touch input in real-time, and if there is an input
signal, the system intercepts the signal and sends an input
command to the current position of the mouse pointer (the
2D position of the marker). Figure 11 shows an example of
the “click” command using both the position of a marker and
touch commands. Same as the method of using the orienta-
tion of a marker only, the position of a marker becomes the
position of the mouse pointer.

This method is similar to the method using conventional

Figure 7. Flow chart of the method A.

Figure 6. The rotation value of the marker [2].

Figure 8. The click action of the method A.

Figure 9. Display of a mouse pointer from the marker.

Figure 10. Flow chart of the method B.

156

 Y. Kang et al. / Journal of Computational Design and Engineering Vol. 1, No. 3 (2014) 153~160

touch, but a more correct input can be made by this method
since the finger does not cover up the actual input position.
Also, this approach is more accurate and easy compared to
the method using the orientation of a marker only, but for
users in situations that are impossible to use capacitive touch
screens, this method isn’t available.

4. Implementation and experiments

4.1 Implementation

This system has been implemented on Google Nexus One,
and its operating system is Android Gingerbread (Android
2.3.3). For implementing this system on the Android envi-
ronment, several “views” need to be superimposed such as
the camera preview, input buttons, and the mouse pointer.
Especially, the camera preview and the mouse pointer should
be updated in real-time repeatedly, so the delays can be

caused on main thread by lack of resources. To alleviate the-
se problems, SurfaceView in Android OS is used to run on
the background resources for the real-time job.

For recognizing markers, an open library, ‘andAR’ which
is the Android version of ARToolkit (ARToolkit is the most
popular library for tracking markers.) is used. The andAR
library obtains the actual position of the marker relative to the
position of the camera in the 3D coordinates, so we obtained
the 2D coordinates of the mouse pointer by projecting the 3D
coordinates on the 2D screen. The system shows a square-
shaped mouse pointer on the obtained 2D coordinates.

The screen configuration is shown in Figure 12. The cam-
era preview is located at the hindmost, and some buttons,
input boxes and background images are located in front of
the camera preview. The mouse pointer is displayed at the
top, so the user can see which part will be selected. In Figure
12, an example of the actual implementation is shown. The
camera preview is hidden for preventing confusions. The
square-shaped mouse pointer is shown in purple on the
OnRelease condition, and shown in pink on the OnPress
condition. Figure 13 also shows an implementing result on
the real device.

As explained above, “click”, “long press”, and “drag” func-
tions were implemented using default touch input events
(OnPress, OnRelease). Figure 14 shows how to use this sys-
tem.

4.2 Result of the experiments

For verification, we compared the results of four methods;
using the conventional finger touch method, using a capaci-
tive touch pen, and using the two methods that were proposed.

 (a) OnPress (b) OnRelease

Figure 11. The click action of the method B.

Screen

Layer 1 : Mouse pointer

Layer 2 : UI(buttons & boxes)

Layer 3 : Camera Preview (Invisible)

User

Figure 12. Structure of the implemented system.

Figure 13. An example of implementation.

157

 Y. Kang et al. / Journal of Computational Design and Engineering Vol. 1, No. 3 (2014) 153~160

We used a 3M MHP-1000S model as the capacitive touch
pen and a sticker marker 7 mm * 7 mm in size.
 Method 0 – Conventional touch method
 Method 1 – Using a capacitive touch pen
 Method 2 – Using the position and the rotation of a

marker
 Method 3 – Using the position of a marker and touch

commands
The testers are graduate students in their twenties who have

used smartphones for more than 2 years. The four types of
test case set were tested for each Method 0, 1, 2, and 3. Each
test case sets are shown in Table 2. Only input accuracy is
tested without considering input speed in these tests. The
testers made drag and drop commands in given directions as
accurately as possible for each method, and then the system
calculated L2 error distance between the actual input points
and given input points for each test.

Table 3 and Figure 15 show the average values of errors for
each test case and each method. Method 0 (touch by a finger)
has a large error compared to others. Especially when the
user drags in the invisible direction covered by the hand –
like the situation where a right-handed user drags from left to
right (case 1, 4), a significant error occurs on the endpoint. In
contrast, when the user drags from top to bottom as in case 3,
the error in the starting point is similar to the end point, be-
cause the hand does not cover the endpoint. This result shows
that the input accuracy is greatly affected by whether the
target is covered by the user’s hands or not when performing
a touch input.

Method 1 (using a capacitive touch pen) is showing a better
result than method 0. The result is not affected by targets and
directions, but every endpoint has a large error compared to
the starting points. The result shows that the error when using
a touch pen is smaller than using fingers - but it also causes
the coverage problem on the target point.

On the other hand, method 2 and 3 show that results are not
affected by the drag directions. However, method 2 shows
inaccurate results compared to method 3 because of rotating
errors of the marker.

There can be errors from the input of the directions or vari-
ous situations, but method 2 shows 2.7 times less error than
that of method 0, and 1.9 times less error than that of method
1 in these tests. Also, method 3 has 7 times less error than
that of method 0, and 4.9 times less error than that of method 1.

4.3 Analysis of the result

This experiment is focused on testing the accuracy of in-
puts to show that the conventional input method has low
accuracy and also needs much more time to make an accurate
input. However, in situations where accurate inputs aren’t
needed, the user can make a faster input with the convention-
al method, so additional experiments are required, taking into
consideration the time consumption and the accuracy of in-
puts to validate the availability of our method in the future.

When operating this system on smartphones, the camera
module in the smartphone is used so the short battery dura-
tion may be a problem. To alleviate this problem, “accurate
input mode” can be toggled for saving unnecessary battery
consumption in this system.

Because the image processing technique is used for recog-
nizing a marker, the darkness of the environment or shadows
can affect the result. In this research, we use a simple square

Table 2. Test cases for the input test [2, 3].

 Start point End point

Case 1 (200,100) (600,300)

Case 2 (600,100) (200,300)

Case 3 (400,100) (400,300)

Case 4 (200,200) (600,200)

Figure 14. How to use the system.

Table 3. Results: average values of distance error from the
input test.

 Method 0 Method 1 Method 2 Method 3

Case 1
Start 10.04 13.26 8.94 2.76

End 27.35 14.54 8.30 3.81

Case 2
Start 27.22 11.46 8.09 4.45

End 16.10 16.79 5.68 2.30

Case 3
Start 21.92 8.95 6.88 3.21

End 22.42 19.36 5.91 2.35

Case 4
Start 14.16 15.52 8.74 2.59

End 29.06 17.54 9.29 2.51

Total 21.03 14.68 7.73 3.00

Figure 15. Graph of the results.

158

 Y. Kang et al. / Journal of Computational Design and Engineering Vol. 1, No. 3 (2014) 153~160

marker, so it’s more robust than tracking a natural marker.
Also, the most common problem in recognizing a square
marker is the tracking failure according to the angle of a
marker. However, in this research, it can be assumed that the
marker is always placed in the front of the camera in parallel
so the recognition error can be decreased. Also, the flash of
the smartphone can be a solution for the dark environment. In
that case, the recognition failure hardly occurs, but because it
can accelerate the battery consumption, it is not appropriate
for long term usage.

5. Conclusions

In this research, a new input interface for smartphones
sing AR markers was proposed. We proposed two methods
for reducing input errors on smartphones, and checked the
possibility of accurate control on smartphones through the
experiment.

When making capacitive touch commands is difficult or
impossible, or when the user’s fingers are relatively large,
making touch inputs will be easier using the interface that
adopted the methods explained above. Also, some applica-
tions that require detail works, such as Photoshop (editing
pictures), sketching, painting, and making notes, will be
easier to use. More applications that require detailed con-
trols can be developed, and AR shooter games can be sup-
ported from these methods. In the future, the recognition
rate, availability and efficiency of our methods on the ap-
plications which require detailed inputs should be tested.

In the method using the orientation of a marker only,
there is a disadvantage when the marker is rotated on the
target point, but if the marker that is attached to the port-
able object like a pen, an eraser, or a key ring is rotated,
the user would be able to use this interface more easily.

Both methods of this research adopted image processing
technique for recognizing a marker. If this interface oper-
ates with some heavy applications at the same time, delay
can occur because image processing uses a lot of resources.
These problems can be solved to apply a more robust and
lightweight algorithm for the marker recognition.

In addition, this interface was developed in an integral
system with one application, so the user cannot use it in
other applications currently. In the Android OS, an inde-
pendent application cannot access another application.
Hence, in the future, we will provide this interface on OS-
level, and then the user will be able to use this interface in
other applications as a type of soft keyboard on smart-
phones.

Acknowledgments

This research was supported by Development of Integra-
tion and Automation Technology for Nuclear Plant Life-
cycle Management grant funded by the Korea Government
Ministry of Knowledge Economy (2011T100200145).

This work was supported by the Human Resources Devel-

opment Program (No. 20134030200300) of the Korea Insti-
tute of Energy Technology Evaluation and Planning
(KETEP) Grant funded by the Korea Government Ministry
of Trade, Industry and Energy.

References

[1] Wikipedia [Internet]. c2013 [cited 2013 Sep 14]. Available from:

http://www.wikipedia.org/

[2] Kang YA, Han SH. Improvement of smartphone interface using

AR marker. Transaction of the Society of CAD/CAM Engineers.

2011; 16(5): 361-369.

[3] Kang YA, Han SH. Improvement of smartphone interface using

an AR marker. In: Proceedings of the 11th International Confer-

ence on Virtual Reality Continuum and its Applications in In-

dustry; 2012 Dec; NTU, Singapore.

[4] Endo Y, Tada M, Mochimaru M. Reconstructing individual

hand models from motion capture data. Journal of Computa-

tional Design and Engineering. 2014; 1(1): 1-12.

[5] Huh SJ, Lee SW. A hierarchical Bayesian network for real-time

continuous hand gesture recognition. Journal of Korea Institute

of Information Scientists and Engineers: Softwares and Applica-

tions. 2009; 36(12): 967-1039.

[6] Starner T, Pentland A. Real-time American sign language

recognition from video using hidden Markov models. MIT Me-

dia Lab., MIT, Cambridge, MA, 1995; Tech. Rep. TR-375, p.

1195-1207.

[7] De Silva LC, Aizawa K, Hatori M. Detection and tracking of

facial feature by using edge pixel counting and deformable cir-

cular template matching. IEICE Transactions on Information

and System. 1995; E78-D(9): 1195-1207.

[8] Oh ST, Jun BH. Head gesture recognition using facial pose

states and automata technique. Journal of Korea Institute of In-

formation Scientists and Engineers: Softwares and Applications.

2001; 28(12): 947-954.

[9] Bondarchuk V, Jung IR, Kim CS, Koh SJ. Implementation of

mobile user interface control using camera captured information.

In: Proceedings of Summer Conference of the Institute of Elec-

tronics Engineers of Korea; 2009 Jul 8-10; Jeju, Korea; p. 873-

874.

[10] Lee CS, Cheon SY, Sohn MG, Lee SH. Hand gesture interface

using mobile camera devices. Journal of Korea Institute of In-

formation Scientists and Engineers: Computing Practices and

Letters. 2010; 16(5): 621-625.

[11] Rohs M, Zweifel P. A conceptual framework for camera phone-

based interaction techniques, Proceedings of the Third Interna-

tional Conference on Pervasive Computing; 2005 May 08-13;

Munich, Germany; p. 171-189.

[12] Hansen TR, Eriksson E, Lykke-Olesen A. Mixed interaction

space: designing for camera based interaction with mobile de-

vices. In: International Conference of Human-Computer Interac-

tion; 2005 Apr; Portland, OR.

[13] Park HJ, Moon HC. AR-based tangible interaction using a fin-

ger fixture for digital handheld products. Transaction of the So-

ciety of CAD/CAM Engineers. 2011; 16(1): 1-10.

159

 Y. Kang et al. / Journal of Computational Design and Engineering Vol. 1, No. 3 (2014) 153~160

[14] Hachet M, Pouderoux J, Guitton P. A camera-based interface

for interaction with mobile handheld computers. In: Proceedings

of the 2005 Symposium on Interactive 3D Graphics and Games;

2005 Apr 3-6; Washington D.C., USA; p. 65-72.

[15] Byun JH, Kim MS. Tangible interaction: application for a new

interface method for mobile device - Focused on development

of virtual keyboard using camera input. Journal of Korean Soci-

ety of Design Science. 2004; 17(3): 441-448.

[16] Lee JH, Han SH. Application of mixed reality with safety sign

panel for a manufacturing simulation. In: Proceeding of the So-

ciety of CAD/CAM Conference; 2007 Jan 31-Feb 2;

Pyungchang, Gangwondo; p. 582-588.

[17] Lee JH, Han SH, Cheon SU. Recognition of safety sign panel

for mixed reality application in a factory layout planning.

Transaction of the Society of CAD/CAM Engineers. 2009;

14(1): 42-49.

160

	An alternative method for smartphone input using AR markers
	1. Introduction
	2. Related works
	3. Interface using an AR marker
	4. Implementation and experiments
	5. Conclusions
	Acknowledgments
	References

