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Abstract

Given a quasi-ordering of labels, a labelled ordered tree s is embedded with gaps

in another tree t if there is an injection from the nodes of s into those of t that

maps each edge in s to a unique disjoint path in t with greater-or-equivalent labels,

and which preserves the order of children. We show that �nite trees are well-quasi-

ordered with respect to gap embedding when labels are taken from an arbitrary

well-quasi-ordering such that each tree path can be partitioned into a bounded

number of subpaths of comparable nodes. This extends K�r���z's result [3] and is also

optimal in the sense that unbounded incomparability yields a counterexample.

1 Introduction

Kruskal's Tree Theorem [4], stating that �nite trees are well-quasi-ordered

under homeomorphic embedding, and its extensions, have played an important

rôle in both logic and computer science. In proof theory, it was shown to be

independent of certain logical systems by exploiting its close relationship with

ordinal notation systems [7], while in computer science it provides a common

tool for proving the termination of many rewrite-systems via the recursive

path and related orderings [1].

A term ordering is said to have the subterm property if terms are always big-

ger than all their subterms. Term orderings with the \replacement" property

(reducing subterms reduces the whole term) that also have the subterm prop-

erty are called simpli�cation orderings [1]. Simpli�cation orderings perforce

include the homeomorphic embedding relation. Nevertheless, it is sometimes

necessary to prove termination of rewrite systems that are not \simplifying"

in this sense. In term rewriting, the tree-label ordering corresponds to a prece-

dence ordering of the function symbols pertaining to a given signature. For

demonstrating termination of rewriting, it is bene�cial to use a partial (or

quasi-) ordering on labels, rather than a total one.
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In [8], it was shown that many important order-theoretic properties of the

well-partial-ordered precedence relations on function symbols carry over to the

induced termination ordering. This is done by de�ning a general framework

for precedence-based termination orderings via (so-called) relativized ordinal

notations. Based on a few examples, it is further conjectured that every such

application of a partial-order to an ordinal notation system carries the order-

theoretic properties of the partial-order to the relativized notation system. An

example of such a construction, using Takeuti's ordinal diagrams, is introduced

in [6] under the name quasi-ordinal-diagrams. The de�nition of these diagrams

is the only result we know of that deals with gap embedding of trees and quasi -

ordered labels.

K�r���z's result in [3] is of a purely combinatorial nature. It veri�es a con-

jecture of Harvey Friedman that states that �nite trees labelled by ordinals

are well-quasi-ordered under gap embedding, which is a homeomorphic em-

bedding equipped with further stipulations regarding the labels of the path

pertaining to the embedding tree.

This work extends the result of K�r���z's to �nite trees with well-quasi-ordered

labels. Indeed, �nite trees ordered by embeddability (without the gap condi-

tion) with well-quasi-ordered labels is the result proven originally by Kruskal

[4]. It shows that when each tree path contains only comparable labels, the

well-quasi-order property of the set of trees is preserved. By simple induc-

tion, our result extends also to the case where every path in the tree can be

partitioned into some bounded number of subpaths with comparable labels.

Moreover, since the absence of such a bound yields a bad sequence with re-

spect to gap-embedding, this is actually the canonical counterexample: every

bad sequence with respect to gap embedding must contain paths of unbounded

incomparability.

2 Preliminaries

A quasi-ordering is a set Q together with a reexive and transitive binary

relation -. Given a quasi-ordering (Q;-) and two elements a; b 2 Q, we say

that a and b are comparable if either a - b or b - a; otherwise we say that

they are incomparable. We denote by � the strict part of -.

A quasi-ordering (Q;-) is a well-quasi-ordering (wqo) if for every in�nite

sequence a1; a2; a3; : : : from Q there exist i < j 2 N such that ai - aj. An

in�nite sequence from Q is referred to as bad if for all i < j, ai 6- aj holds;

otherwise it is called good. If, for all i; j 2 N, ai is incomparable to aj, the

sequence is an antichain.

For a pair of nodes u; v in a rooted tree, we denote by uu v the closest com-

mon ancestor of u and v; we write u @ v if u is to the left (descendent of elder

sibling of ancestor) of v. The following is the de�nition of the (homeomorphic)

tree embedding:
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De�nition 2.1 [Tree embedding] For two labelled ordered trees s; t we say
that s is embedded in t (with respect to -) if there is an injection � : s ! t

such that:

� Label increasing: for all nodes x in s, x - �(x);

� Ancestry preserving: for all nodes x; y in s, �(y u x) = �(y) u �(x) ;

� Sibling order preserving: for all nodes x; y in s, x @ y implies �(x) @ �(y).

In the next section, we begin by dealing with an abstract embedding rela-
tion ,! on �nite rooted trees T . Later (in Section 3.3), we deal explicitly with
the set of trees of interest, namely ordered (rooted, planted-plane) �nite trees,
with nodes well-quasi-ordered by - , and such that every node is comparable

with all its ancestor nodes.

Remark. A more intuitive de�nition of gap embedding can be given for trees
with labels on edges instead of nodes. Denote by s ,!

0

t an embedding of an
edge-labelled tree s in a likewise labelled tree t, such that each edge of s is
mapped to a path in t all labels of which are greater than or equivalent to
(with respect to the node ordering -) the label of the edge in s. It is not
hard to show that, if ordered rooted trees with labels on nodes is wqo under
the gap embedding of De�nition 2.1, then also the set of edge labelled trees is
wqo under this edge-based embedding (cf. [3] Section 1.3).

3 The Main Theorem

We �rst introduce two abstract relations over �nite rooted trees T : A \gap-
embedding" relation and a \gap-subtree" relation. These relations are ab-
stract for now, as we only stipulate the existence of a tree embedding relation
and a subtree relation equipped with �ve additional (gap) conditions (see
De�nition 3.2, 3.3 for the explicit relations). We then show the main con-
struction of the minimal bad sequence, required in order to apply the usual
Nash-Williams [5] method.

Let t
� denote the root of tree t. There is a gap subtree relation � which is

included in the regular subtree relation on trees with the following additional
requirements:

s� t� u ^ t
� % u

�

) s� u(A)

s� t� u ^ s
� - t

�

) s� u(B)

s� t) s
� - t

�

_ t
� - s

�(C)

We denote by � the proper gap subtree relation. There is also a gap embedding

quasi-ordering ,! on trees with the following additional properties:

s ,! t � u ^ t
� - u

�

) s ,! u(D)

s ,! t � u ^ s
� - u

�

) s ,! u(E)

A set of trees is well-quasi-ordered under the gap embedding relation ,! if
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every in�nite sequence of trees contains a pair of trees s; t one preceding the

other, such that s ,! t.

A sequence s is a partial function s : N ! T . If s(i) is not de�ned we

shall write s(i) = ?. It is very convenient to extend the subtree relation and

node ordering to empty positions of a sequence, so that: t � ? and t
� - ?�

for all t 2 T .

Let Seq be the set of !-sequences of trees from T . De�ne:

Ds := fi 2 N j s(i) 6= ?g

Bad := fs 2 Seq j 8i < j 2 Ds: s(i) 6,! s(j)g

Sub h := fs 2 Seq j 8i 2 Ds: h(i)� s(i)g

Inc k := fs
1

� k j 8i < j 2 Ds: s
�(i) - s

�(j)g

where s

1

� k denotes that s is an in�nite subset of k. A sequence s is in�nite

when its domain of de�nition, Ds, is. Thus, Bad is the set of in�nite bad

sequences; Sub h is the set of all in�nite subsequences of gap subtrees of h.

Since % is a well-quasi-ordering, Inc k (the set of in�nite increasing sub-

sequences of k) is nonempty, as long as k is in�nite, by the in�nite version of

Ramsey's Theorem.

Our goal then, is to prove the following:

Theorem 3.1 (Main Theorem) Bad = ;.

This means that the set of trees T is wqo under ,!. In other words, for every

s 2 Seq there exist i < j 2 Ds such that s(i) ,! s(j). This extends the result

of K�r���z [3] for well-orderings to quasi-ordered labels.

3.1 The Construction

Assuming the above theorem is false, and there are bad sequences of trees, the

proof constructs a minimal counterexample, that is, a bad sequence h 2 Bad,

which is minimal in the sense that no in�nite sequence of proper gap subtrees

of its elements is also bad:

Bad \ Sub h = ;

This, in turn, leads to a contradiction|as in the original proof by Nash-

Williams [5] (see Section 3.3).

The construction of such a minimal bad sequence proceeds by ordinal in-

duction as follows (� is a limit ordinal):

H(0) : h :2 Bad

if Bad \ Sub h = ; then return h

h0 :2 Inc lex(h)
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H(� + 1) : if Bad \ Sub h� = ; then return h�

k := lex(h�)

8i 2 N: f(i) :=

8<
:
k(i) if h�

�
(i) - k�(i)

? otherwise

g :2 Inc f

8i 2 N: h�+1(i) :=

8
<
:

h�(i) if i < minDg

g(i) otherwise

H(�) : 8i 2 N: `(i) := lim!� h(i)

if Bad \ Sub ` = ; then return `

h� :2 Inc lex(`)

where the construct s :2 S chooses an arbitrary s from S (and s = ? if S = ;).
The function lex : Bad ! Bad chooses a bad sequence of subtrees (that is,
lex(h) 2 Bad \ Sub(h)) with (lexicographically) minimal labels:

lex(h) : K := Bad \ Sub h

for i := 1 to 1 do

t :2 argminfs�(i) j s 2 Kg

K := fs 2 K j s(i) = t(i)g

k :2 K

return k

where argminfs�(i) j s 2 Kg denotes the set of those s 2 K for which s�(i) is
minimal.

3.2 Correctness

We show that lim!� h(i) converges to some �xed tree. By construction, we
have (for all � and i):

Dh� � Dh�+1(6)

h�(i)� h�+1(i)(7)

h�
�
(i) - h�

�+1
(i)(8)

For each sequence h� (for every countable ordinal � and for all i < j 2 Dh�):

h�(i) 6,! h�(j)(9)

h�
�
(i) - h�

�
(j)(10)
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For � a successor ordinal, (9,10) are proved by induction: The only interesting

case is i < minDg � j, when

h
�

�+1
(i) = h

�

�
(i) - h

�

�
(j) - k

�(j) = f
�(j) = g

�(j) = h
�

�+1
(j)

from which (9) follows using (E). By considering the limit case, it can be seen

that for all � < �:

Dh��Dh�(11)

To complete the proof of the construction, it remains only to establish

three additional aspects:

(i) The constructed sequences h� are all in�nite.

(ii) The constructed sequences h� are each distinct.

(iii) The construction eventually terminates with a minimal bad sequence.

Aspect (i) It must be that jDf j = 1 in the successor case: Suppose f is

�nite at stage �+ 1. Let k be the bad sequence of subtrees of h� constructed

by lex at stage � + 1, and k�, the one constructed at the prior step � from

subtrees of some sequence h (in case � = 0, this k� is the output of lex h at

the H(0) stage). Let q = k n f be those elements of k that have smaller root

symbols than h� (see Fig. 1). By supposition and condition (C), q is in�nite

and bad. Consider

p = k�[0 : n� 1] [ (q � Dk�)

where n = min(Dk� \Dq). Note that Dp � Dk�, Dq � Dh� and that for all i

if k�(i) = ? then also p(i) = ?.

We show now that p 2 Bad \ Sub h. Since k
�

�
(n) � q

�(n) = p
�(n) also

holds, this contradicts the picking of k�(n), rather than p(n), by lex at the �

stage.

Thus, for i 2 Dp, if i < n, we have p(i) = k�(i)� h(i), by construction of

k�. If i � n

p(i) = q(i) = k(i)� h�(i)(12)

and h�(i) = k�(i)� h(i) or h�(i) = h(i). In the latter case, p(i)� h(i) follows

directly from (12), in the former case, p(i) � h(i) follows from p
�(i) � k

�

�
(i)

and (A). Hence p 2 Sub h.

Furthermore, were k�(i) ,! q(j) for some i < n � j, then (by D) k�(i) ,!

k�(j), which is in contradiction to k� 2 Bad. Hence, p 2 Bad \ Sub h and as

claimed h�+1 is in�nite.

In the limit case also, h� is in�nite: Let g�+1 be the g constructed at step

� + 1 and n�+1 = minDg�+1. Since trees have only �nitely many subtrees,

and g�+1 is built of proper subtrees of the prior bad sequence, we have

lim inf
�!�

n�+1 ! !(13)

Otherwise, if lim inf�!� n�+1 ! c for some c 2 N, then by the Pigeonhole

Principle, for some i in [0; c] there would have been in�nitely many subtrees

taken from h(i).
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h

k

h

q

n

Fig. 1. The bad sequences of the proof of the main theorem. The (dotted) lines

represent the domains of the sequences, which are getting sparser as the induction

goes on.

Furthermore, once n�+1 < n for all  such that � + 1 <  < �, we get

h[n�+1] = g�+1[n�+1] 6= ? for all such , which indeed happens in�nitely

many times by (13).

Aspect (ii) Distinctness follows from the construction, since, as long as f is

in�nite, minDg is de�ned and h�+1 6= h�.

Aspect (iii) Termination follows from distinctness by a cardinality argument:

There are only countably many sequences h�, each corresponding to the pair

hi; ji, for the jth time a proper subtree is taken (by lex) in the ith index

position.

3.3 Path Comparable Trees

We now make the gap subtree and the gap embedding relations explicit:

De�nition 3.2 [Gap subtree] For two trees s; t in T , we say that t is a gap

subtree of s, and write s � t, if t is a subtree of s and the path P = [s� : t�]

from s
� to t

� in s meets the following condition:

� min- P 2 fs�; t�g.

De�nition 3.3 [Gap embedding] For two trees s; t we say that s is embedded

with gaps in t and write s ,! t if there is an embedding � : s ! t satisfying

the following additional conditions (see Fig. 2):

� Edge gap condition: for all edges hx; yi in s (x is the parent of y) and for

all nodes z in the path from �(x) to �(y) in t, z % y ;

� Root gap condition: x % s
� for all nodes x in the path from t

� to �(s�).

Recall that T is the set of ordered rooted �nite trees, with nodes well-quasi-

ordered by - , and such that every node is comparable with all its ancestors.

This corresponds to condition (C) in Section 3. We make the following three

observations:
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1

2

s
t

5

0

0 0 0

0

0

0

Fig. 2. Gap embedding of s into t.

Observations.

i. The gap subtree conforms to conditions (A,B) given in the previous section.

ii. Gap embedding respects conditions (D,E) of the previous section.

iii. The gap subtree relation includes all immediate subtrees.

Proof of Main Theorem:

Assume by way of contradiction that Bad 6= ;. Hence, by Observations

(i) and (ii), we showed in the previous subsection that there is a minimal bad

sequence h 2 Bad such that Bad\Sub h = ;. Let S be the set of all immediate

subtrees of trees in h, that is, trees rooted by immediate children of trees in h.

Since the labels are taken from a wqo set, there can be at most �nitely many

trees of only one vertex in h; therefore S is in�nite.

For a tree t 2 T , we denote by ht1; : : : ; tni the �nite ordered sequence

consisting of its immediate subtrees, in the order they occur as children of t�;

by t�ht1; : : : ; tni, we denote t itself.

Now, S must be wqo, or else there would be a bad in�nite sequence � � S.

Since, for each tree in h, the number of children of the root is �nite, we can

assume that � contains at most one subtree for each tree in h. Therefore,

� 2 Bad \ Sub h, in contradiction to the construction of h.

So, S is a wqo. Let (si)i2Dh be the in�nite sequence de�ned as:

8i 2 Dh: si := hh(i)1; : : : ; h(i)ni
i

where ni is the number of children of h�(i). Since S is a wqo, by Higman's

Lemma [2], (si)i2Dh is a good sequence with respect to the embedding relation

on �nite sequences of trees from T de�ned by:

hs1; : : : ; sni ,! ht1; : : : ; tmi if

9� :f1;: : : ;ng ! f1; : : : ; mg : � is strictly monotone ^

8j (1�j�n): sj ,! t�(j)

Therefore, as h is increasing, there exists a pair of trees s; t in h, such that

s precedes t and s = s�hs1; : : : ; sni ,! t�ht1; : : : ; tmi = t, where the root is

mapped to the root and the immediate subtrees of s are embedded in those
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of t, according to Higman's sequence embedding. Note that this embedding is

actually a gap embedding (the fact that � is strictly monotone is required so

that the order of children denoted by @ is preserved in the embedding); thus,

we arrive at a contradiction to the badness of h. 2

4 Comparable Subpaths

The condition that each node in a path is comparable to all its ancestors can

be relaxed, by allowing each path to be partitioned to only a bounded number

of comparable subpaths. By a comparable subpath we mean a tree path (that

might begin and end in an internal node) with all nodes comparable to each

other. In what follows we sketch the proof.

Let us slightly change the gap embedding relation ,! to allow trees to have

leaves labelled by a possibly distinct node ordering: For two trees, the gap

embedding of s into t is de�ned the same as before except for leaves, for which

the gap condition is not applicable (eventually we show that it is applicable

in order to complete the proof). That is, if hu; vi is an edge of s and v is a

leaf, then we require that v be mapped to a node with greater or equivalent

node, which could only be a leaf of t, since the leaf ordering is disjoint from

that of internal nodes (by disjoint orderings we mean that the set of labels are

disjoint). No additional condition on the path from �(u) to �(v) is required.

For internal edges of s the conditions remain the same.

We have the following:

Theorem 4.1 Let Tn be a set of �nite trees with nodes well-quasi-ordered

such that each path in a tree can be partitioned into n 2 N or less comparable

subpaths then Tn is a wqo under gap embedding.

We prove Theorem 4.1 in two steps. First we show that indeed putting an

arbitrary well-quasi-ordering on leaves from T maintains the wqo property of

T with respect to the gap-embedding. Since we can put also trees as labels of

leaves, we can choose to label the leaves of T by some set of trees with nodes

well-quasi-ordered by some possibly disjoint ordering than that of T . Hence if

we could \unfold" the leaves of T into subtrees and still keep the set of trees

well-quasi-ordered under gap embedding then by induction on n, Theorem 4.1

would follow.

The �rst step stems easily from the proof of the main theorem: As before,

we need a minimal bad sequence theorem for the set of trees with two distinct

node ordering on internal nodes and leaves. The proof is identical, since the

leaf ordering is a wqo then in any induction stage of the construction there

can only be �nitely many trees with only one node (that is, just leaves), and

they are skipped when building f .

The second step consists of showing that using a set of well-quasi-ordered
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trees to label the leaves, yields again a wqo with respect to the original de�ni-

tion of gap embedding even when we unfold these leaves to form a set of trees

such that each path can be partitioned into two comparable subpaths. Note

that if we have two trees s; t with all internal nodes comparable to their ances-

tor nodes, and leaves labelled by some set of comparable paths trees, such that

s is embedded in t according to the relaxed de�nition above, then unfolding

the leaves of s and t would not necessarily yield that the resulting trees have

a gap embedding such that all the nodes preserve the gap conditions. The

reason is that we did not require leaves to have a gap condition in the relaxed

gap embedding.

The second step is achieved by forcing the embedding to map each terminal

edge to a terminal edge. (This ensures that leaves trivially preserve the gap

conditions.) We do this simply by introducing a new node as a parent of

each leaf, labelled with a new maximum element1. Since the new maximum

element is comparable to all elements of the node ordering, the minimal bad

sequence theorem of the previous paragraph applies to the resulting set of

trees. Now, any embedding of two trees from this set of trees ought to map a

terminal edge to a terminal edge, therefore by the above explanation Theorem

4.1 follows.

5 Conclusions

As noted earlier, a simple counterexample shows that if the paths of trees in

T do not necessarily contain comparable nodes then our Main Theorem might

fail, even for strings: Let a; b; c be three incomparable elements of the node

ordering. The following is an antichain with respect to gap embedding:

c� a� c c� b� a� c c� a� b� a� c c� b� a� b� a� c : : :

Consequently, Theorem 4.1 shows that the above counterexample is canonical :

Every bad sequence with respect to gap embedding must contain paths of

unbounded incomparability.
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