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Abstract

Thomas Hakon Gronwall (1877-1932) was a Swedish-American mathematician with a broad range of inter-
ests in mathematical analysis, physics, and engineering. Though he was primarly known for his results in pure
mathematics, his career as a “consulting mathematician” in America from 1912 to his death in 1932 provides a
backdrop against which one can discuss contemporary issues involved in the increasing application of mathemat-
ics to engineering, industrial, and scientific problems. This paper attempts a summary of his major mathematical
contributions to industrial, governmental, and academic institutions while relating his often difficult life during
these years.

0 2004 Elsevier Inc. All rights reserved.

Zusammenfassung

Thomas Hakon Gronwall (1877-1932) war ein schwedisch-amerikanischer Mathematiker mit briet-gefachertem
Interesse an Analysis, Physik, und Ingenieur-Wissenschaften. Wahrend er am besten bekannt ist fir seine Ergeb
nisse in der reinen Mathematik, seine Karriere als “beratender Mathematiker” in Amerika von 1912 bis zu seinem
Tod in 1932 bietet einen guten Hintergrund fur eine Diskussion von Fragen der Angewandten Mathematik seiner
Zeit. Diese Arbeit versucht Gronwalls Anteil an Fortschritten in industriellen, akademischen und Regierungs Bere-
ichen zusammenzufassen, und gleichzeitig sein oft schwieriges Leben darzustellen.
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1. Introduction

On page 21 of théist of Officers and Members [1925-1926f the American Mathematical Society
of October 1926L.ist of Officers and Members, 1925-1926, 2itje finds the entry “Gronwall, Dr. T.H.
Consulting Mathematician. Care of Chemistry Dept., Columbia Univ., New York, N.Y.” Sitting among
the nearly 1700 entries for professors and instructors at colleges, universities, and high schools, and for
employees of insurance companies, industries, and power companies are these two lines, a gateway to th
life and work of an extraordinary mathematical talent which found expression in the years 1912 through
1932 in the United States.

The contributions of Thomas Hakd@ronwall [1877-1932}o pure mathematics are well known
among specialists in the many fields in which he worked. He is responsible for the Area Theorem in
univalent function theory, a classical upper bound on the growth of the divisor function in number theory,

a summability method, several papers on the Gibbs phenomena, and an inequality known as Gronwall's
Lemma in differential equations, to cite some of his best-known results. His talent for pure analysis ex-
tended over many fields, an achievement that was possible in, though by no means typical of, the era in
which he worked.

What is less well known, but of greater interest for the insights it gives into the American mathematical
community in the first third of the 20th century, is his work in what might be called either applied or
industrial mathematics.

The circumstances of his life gave rise to a nomadic existence in which Gronwall moved from one
post to another in America, never staying anywhere for longer than two or three years, except for his
final stop at Columbia University, with which he was associated for the last nine years of his life. If his
achievements in pure mathematics, exemplified in his nearly 90 publications, are evidence of the relative
independence of this work from the American mathematical community, the most illuminating work
from the historical point of view is the handful of papers which relate to the stations of his life in his
adopted country. These papers reflect the nature of the mathematical community and related institutions
during what Parshall and Rowe have termed the third of four distinct periods shaping mathematics in
America, the era (1900-1933) “during which the institutions and research traditions largely established
in the previous era consolidated and grd®arshall and Rowe, 1994, 428h following the path of
Gronwall’'s life one encounters such educational institutions as Princeton University, the University of
Chicago, and Columbia University, and three of the six “towering figures” of American mathematics
sketched by David Zitarel[Zitarelli, 2001} One comes across such firms as the Pennsylvania Railroad
and U.S. Steel as well as those firms developing science-based research groups such as A.T.&T. an
E.l. Du Pont de Nemours, Inc. One sees the members of the mathematical community making practical
contributions to ballistics at Aberdeen Proving Grounds, as well as collaborating on pure science research
at universities. Associations such as the National Academy of Sciences, the American Mathematical
Society, and the Mathematical Association of America play a role in his life. The status of mathematics
in such user groups as university engineering faculties, engineers themselves, and the National Bureau o
Standards comes into view.

1 Fora summary of his life and wotKille, 1932] is the most comprehensive treatment to date. Hille met Gronwall in 1921.
This document lists Gronwall’s published bibliography as well as the dates of his addresses to the American Mathematical
Society and gives a detailed analysis of the significance of his pure mathematical work and a short biographical sketch. We will
refer to this article as “Hille.” Another good summary, in Swedish, is to be foufjirk, 1946].
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The goals of this paper are:

(1) to provide a more comprehensive biography of Gronwall than is available to date,

(2) to show how the posts of his life displayed the growing use of mathematics in industry, government,
and science in America, and

(3) to show how the mathematical community had at this time become sufficiently consolidated to make
efforts to take care of errant members.

These goals are approached by interspersing biography with papers of Gronwall whose contents reflect
his current circumstances as well as they showcase his analytic abilities. These papers share one feature
they all display a concern for the processes involved in rendering mathematical expressions or equations
computable. Numbers were needed by those for whom he consulted, numbers for ballistic trajectories,
electrical measurements, stress ratios, and descriptions of electrolytes in solution. It is a remarkable fea-
ture of the papers discussed that they display a pure analyst’s ability to manipulate integrals or differential
equations at the same time that they deliver numerical results which could be entered into a machinist’s
handbook, a Bureau of Standards circular, or a firing range table. Analytical techniques which might
under other circumstances be used to bound linear operators or provide growth bounds for functions are
mustered in behalf of calculation.

The first and last of the six papers under consideration deal with the tools of computation themselves,
the first discussing the analog tool of nomography and the last mentioning the digital calculating devices
of the day. The four papers in between deal with applications of mathematics to the problems of interest
to his current station in life. By considering them one is led to the conclusion that Gronwall lived in an
era in which it was possible to pick up classical or recently constructed mathematical models, such as
systems of differential equations or integrals, provide solutions, and have the results be considered of
value to interested parties. It is to be understood that each of these papers could itself be the subject of ¢
full length treatment; our discussions are necessarily incomplete. In particular, we do not go into depth
on the reception and subsequent history of these contributions and how they fit in with current practices.
It is sufficient for our purposes to note that they had perceived value at the time. But an attempt has been
made to supply a context for each to give an idea of how Gronwall’'s contributions fit into the literature
and problems of the day.

2. The rise of mathematics and the sciences in industrial America, 1900-1940

In order to understand Gronwall’s contributions we shall attempt a brief overview of the increasing role
played by mathematics and the sciences in industrial and governmental settings during this period. Such
an attempt can make no claim to be a comprehensive study, but by choosing contemporary documents
relevant to his efforts, we can put his work in context of the historical developments of the time.

In his study of invention in America in the period 1870-19Adghes, 1998, 48[Thomas P. Hughes
notes that “Before the rise, about 1900, of the industrial research laboratory ... the nation’s technical in-
ventiveness was concentrated in the independent inventors” such as Alexander Graham Bell and Thoma:
Edison. Such inventors “needed men trained in science and chemistry,” though the relationship between
the parties was often complex, sometimes strained. He continues, “. .. most of the independent inventors
were mathematically unsophisticated.” On the part of one independent, Edwin H. Armstrong, the pioneer



A. Gluchoff / Historia Mathematica 32 (2005) 312—-357 315

of frequency modulation (FM), there was an active dislike of abstract matherftiostrong, 1944f
Hughes’s work details the arrival of a newer type practitioner of engineering exemplified by Charles
Steinmetz, who proposed General Electric's research laboratory in 1900. Steinmetz was well versed in
mathematics, physics, and engineering, and Hughes shows how this type of background began to becom
of importance in the development of the industrial laboratory.

The increasing role of scientific research in engineering and industry at this time is illustrated on
a small scale by the establishment of the Engineering Experiment Station in Urbana, lllinois in 1903.
Its stated purposfMoore, 1909, Introductiorfjwas to “carry on investigations along various lines of
engineering, and to study problems of importance to professional engineers and to the manufacturing,
railway, mining, constructional and industrial interests of the state.” Under the auspices of the University
of lllinois “There will also be issued from time to time in the form of circulars, compilations giving the
results of engineers, industrial works, technical institutions, and governmental testing departments.” On
a larger scale th8ulletin of the Bureau of Standards, which began publication in 1904, stated similar
goals in its "Announcement” in the first issue: “The Bulletin of the Bureau of Standards, of which this
is the initial number, will embody the results of its investigations, researches, and other work which may
be of importance to the scientific, technical, and manufacturing interests of the cojigihgtin of the
National Bureau of Standards, 1904, 4]

Occasionally overtures from the mechanical and civil engineering communities were made to math-
ematicians. The role of mathematics in aiding these communities was the subject of “An Appeal to
Producing MathematiciangPaaswell, 1914in 1914, by one George Paaswell, C.E., who complained
that “Hardly any [mathematical] treatise has attempted to discuss or analyze the serious problems of the
applied science professions. The profession of civil engineering is teeming with problems awaiting the
solution of a St. Venant, a Laplace, a NewtdRaaswell, 1914, 128he lamented. Citing the 1907 col-
lapse of the Quebec Bridge, Paaswell states “The failure of the largest bridge in the world—the Quebec
Bridge—was due to lack of knowledge of the action of large compression members (columns) and the
only path open to engineers was that of experimentation on larger size test pieces: mathematicians hac
failed them”[Paaswell, 1914, 128] He levels a criticism of engineering schools for their inadequate
attention to higher mathematics—a criticism often stated in this period—and notes that many a branch
of mathematical analysis could “add its quota to applied sciefiRadswell, 1914, 129Regarding com-
putation, “...general analysis itself [could lend] to the reduction of theltieguexpressions of stress
analysis’[Paaswell, 1914, 129presumably to aid in the design process.

The activities of scientists and mathematicians in World War | provided an opportunity for more gen-
eral reflections on the place of science and mathematics education in preparedness for war and promotior
of peacetime economic growth. In an address before the American Mathematical Society by the Univer-
sity of Chicago number theorist L.E. Dickson in 1918, a summary of the exterior ballistics work done
at Aberdeen Proving Grounds by the group which included Gronwall was given, and Dickson declared

2 This paper on the history of FM broadcasting criticizes A.T.&T. engineer John R. Carson’s mathematical treatment of FM
in 1922, which had found Armstrong’s researches wanting.

3 Steinmetz studied at the University of Breslau, and in 1887 obtained a scholarship which allowed him to continue working
toward a doctorate. It appears that he nearly completed a dissertation in synthetic geometry under Heinrich[Samedter
1992]

4 This paper is our example of a publication in the series of bulletins issued by the station; it will be considered below.

5 The Quebec Bridge collapsed one more time after this appeal was written, in 1916.
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that “While science has played an important role in this war, it would undoubtedly play a dominant role
in a future war and no scheme of national preparedness will prove adequate which does not insure an
ample supply of highly trained scientists and furnish to all men effective training in the fundamentals of
exact sciences. Owing to its recognized value as a fundamental part of military education, | expressly
include mathematics. . [Dickson, 1919, 289]Dickson tied this summary in with an appeal for broader
scientific training for future wars, claiming that such “scientific training here advocated as an essential
part of national preparedness for war furnishes at the same time the surest means to retain and increas
our material prosperity, to add to our health, comfort and conveniencdficKson, 1919, 289]

By the end of World War | and into the 1920s many American corporations set up industrial laborato-
ries in which basic research was done; the list of such corporations includes General Electric, Du Pont,
General Motors, and American Telephone and Telegraph. The shift in industrial work to such facilities
can be noted by quoting the Foreward to the first issue oBthleSystemn Technical Journal [Bell Sys-
tem Technical Journal, 1922, i which the anonymous author states “Modern industry is characterized
by the extent to which scientific research and technique based on precise study have contributed to its
progress. So complete has been the adaptation of and reliance on scientific research in many industrie:
that it is difficult at this timg[1922] to visualize the state of affairs of two or three decades ago, when
substantially all industry on its technical side was dependent for advancement on cut-and-dry, rule of
thumb, methods of developmeriBell System Technical Journal, 1922, 1]

In 1924 one of the most prominent of A.T.&T.'s mathematical staff, George A. Campbell, read a paper
entitled “Mathematics in Industrial Research” at the International Mathematical Congress in Toronto
[Campbell, 1926]Although subtitled “Selling Mathematics to the Industries,” it in fact dealt more with
selling the idea of industrial mathematics to pure mathematicians. Beginning with a quote from Francis
Bacon on the indispensability of mathematics to the investigation of natural phenomena, he continued by
listing the heat engine, the telephone, the radio, the airplane, and electric power transmission as “useful
devices” whose development would have been impossible without mathematical support. He claimed
that “Electricity is now preeminently a field for mathematics, and all advances in it are primarily through
mathematics[Campbell, 1926, 551Jand went on to develop a case for the choice of problem-solving
in industry as a career for budding mathematicians, citing specific examples of work at A.T.&T. He
voiced ideas on the education of industrial mathematicians and noted that “Above all, industry needs
mathematicians of an especially broad type—men whose interests naturally extend beyond their special
field, and who are flexible enough to co-operate with non-mathematidi@asfipbell, 1926, 557]

Campbell emphasized a fact which is worth noting, for it serves to indicate a problem encountered in
the movement from invention-based research to science-based industrial research. “It is characteristic of
many problems encountered in industry that a great number of independent variables are involved, far
too great a number for the best solution to be reached simply by trained judge@antpbell, 1926,

553]. He delivered a brief history of long-distance telephone cable development to illustrate this point.
This insight was echoed by Gilbert A. Bliss, a University of Chicago mathematician, in a 1927 address
to the American Association for the Advancement of Science on mathematics in infRistsy 1927]

“l find that practising engineers, and members of engineering faculties, frequently show great reluctance
in admitting that mathematics plays an essential role in engineering problems, though the books on
engineering seem to tell a different story,” he writes, and continues, “I was much interested recently to
find in print an exposition of the engineer's mistrust of mathematics in the last chapter of a well-known
book on the strength of materials... The keynote of the chapter is the adjuration to use common sense
in avoiding mathematics where mathematics is inapplicable. .. But in deference to mathematics | should
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like to add one further principle. It is that common sense should also be scrupulously avoided in places
where common sense does not apply. No amount of common sense unaided can predict the motions o
the heavenly bodies, or construct a range tablgBliss, 1927, 316f

By 1940 industrial mathematics was well enough established so that a 38-page report on its status,
written by Thornton Fry of Bell Telephone Laboratories, could be written and published Ariérécan
Mathematical Monthly [Fry, 1941] In this comprehensive work are listed characteristics of the point
of view of the pure mathematicians, and the remark that “the typical mathematician described above
is not the sort of man to carry on an industrial project. He is a dreamiejfry, 1941, 4] Fry goes
on to specify how this frame of mind must be compromised, concluding that “. . .the mathematician in
industry, to the extent to which he functions as a mathematician, is a consultant, not a project man”
[Fry, 1941, 4] At another point he notes that “...the type of mathematician who could notgbme
engineering job if he turned his hand to it will not get on very well in an industrial caféey, 1941,

5]. Among other thoughts expressed are the ideas thatHtoughout the whole of industry, research is
becoming more complex and theoretical, and hence the value of consultants in general, and mathemat:
ical consultants in particular, must increagety, 1941, 10] and that “mathematics frequently aids in
promoting economy either by reducing the amount of experimentation required, or by replacing it en-
tirely” [Fry, 1941, 21] With regards to calculation: “... mathematics frequently plays an important part

in reducing complicated theoretical results and complicated methods of calculation to readily available
working form” [Fry, 1941, 26] and that devices aiding in this effort by saving labor “...are, in fact,
examples of the use of mathematics to avoid the use of mathemfiigs"1941, 26] The long study
concludes with the remark, “There was a day when, in engineering circles, mathematicians were rather
contemptuously characterized as queer and incompetent. That day is aboujroyet941, 38] Fry
estimated that there were between 100 and 150 workers who fit this characterization of the industrial
mathematician.

The role of mathematics in the development of physics and chemistry in America during this period
is also relevant to Gronwall’s story, but we shall limit ourselves to a few remarks. In a 1921 survey of
“A Decade of Mathematics,” Harvard analyst O.D. Kellogg remarks on the relative neglect of mathemat-
ical physics on the part of American mathematicians, saying that “...it does seem clear that a greater
cultivation of this field in this country is most desirablgKellogg, 1921, 543] He lists Gronwall as
one of only four such Americans who have contributed to the field. Possible reasons for this neglect are
discussed. A recent treatment of this is§8ervos, 1986] traces some of the problem to the lack of
proper instruction in physics at the undergraduate level. This paper also contains a discussion of physical
chemistry and cites a 1929 note on the teaching of chemistry by Farrington Daniels which argues towards
the strong conclusion that “Inadequate experience in mathematics is the greatest single handicap in the
progress of chemistry in AmericgServos, 1986, 628]

6 Bliss also points out the relative paucity of applied mathematicians in America at this time, as well as the lack of an adequate
school of applied mathematics. He also reiterates Paaswell’'s request for more usable forms for mathematical solutions to applied
problems: “The further development of methods of computation which will make theoretical results of immediate service in
the applications is highly to be desired. Until such methods are known we can not hope to convince fully the practitioner of the
importance of these theories from his standpojBtiss, 1927, 318]

7 See alsgFeffer, 1997]
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3. From Sweden to mathematical debut in America

Gronwall was born Hakon Tomi Grénwall on January 16, 1877, son of “a gentleman farmer—engineer
and a well-educated mother from Varmlarf@hohat, 1933, p. 125t Dylta Bruk® a parish of Axberg
in Central Sweden. He attended Venersborg Highschool from 1887 until 1893, and then entered the
University of Uppsala the same year. In 1894 he transferred to Stockholms Hdgskola, which was at
this time a privately funded institution partially supported by the city of Stockholm. This establishment,
which later became the University of Stockholm, was at this time a research center for mathematics and
the natural sciences with a select student body and work directed primarily by Gosta Mittagq Efféer.
Hogskola had no degree-granting powers until a few years after Gronwall left; one needed to travel to
Uppsala in order to be examined. Gronwall received a Bachelor of Arts from Uppsala in 1896 with a
thesis in mathematics, and then a doctorate in 1898 on systems of linear total differential equations. He
had published 10 papers, including the thesis, by ag¥€ 21.

There is in the Archives of the Mittag-Leffler Institute a collection of correspondgaawall, T.H.,
letters to GOsta Mittag-Leffledating from the years 1897-1898 which indicates a period of tribulation
for Gronwall. From the contents of these letters it appears that he was suffering from exhaustion and
spent several months in the country at a farm in an attempt to recover. One remarkable feature of this
arrangement was that it was financed by Mittag-Leffler himself, in monthly payments made through a
third party. For this Mittag-Leffler received profuse thanks from both Gronwall and his father. Words such
as “melancholy” and “nervousness” were used to describe Gronwall’s frame of mind at this time, and at
one point Gronwall complained that he could work for no more than an hour without experiencing debil-
itating dizziness. Apparently he had also gotten in debt, and experienced bouts of intense doubt about his
future. From this period he eventually recovered, and he abruptly left his place of convalesence without
notice to his hosts. This incident is noteworthy for its revelation of unfortunate emotional difficulties, a
condition which would later assert itself and perhaps, together with a certain degree of impulsiveness,
was responsible for an itinerancy which was characteristic of his later life in America.

Upon receiving his doctorate Gronwall was faced with the fact that there were only four professorships
in mathematics available in Sweden at that fitnend there was much competition for them. Conse-
quently he enrolled in the Royal Institute of Technology to broaden his career possibilities. However, in
May of 1899 he and a friend had a party at which some damage to university property was done, as a
result of which both were banned from the university for six moath&.strong element of pride, also
an important aspect of Gronwall’s character, asserted itself in response to this, and he decided to leave
Sweden and enroll in the corresponding school in Germany, the Charlottenburg Technische Hochschule
in Berlin, where he received a degree in civil engineering in 1902. He practiced this vocation in Berlin
until deciding to move to America in 1904.

8 The Swedish word “bruk” denotes a factory located in the countryside but surrounded by a village, many of whose inhab-
itants are employees of the factory. Gronwall’s father was the “bruksférvaltaren,” or manager, of the factory, though not an
owner.

9 Forthe history of this institution and the research conducted thef®seaear, undated]

10 A discussion of these papers can be founfdaarding, 1998]
11 communication to the author from Lars Gaarding, May 9, 2000.
12 More on this incident can be found in Gaarding’s book mentioned previously.
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From 1904 to 1910 Gronwall worked at various steel and bridge-building concerns including Carnegie
Steel, the Pennsylvania Railroad, and the American Bridge Company, the last a conglomerate of steel
manufacturers formed by the American financier J.P. Morgan in 1900; in 1901 it became a subsidiary of
United States Steel. His places of employment followed a westward'fr&od Pittsburgh through the
midwest to Chicago. About this period in his life Hille says “very little is knovidille, 1932, 775] and
we have nothing to add, other than the obvious observation that such work clearly allowed Gronwall to
experience certain American industries from the inside and acquaint himself with the needs and practices
of engineers in that country.

It appears that in Chicago in 1910, or perhaps the year before, Gronwall rekindled his interest in pure
mathematics. This coincided with a change in status from employee of the American Bridge Company
to consulting engineer in the Chicago area, a title which he kept until 1913. The first expression of this
interest the author has found is a letter to Leopold Féjér, the Hungarian analyst, dated October 2, 1910, in
which Gronwall discusses the trigonometric seriegxsin- (1/2) sin(2x) + - - - + (1/n) sin(nx), a recent
object of interest to F¢&jéf It would seem that Gronwall followed in the footsteps of G.D. Birkhoff, who
several years earlier “made a first journey across the city of Chicago to the university, and found [his] way
into the excellent mathematical library ... | remember the thrill which the sight of the well-filled shelves
gave me,” Birkhoff recalledBirkhoff, 1938, 461] A set of six mathematical papers appeared in 1912
issued under the name Thomas Hakon Gronwall with address given as Chicago, lllinois. He addressed
the American Mathematical Society for the first time at its Chicago Section meeting on April 5 and 6,
1912, delivering two talks: “On a Theorem of Féjér's and an Analogon to Gibbs’ Phenomena” and “Some
Asymptotic Expressions in the Theory of Numbers.” The next month he became a member of the Society.
Among his first six publications is a memoir on nomography, which we now discuss.

4. A contribution to nomography

Nomography? is the study and construction of graphical representations of mathematical relations
for use in quick and repeated calculation. The subject has a history which extends as far back as the
early part of the 19th century, and arose as the need for such devices was evident in engineering project:

13 “The Princeton University Annual Reports of the President and the Treasurer for the Year Ending December, 1914”
[Princeton University Annual Reports, 1914, 1i8ts Gronwall's employment history as follows:

1904-1906 Carnegie Steel Company, Pittsburgh,

1906-1907 American Bridge Company,

1907-1909 Pennsylvania Lines West of Pittsburgh,

1909-1910 American Bridge Company, Chicago,

1910-1913 Consulting Engineer in Chicago.

One can note the itinerant pattern displayed here. Hille: “He was [at this time] apparently a rolling[stitilee1932, 775]
14 Féjér also reports that Gronwall communicated to him a proof of the nonnegativity of this series on the interval
for eachn, and that Dunham Jackson, then working with Landau at Gottingen, reported the same result to him at a later
date that yeafFéjer, 1952, 808]The resulting positivity inequality is occasionally known as the Féjeér—Jackson—-Gronwall
inequality, though Gronwall’s name is often omitted. Gronwall’s 1912 pfpeynwall, 1912a]in which this and other results
were published was praised highly and explicated by Edwin Hewitt and Robert Hef¥itwritt and Hewitt, 1979JA priority
dispute involving Gronwall's paper is also discussed by the authors.
15 For general discussions of nomography g&esham, 1986; Hankins, 1999]
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such as the construction of the French railroad system in the 1840s. The devices produced featured mos
prominently the intersection and alignment nomograms. Restricting ourselves to mathematical relations
involving three variables only, we may describe an intersection nomogram as followXxlet, z) =0

be the mathematical relation, arising from a scientific or engineering problem, to be chartedantie

y values appear on scales on the horizontal and vertical axes, respectively, and the level chraes of
plotted. Thus ift andy values are fixed on their axes, and the intersection of the corresponding vertical
and horizontal lines found, the level curve passing through this point is labeled with the corresponding
value ofz to be found. By allowing nonuniformity in theandy scales, the level curves may be replaced

by straight lines.

An alignment nomogram assigns a scale, perhaps curved, in the Cartesian plane to each of the three
variablesr, y, andz, and is constructed in such a manner that if the values of any two variables satisfying
the relationF (x, y, z) = 0 are given, the third may be found by placing a straightedge at the appropriate
locations on the scales of the two known variables; the intersection of the straightedge with the remaining
scale occurs at the location of the value of the remaining variable satisfying the relation.

The alignment nomogram was an innovation of Maurice D’'Ocagne dating from 1884. D’Ocagne ap-
parently created the word nomography and was primarily responsible for organizing the various aspects
of nomogram construction into a coherent body of knowledge, detailed in several books, the first dating
1891[Ocagne, 1891, 1921The subject was broad, encompassing various aspects of geometry, analysis,
and applied sciences, and the nomograms found uses in many branches of engineering, including those
with which Gronwall was familiar: ballistics, railway and bridge construction (especially with regards
to calculations of cut and fill), determination of self-inductance of circuits, and traction of locomotives.
Their construction could be described as falling under Fry’s category of the use of mathematics to avoid
further use of mathematics.

The American mathematical community would have been familiar with nomography as early as 1893,
when D’'Ocagne presented a paper at the World’s Columbian Exposition that year, and David Roberts
[Roberts, 2001has called attention to a 1906 pedagogical paper of the University of Chicago mathe-
matician E.H. Moore, in which Moore refers to the potential for the use of nomography in a classroom
setting as one of many interdisciplinary efforts to reinvigorate the teaching of school mathéehhtics.
[Evesham, 1986ihe author notes that a series of articleShe American Machinist in 1908 brought
D’Ocagne’s ideas to the engineering community in the United States. Gronwall’s familiarity with the sub-
ject could easily have resulted from his European education in civil engineering and his resulting practice;
in fact, he constructed at least one alignment nomogram himself, while working at the Aberdeen Proving
GroundgGronwall, 1919af’

16 «The nomographic methods are rapidly becoming of central importance [to graphical computations of functional expre-
sions],” statesMoore [1906, 324]

17 Gronwall's nomogram allowed the easy computation of range and deflection of a trajectory from its initial and final coordi-
nates. The technical report in which he describes it contains explicit instructions on the physical construction of the nomogram,
including advice on engineering tools and the procurement of appropriate celluloid logarithmic scales from slide rules. The
document entitled “Memorandum On Range Computation,” dated November 28, 1919, from the Aberdeen Proving Ground
[Memorandum on Range Computing, November 28, 19d6fails the use of 10 “general schemfgemorandum on Range
Computing, November 28, 1919, figr range computation of which alignment nomograms are considered best. “...the con-
struction of such a chart requires an absolute minimum amount of computation. It is estimated that 50 such nomograms will be
required to represent the entire water range [a portion of the firing range in which projectiles landed in the Chesapeake Bay]’
[Memorandum on Range Computing, November 28, 1919 8fails on their physical construction follow.
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Among the theoretical aspects of nomography is the following question: Under what conditions can
the relation to be graphed;(x, y, z) = 0, be represented by an alignment nomogram? It is easy to see
that this question is equivalent to the existence of three pairs of real-valued functions of a real variable
(fi,g), i =1,2,3, satisfying the following determinant relation, wharey, andz range over intervals
of values:

Six) gilx) 1
f2(0) &) 1
f(z) g3(z) 1

The guestion was raised by D’Ocagne in 1891, and attempts to solve it yielded partial results, but Gron-
wall was the first to find a necessary and sufficient condition for a relation to be so representable. This he
communicated ifGronwall, 1912b] a paper written in French presumably as an acknowledgment of the
French origins to the subject. In fact, in his introduction he mentioned D'Ocagne, “qui en a développé
une théorie également remarkable par son élégance analytique et par son importance pratique, surtoL
pour I'art de I'ingénieur’[Gronwall, 1912b, 6Q}% We will summarize the contents of this paper, and
then reflect on its reception and significance.

In the first section Gronwall expands the determinant condition along the third row of the determinant.
Through a succession of partial differentiations and the creation of several auxiliary functions stemming
from the relationF (x, y, z) = 0 and relations among them he arrives after seven pages of calculation
at a pair of partial differential equations involving his auxiliary functions. These equations are quite
complicated and will not be reproduced here. He has at this point proved that a necessary condition for
nomographizabilty is the existence of a common solution to this pair, a function given the @bel “

He then proves this condition sufficient by transforming an intermediate system of partial differential
equations into linear form and drawing on an existence theorem for a fundamental set of solutions to this
set. Thus he obtains the necessary and sufficient criteria for which the paper is usually cited.

In the second section Gronwall uses the variables he created to state necessary and sufficient condi
tions that respectively one, two, or all of the scales used in the nomograms are straight lines, a condition
of interest in practical us¥.In the third section he assumes that two of the three scales are not straight
lines, that the function pairs are unknown but the defining relakién y, z) = 0 is given, and that the
common solutionC can be found, and shows how one can obtain the function pairs by successive dif-
ferentiation and elimination of his auxiliary functions. This derivation includes an explicit expression
for the solution of the intermediate linear system mentioned above. Gronwall evidently considered this
production of the functions of more than just theoretical interest; in his introduction he states “Dans un
travail ulterieur, je formerai explicitement I'intégrale commuiig fles équations aux dérivées partielles
du paragraphe 1...[Gronwall, 1912b, 61]The promised work never appeared, but had the determina-
tion of C been possible a much closer link to the actual construction of a nomogram would have resulted
from the material in this section. He also specifically remarks that in the case in which one has two
straight line scales and one nonline scale, his method produces the function pairs “sans quadrature,”
computation of difficulty to be avoided.

=0.

18 Gronwall may be making a reference here to the title of an 1846 gapkmne, 1846py Leon Lalanne, a pioneer in the

use of nomograms in railroad construction.

19 “Le tracé graphiques d’'un nomogramme se simplifie considérablement lorsqu’une ou plusiers des échelles deviennent rec-
tilignes, circonstance qu’on rencontre dans beaucoup d’équations fourniers par la pr@tigueall, 1912b, 7Q]
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In the fourth section Gronwall considered a special condition on one of his auxiliary functions which
results in the classification of many nomograms, well known at that time, due to D’Ocagne and J. Clark.
These sections show a familiarity with the large literature on nomograms. At one point he draws on the
Weierstrass elliptic function in his analysis. In the fifth section he assumes that two of the three scales are
straight lines, the third a curve, and shows again how to obtain the function pairs by differentiation and
elimination only (“sans aucune quadrature”), a method which he compares with that of an earlier writer,
M. Massau, in which four quadratures are required. In the final section he analyzes another class of nomo-
grams due to Clark. One should note that this summary cannot do justice to the complications arising in
the 40 or so pages of material which comprose the work. Stylistically the paper is typical of Gronwall’s
exposition, which features carefully defined functions and variables, a patient listing of equations, and
references to each relevant equation in a derivation to help the reader through the bewildering arguments

Taken as a whole, it is evident that Gronwall's work here comprises more than the necessary and
sufficient condition for nomographizabilty with which he is usually credited. That result is contained in
the first section. The paper appears to be an attempt to put the entire theory and construction of alignment
nomograms into a mathematical framework and to create with his auxiliary functions a scheme in which
they can be studied and classified. The nonappearance of the promised follow-up paper obviously limited
the effectiveness of this effort.

In the mathematical community acknowledgment of Gronwall’s work came in the form of a 1913
paper byO.D. Kellogg [1913] then at the University of Missouri, Columbia, in which a quite different
necessary and sufficient condition was derived; Kellogg noted Gronwall’s pioneering’tiothe sec-
ond edition (1921) of hidraité de Nomographie, D’Ocagne himself noted “La question, d'un intérét
purement théoretique, qui a reconnaitre si une équdtjesn= 0 est réductible a cette forme [an align-
ment nomogram], constitue un difficile probléme d’Analyse résolu de la facon la plus remarkable, en
1912, par M. Gronwall..” [Ocagne, 1921, 15@nd in his massive two-volume treatise of the same year
Nomographie, ou Traité des Abaques RodolpheSoreau [1921tredited Gronwall with the resolution of
the problem, albeit with a qualification similar to D’Ocagne’s. Soreau included in an appendix to his
work an attempt to simplify Gronwall’s larger classification efforts.

In later textbooks on nomography similar comments can be found in the sections devoted to the math-
ematics behind the subject. By the late 1950s the work of Gronwall and Kellogg came to be seen as much
too complicated to be of use to practical nomography. Eventually nomography itself, of course, became
outdated with the coming of digital electronic computers in the 1940s. But Gronwall's work can be seen
as a mathematician’s view of the analysis of an important analog computational tool, an attempt to com-
prehend the process of rendering computable science’s important mathematical relations. We conclude
with the comment: “Excursions into its [nomography’s] theoretical aspects have had the motive that a
better understanding would lead to a more satisfactory applicatttvgsham, 1986, 331]

5. Princeton years

In a letter to Oswald Veblen dated March 16, 1913, George D. Birkhoff, then at Harvard University,
described his plans for the summer, which included a trip to Chicago. “In the first place we shall be in

20 Kellogg's paper involves criteria for the determination of the ranks of matrices in which auxiliary functions and their partial
derivatives appear.
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Chicago for a week or two, at which time | hope to see the Chicago men [members of the Mathematics
Department] and also to meet Gronwall. If Princétda still out for an analyst, by the way, it seems to me

that here is the man. He will cut a very substantial figure in American mathematics. You know of course
all about him. Everything is in his favofG.D. Birkhoff to Oswald Veblen, March 16, 1913[he vacancy

at Princeton was in fact occasioned by Birkhoff’s departure from Princeton for Harvard inf1812.

May of 1913 Gronwall had been appointed instructor of mathematics at Princeton, the institutional base
for Veblen. Surely his publications in pure mathematics played a role in his selection, but his engineering
background was of importance as well, as evidenced by the Faculty Minutes from September 24, 1914,
regarding his promotion that year to assistant professor: “... his work to be primarily in the department
of Civil Engineering. Professor Gronwall comes to us with a record for fine scholarship, both on the
Continent and in our own country. He is, in fact, one of the ablest of the Pure Mathematicians in America,
and will be of a great assistance in the problems of Mathematics with the Engineering students, a point
in our instruction where we have been unfortunately lackigitulty Minutes, 1914, 27]

During the years 1913-1915 Gronwall taught a variety of undergraduate courses at Princeton, includ-
ing a coordinate geometry course and sophomore and junior level analytical mechanics courses requirec
for all civil engineers, as well as the standard courses in algebra and trigonometry. He offered graduate
courses in integral equations (two semestérahd a number theory course. His graduate work also in-
cluded the advising of the doctoral dissertation of J.W. Alexander Il on conformal matfitig output
of pure mathematics during the years 1912-1916, described by Hille as a “volcanic erypfiitey”

1932, 776)] totaled 34 papers, including those most highly regarded by Hille and others. He also was
made an editor for the Princeton-bagethals of Mathematics.

But these ideal circumstances did not last. The precise story is at the present time still not clear, but at
the very least it appears that Gronwall had been called to task for “irregular attendance upon undergrad-
uate classeqG.D. Birkhoff to Oswald Veblen, April 25, 1923jo quote a 1923 letter from Birkhoff to
Veblen. In 1915 Birkhoff communicated his sadness regarding this dismissal to Veblen, “| was very sorry
to learn of the very difficult situation with regard to Gronwall. What can anyone do for him, despite his
great abilities, after you at Princeton have given him so many opportunities? Moreover he is precisely the
man you want as far as abilities are concerned and it is going to be extremely difficult to replace him
My feelings toward Gronwall are of the very friendliest. [G.D. Birkhoff to Oswald Veblen, November
10, 1915] In a letter from later that year he details his efforts to find academic positions for Gronwall
[G.D. Birkhoff to Oswald Veblen, November 25, 1913]

It also appears that charges of alcohol abuse were leveled at Gronwall at thi§ Tilveecharges dating
from this period as well as later times were discussed by Birkhoff in his account to Veblen of the debate

21 For the role played by Princeton in American mathematics[Aseray, 1988—1989]

22 por portraits of George D. Birkhoff, Oswald Veblen, and E.H. Moore, each of whom played roles in Gronwall’s career, see
[zitarelli, 2001]

23 Gronwall’s contribution to the mathematical treatment of the Debye—Hickel theory, to be detailed in a later section, involved
the solution of an explicit integral equation, although the course mentioned here was likely more theoretical in nature.

24 For a detailed analysis of the contents of this thesis and its ramificatiofi§lsm@off and Hartmann, 2000]

25 One of the institutions mentioned by Birkhoff was Columbia University, with which Gronwall was later associated: “It seems
to me that Columbia has infinitely greater need for him than we [Harvard] have. | wonder, however, if they understand their
own particular needs![G.D. Birkhoff to Oswald Veblen, November 25, 1915]

26 Hille appears to make a reference to this difficulty: “Though he must have been occasionally somewhat of a trial to the
puritanical brethren, | have never heard of his having any enerfii#és, 1932, 780]
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on Gronwall's 1923 nomination to the National Academy of Sciences. Birkhoff acted as Gronwall’s
advocate in the proceedings and wrote Veblen in detail about his efforts. One such letter to included the
account “| felt that some inkling of the situation [alleged alcohol abuse] had to come up, but | made it
VERY PLAIN that the rumors were not substantiated, as you will see,” and “...finally | said that you
[Veblen], Eisenhart, Bliss, Blichtfeld, Kasner, Trowbridge had all lived intimately with Gronwall and
had said definitely that the rumors were without any substantial foundation so far as you [Kh&w”
Birkhoff to Oswald Veblen, April 25, 1923Regardless of the truth of these allegations, alcoholism has
ever since been tied to his dismissal from Princéfo@ronwall was on his own again.

Details of his activities during the period immediately following his dismissal from Princeton have
not become available. The January 1Buletin of the American Mathematical Society still gives a
Princeton address for Gronwall, and he spent some time doing a series of reviews of recent mathematical
books for the Bulletin of the American Mathematical Society. One of these re\@veswall, 1916]
expressed his recent experiences in teaching and engineering practice, for it ended with the remark: “The
book under review brings forth one sad reflection: when will our writers of calculus texts for engineering
students see fit to give something really modern and practical on graphical integration and solution of
differential equations?”

On February 26 of that year he addressed the Society with a paper demonstrating his work on the
mathematical theory of elasticity, tempered by his engineering experiences.

6. The stress distributions in a keyed cylindrical shaft

In 1843, Jean Claude de Saint-Venant, the French civil engineer and elastician mentioned in the “Plea
to Producing Mathematicians” in the second section, began a series of papers considering the stres:
distributions in a homogeneous right prism subject to a twisting at both ends. The so-called Saint-Venant
torsion problem is to determine the expressions for the components of displacement and stress due tc
shear at each point of a cross section of the piShie wrote several lengthy papers on this subject and
began a literature which has become quite extensive; a summary of the results as of 1942 may be found in
[Higgins, 1942] From the outset this was more than just an exercise in applied mathematics: Saint-Venant
himself was a civil engineer for 27 years prior to turning to these studies. In the late 1850s his theory
was applied to a prism with a cross-section which was an approximation to a train rail. Saint-Venant’s
own papers contained graphical material representing stress distributions on cross-sections, numerica
calculations, and comparisons of the calculations with experiments, material which was clearly of use to
engineers. Higgins points out in his 1942 survey that “in the past decade more has been written on it [the
Saint-Venant problem] than in any preceding like perifidiggins, 1942, 248hnd that “known torsion
solutions often are of considerable aid in the study of various problems of technical importance: again,

27 Thus Albert Tucker, in the oral history “The Princeton Mathematics Community in the 1930s,” states “Earlier on there had
been another [than Hille] Swedish analyst at Princeton by the name of T.H. Gronw8lut Gronwall was an attholic and

finally had to be eased out of his position at Princeton. | think a job was found for him for a few years working in industry,
but he died sometime in the 1920s [sic]. Except for the sdtlebutt, my knowledge of Gronwall is from that obituary notice
written by Hille” [Tucker, 1984]

28 A treatment of this theory may be found[inove, 1944] Gronwall cited the second edition (1906) of this book in the paper
under consideration in this section.
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as certain structural problems encountered in modern high speed airplane, engine and tool design have
currently centered considerable attention on the complex stress analysis associated with the torsion of
solid and tubular prisms of irregular cross-section, knowledge of all methods available for solving these
problems is obviously desirabl¢®iggins, 1942, 2487°

The connection between this problem and industrial concerns of the early 20th century were evi-
denced in the publication of “The Effect of Keyways on the Strength of Shafts” by Herbert F. Moore in
1909, a bulletin of the University of lllinois Engineering Experiment Station mentioned in our S&ction
[Moore, 1909] A keyed shaft is a cylindrical shaft to which it is desired to attach a gear, pulley, or hous-
ing in order that the power of the rotating shaft may be transmitted to another member of a mechanism;
the method of securing the housing is by means of a slot cut into both the shaft and the element to be
attached and the insertion of a “key” into the slots of both simultaneously. The slot is called a keyway
and the shaft thus slotted is called a keyed cylindrical shaft. The key mechanism may also be viewed as a
mechanical fuse; if the shaft is stressed to its breaking point the key mechanism will break first. The shaft
is obviously weakened by the keyway, and the stresses to which the keyed shaft are subjected by torsior
clearly form a study of interest. Moore writes “The strength and the proper proportioning of keys have
been the subject of considerable study and of some experimentation, but the effect of the keyway on the
torsional strength of the shaft has apparently been studied but little. .. The mathematical analysis of the
strength of a shaft with a keyway cut in it is a problem of great complexity. .. Mathematical researches
by Saint-Venant and others have developed the theory of square, rectangular, triangular, and elliptical
shafts, but, so far as the writer knows, there has been no successful attempt to develop the mathematice
theory of the stresses in a shaft with a keyway cut iffiNtdore, 1909, 3]

The bulletin describes a series of experiments conducted by the station in 1908 and 1909, which
subjected keyed shafts of various key dimensions to torsional stresses by means of a machine designe
for the purpose. The keyways considered were rectangular in cross section. The strength of a shaft with or
without the key was defined in terms of its “elastic limit,” a quantity which could be precisely measured
as the machine twisting of the shaft progressed. A quantity called “efficiency” of a keyed shaft was
introduced, defined as the ratio of the strength of the keyed shaft to the strength of a similar shaft without
the keyway; the efficiency was related by experiment to the width and depth of the rectangular keyway.
There resulted an empirical formula, a linear relation among efficiency, and length and width of the
keyway. An intersection nomogram of this relation was also provifed.

Whether Gronwall was aware of this document is not known, but his own purely mathematical work
on this problem as contained in his 1916 address and published in 1919 as “On the Influence of Keyways
on the Stress Distribution In Cylindrical ShaftgGronwall, 1919c]addresses much the same problem
using Saint-Venant’s methods. It is not clear when this investigation was made; Hille says only that it
“reflect[s] the interest he held for such questions since his engineering [iille; 1932, 779] It may
have had its origins from that period, or have been the result of post-Princeton engineering employment.
In any case the paper shows an interesting combination of an applied mathematician’s ability to solve a

29 On the other hand, regarding the contributors to the mathematical theory of elasticity, Love notes in his introduction, “To
get insight into what goes on in impact, to bring the theory of the behaviour of thin bars and plates into accord with the general
equations—these and such-like aims have been more attractive to most of the men to whom we owe the theory than endeavor:
to devise means for effecting economies in engineering construction or to ascertain the conditions in which structures become
safe”[Love, 1944, 31]

30 A similar report from 1925 i§Gough, 1925]
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torsion problem, an engineer’s desire to present the answer in a computable form, and a steel industry
man’s knowledge of the nature of the shafts in question.

To begin with the last point, the keyway considered by Gronwall has for a cross-section a small circular
arc intersecting the original cross-sectional circle orthogonally; the resulting cross-section is sometimes
called the “orthogonal lune.” In older texts on machine design this keyway is called simply a round
key, and it has the advantage that it is easier to machine than the rectangular cut. Gronwall’'s treatment
incorporates the restriction that<0b/a < 1/4, wherea is the radius of the original shaft aridis the
radius of the circular arc forming the keyway. He notes that “this range of theratigis] sufficient
for all cases occurring in common practicgronwall, 1919c, 234]This comment refers to the fact
that, with adjustments made for the circular rather than a rectangular key, “For transmitting power, it is
common American practice to use a square key whose width and depth are each equal to about one-fourtt
the diameter of the shaffMoore, 1909, 6F*

As for the solution to the torsion problem itself, the Saint-Venant theory required the solution of a
classical boundary value problem: given the cross section of the shaft, find a function, usually denoted
¥ in the literature, which is harmonic in the cross section (viewed as a region in the Cartesian plane)
and assumes the boundary vali&g2)(x? + y?) at a point(x, y) on the boundary of the region. The
stress components at a point of the shaft can then be expressed in tefragadits harmonic conjugate;
other constants and moments can similarly be expressed using these functions. In Section 1 Gronwall
sets the orthogonal lune region in the plane with the origin at the center of the circular shaft and sitting
symmetrically with respect to the-axis; then in Section 2 he findg by mapping the cross section
conformally onto the first quadrant of the complex plane by a linear fractional transforfifasiod
producing the Green'’s function for the first quadrant. Tties given by the usual integral of its boundary
values against the Green’s function as in classical potential theory. He then calculates the conjugate
function for, and using both finds the stress componeén@ndY according to the expressions given
in the Saint-Venant theory.

One goal of the paper is to find, for givenandb, the points at which the stress is the maximum,
the so-called fail points, an object of much attention in applications of the theory. The stress value at
these points is also needed. These he finds in Section 3 of the paper; the calculation reduces quickly tc
a single-variable optimization problem which yields local maxima at the point on the boundary of the
orthogonal lune closest to the origin and at the point of the boundary of the shaft intersecting the negative
x-axis. The former point is shown by a calculation to be the global maximum, the stress there expressed
in terms of trigonometric functions ef = arctar(b/a).

This part of the work is in a sense straightforward, though difficult, but what strikes the modern reader
is the effort to prove that the single-variable function mentioned in the preceding paragraph has no other
critical points than those found: two full pages of transformations, bounding of mathematical expressions,

31 This restriction reflects the transformation of steel working from milling to scientific treatment: an older text refers to the
ratio as “an old rule, used by millwrightg§Hyland and Kommers, 1937, 381}loore citesKent's Pocket-Book, a machinists’
handbook listing diameters and depths of keyw@ysore, 1909, 6] and other machine design books refer to “the U.S. Navy
Standard,” which gives a precise linear relation for width and depth of the keyway in terms of the diameter of the shaft, e.g.,
width = (3/16) D + 1/8 inchegBradford and Eaton, 1940, 121]

32 |tis interesting to see this rather straightforward use of conformal mapping by Gronwall at a time when his pure mathematical
researches had lead him to some work on the frontiers of the theory of conformal mapping, including the Area Theorem and
bounds on the growth of schlicht mappings as a class.
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and proofs of nonnegativity of algebraic and trigonometric polynomials are devoted to this task. The work
culminates in the demonstration of the nonnegativity of two different polynomialsaimd sif{e) on the
interval [0, /2], each of which requires a subdivision of this interval into four subintervals on which
the polynomial is tested using different bounding strategies. Gronwall’s skill in hard analysis is clearly
demonstrated here, and one senses a certain reveling in the details of the demonstration.

The fourth section of the paper is devoted to calculating the moment of external forces around the
axis of the keyed shaft, a calculation which involves integration of (1/2)(x? + y?) over the cross
section and evaluation of other constants according to the general theory. This expression is ultimately
used to construct the ratio of the maximum stress in the keyed shaft to the maximum stress in the unkeyed
shaft of the same dimension, a quantity which may be compared to the “efficiency” in Moore’s study.
This ratio is approximated by Gronwall in the last section: “We shall now derive approximate formulas,
adapted to numerical calculation, from the purely theoretical results of the preceding paragfaphs
[Gronwall, 1919c, 241]There follow three more pages of boundings, integrations by parts, Taylor series
approximations, integral estimations, and clever algebra which lead to a quintic polynomiafai. tan
This polynomial is then bounded by using the restrictioa tan(a) < 1/4, resulting in a ratio of two
guadratics in tafw), which is the desired approximation, whose “values. .. may be tabulated, or we may
replace [it] by a linear expressiofiGronwall, 1919c, 244]Jwhich he then gives. One immediate result is
noted: asx — 0, the ratio approaches the value 2, which means that “a flaw or crack in the surface of a
circular shaft has the effect of doubling the maximum str¢gsbdnwall, 1919c, 234]

From our point of view it is perhaps this last section which is of greatest interest, for it shows
Gronwall’s concern with producing readily computable answers, a concern voiced by some of the com-
mentators quoted in our Secti@nGronwall himself cited in his first section the results of L.N.G. Filon in
a 1900 papelfFilon, 1900]which were similar to the scenario he considered, but “His [Filon’s] results are
expressed in infinite series of trigonometric and hyperbolic functions, and their numerical computation is
necessarily somewhat laborioy&ronwall, 1919c¢, 234¥2 In Gronwall’s paper the approximation of an
infinite series, a common method of expressing a solution in an applied mathematics paper, is replaced
by analytical work producing the rational expression, a form clearly suitable for “tabuldfi®ethaps
his familiarity with pocket-book engineering tables brought this consideration to mind.

The interest in Gronwall's work on the part of the engineering community in America at this time
is hard to gauge, but a similar study met with a good reception. In 1921 a 70-page paper entitled “Die
Lehre der Drehungsfestigkeit” by Constantin WeBevas published in Berlin as part of a series for the
German Society of Engineefg/eber, 1921] The paper included some treatment of the cross section
dealt with by Gronwall among many others and contained “formulas and numerical data, approximate
and exact, pertinent to cross sections in common structura[Hggjins, 1942, 255]to quote Higgins'’s

33 Section 8 of Filon's paper describes his computation methods, which involve the evaluation from tables of terms of a series
of hyberbolic tangents until the function argument was so great that it could “sensibly be taken equal t¢Rilpity”1900,

326], the remainder was then estimated using values of vagieseries and related series from Chrystal'gebra. Other series

required various techniques depending on the rapidity of their convergence. “Even with the help of all these devices the labour
of calculating the moment and stress for the sixteen sections was consid¢fabie’ 1900, 328]

34 This aspect of Gronwall’'s work was also noted by Hille: “His long and frequent contacts with the applications had given
him a strong feeling for what constituted a useful solution in such fields; he was himself an experienced and skilled computer
[person whose job was the numerical computation of mathematical expresglaitis]’1932, 780]

35 Weber had the degree of Diploma-Engineer, the first degree in engineering obtained by students in Germany, roughly equiv-
alent to a master’s degree in America. Gronwall had this degree from Charlottenburg.
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summary of it. Weber reached the same conclusion as Gronwall regarding the doubling of maximum

stress on a shaft by the introduction of a crack. The analysis was based on Saint-Venant'’s theory, but the

techniques used were different. In 1922 Weber published an abstract of this work which was translated

into English and published in the American jourdéchanical Engineering in 1922. According to a

follow-up article in the same journal “...so manyquiries as to details [of the abstract] have been

received that it has been decided to publish a more complete abginetier, 1921, English version,

45]. This later article notes that “In practice bars are encountered of cross-sections vastly different from

those treated by Saint-Venant” and “...there dileasnumber of sections of considerable interest from

a practical point of view which remain unresolved . [Weber, 1921, English version, 49} is Weber's

work in connection with keyed shafts which is usually cited in the literature on theory of elasticity.
Gronwall’'s contribution won him a citation in Love’s treatise on the mathematical theory of elasticity,

as well as a mention in Higgins’ survey (“This cross section is of considerable interest as it is that of

a circular shaft with a frequently used, standard keywaigjgins, 1942, 255) and was referred to by

later applied mathematicians in their generalizations of it. It might with some license be referred to as an

unremunerated consultation for the mechanical engineering community in America at this time.

7. A difficult period

In the years following his dismissal from Princeton Gronwall found himself in a period of difficulties
which in some ways was similar to that immediately preceding the awarding of his Ph.D. in Sweden. This
time found him trying to work on pure mathematics while finding employment at various engineering
jobs, and struggling to maintain emotional balance. During these years he was aided by Oswald Veblen,
whose role as institution and community builder within the American mathematical community has been
well documentedFeffer, 1998; Zitarelli, 2003]to these we may add the roles of friend and benefactor.
Veblen’s concern for Gronwall shows his attempts to use some of the scientific institutions of the day on
behalf of his troubled friend. The American mathematical community had evolved to the point where it
was possible for a leader such as Veblen to attempt to look out for one of its members by appealing to its
institutions as well as colleagues in established university departments for help.

It appears that sometime in 1916 Gronwall relocated to New York City, for he became part of the
Mathematical Association of America’s Library Committee, whose charge was to report on suggested
contents of mathematical libraries for colleges. In this capacity he delivered a report at a December
meeting of the MAA at Columbia University, where he was listed as “Dr. T.H. Gronwall of New York
City.”3” Many of his pure mathematics papers which had been produced at Princeton began to appear in
print that year.

The year 1917 was one of much itinerancy; Veblen’s dateb@diislen, 1917, Dateboolfor this
period include seven different entries mentioning Gronwall from April to November, spreading over five
different addresses. But this was also the year in which Veblen began to take action: he collaborated

36 Gronwall presented a second brief note on elasticity at the same time as the paper discusgerbhesl, 1918alin

which he takes issue with an earlier writer on the subject who had argued a conclusion based on general “physical arguments.”
Gronwall wrote “this conclusion in respect to the tensile or compressive stresses is not borne out by the mathematical theory of
elasticity” [Gronwall, 1918a, 295]

37 Gronwall did not become a member of the MAA until 1920.
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with his thesis advisor E.H. Moore of the University of Chicago to obtain funding for Gronwall. This
action first resulted in the awarding of a grant of $300 from the Bache Fund, one of several general
funds administered by the National Academy of Sciences for research purposes. The application for
an appropriation was made by Moore on Gronwall's behalf: its stated purpose, “To complete and to
extend mathematical researches on conformal representation” and “To free in a measure Dr. Gronwall
from engineering duties so that he may devote himself to mathematical resedMbess, 1917] The
money was to be administered by Moore. The application includes a strong recommendation from a Dr.
McCurdy, who remains unidentified. The request was granted as Appropriation #207.

In correspondence with Moore it is clear that Veblen was trying other possibilities: in a letter to Moore
he writes:

“It was pointed out to me by Professor Thompson that institutions like the Rockefeller & Carnegie are
apt to be more responsive to other institutions than to individuals. Would you think it sensible for the An-
nals [Annals of Mathematics, the Princeton-based mathematics journal] to make a plea along the following
lines? “The Annals has learned of certain mathematical investigations of high importance which are in dan-
ger of not being completed because the author is forced by material necessities to devote his time to work
of a different character. [The words “Engineering & other fields” immediately preceding “of a different
character” are crossed out.] The studies in question refer (a) to the theory of conformal representation and
analytic functions and (b) to the theory of the Gamma Function. The author in question is T.H.G. who is
well known for his work in both pure and applied mathematics and has a very high reputation as an An-
alyst, particularly in Europe. The importance of these investigations has been recognized by a committee
of the National Academy of Sciences which has voted a grant of $300 from the Bache Fund in support of
investigation (a). The Annals requests a grant of $1000 to be paid to Dr. Gronwall in installments as his
work progresses.” If you think that this attempt would be worth while, (4) [the last of four questions put to
Moore] would you be willing to support it with a letterpOswald Veblen to E.H. Moore, undated]

Whether Moore endorsed this plan is not known, nor is it clear that other funds were obtained, although
in a letter to Moore in 1918 Gronwall writes “I am writing to Veblen regarding the arrangements to be
made concerning that part of the money which is being contributed by others [than the Bache Fund]”
[T.H. Gronwall to E.H. Moore, June 28, 1918]

Matters took a turn for the worse in the latter part of 1917: In a letter to Moore dating July 14,
Veblen reported to Moore that Gronwall “reappeared a couple of weeks ago—was first seen in the library
at Columbia.” Veblen went immediately to visit Gronwall, who said that he had been in the country
recuperating from eyestrain induced by his latest job. The upshot was that “Following the best advice
| could get,” Veblen took his friend to Bellevue Hospital where a period of several weeks recuperation
for the ailing mathematician was discussed. “He [Gronwall] said that he wants to get back into regular
standing and admits that obtaining a clean bill of health from medical experts will be an essential part of
the process[Oswald Veblen to E.H. Moore, 1917]

At the beginning of 1918 Veblen reported to Aberdeen Proving Grofirais part of his efforts to
upgrade U.S. ballistics, and his work there took up most of his time. Gronwall apparently recovered his
energies and began writing. The work on conformal mapping was to take the form of a multivolume book
on the subject. This competed for his attention with the gamma function treatise, which appeared in 1918

38 According to[Schwartz, 1920, 4Yeblen’s involvement with the Proving Grounds began in the winter of 1917.
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under the name “The Gamma Function in the Integral Calcy@sdnwall, 1918b3° in the September
and December 1918 issues of thenals, and was reprinted in book form. The former work had a more
complicated history. On June 28, 1918 Gronwall wrote to Moore enclosing the first two chapters of the
intended book, delayed due to his work on the gamma function treatise, and claimed to have done most of
the “preliminary work” on the first volume. He had also produced some “new thifigd” Gronwall to
E.H. Moore, June 28, 1918} conformal mapping. Ultimately it was these “new things” which appeared
in print in the form of four notes in thEroceedings of the National Academy of Sciences; the fate of the
book manuscript is not knowf?.

An excerpt from this letter speaks much about Gronwall’s state at this time:

According to the latest information | have received from Veblen, | understand that you will find it prac-
ticable to let me have an installment of the money granted by the National Academy of Sciences for the
purpose [of continuing the book]. As to the size of this installment, | beg to submit that the two chapters |
sent you today will occupy about 40 pages in print, or 1/10 of the first volume. Since | have at present no
other source of income, it is of course necessary for the progress of the book that installments of the money
become available immediately upon delivery of the corresponding installments of the manuscript, the other
alternative being to abandon the book temporarily and take up engineering wor Bghisronwall to

E.H. Moore, June 28, 1918]

By November 29, 1918 Gronwall submitted the first note, on a new development in conformal map-
ping, to Moore, who acknowledged receipt: “I hopethat you will exercise every effort to make the
work on the book progress as rapidly and effectively as possible, and that you will send to me for the
Proceedings short snappy notes like this one covering the important new features as they may develop”
[E.H. Moore to T.H. Gronwall, November 29, 1918]he saga of this work continued until 1920, when
Gronwall submitted his final notes. By this time he had been working for U.S. Army Ordnance for nearly
two years, having been called to the Aberdeen Proving Grounds in the fall of 1918.

8. United States Army Ordnance at Aberdeen Proving Grounds and Washington, DC

The role of the Aberdeen Proving Grounds in the development of the American mathematical com-
munity has been recounted many times: the raising of public awareness of the roles that mathematicians
had played in the war, the resulting increase in status of the profession, and the devotion to the profession
engendered by living for a period with fellow mathematicians have all been disctisBed.our pur-
poses we wish to note that the Aberdeen Proving Grounds fits the mold of the new scientifically based

39 Gronwall stated in the Introduction to his gamma function treatise[@mmwall, 1918b, 35}The object of this paper is to

give an exposition, as elementary as possible, of some of those aspects of the theory of the Gamma function which are not deal
with in Jensen’s ‘An elementary exposition of the theory of the Gamma function,” which he had translated and annotated for
publication by theAnnalsin 1916. It is possible that these activities filled a relative void in his creative output at this time.

40 1t is likely that some of this material found its way into a memoir which, according to a recollectibiilef{1932, 778]

had been submitted to a competition sponsoreddiyg Mathematica.

41 For an overview of the role of mathematicians at Aberdeen Proving Groun@&see 2001] For recollections of Norbert

Wiener of this time se@Niener, 1953, 254-263for a general history of exterior ballistics spédcShane et al., 1953yhich

contains a “Historical Appendix.”
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industrial laboratory similar to those arising at A.T.&T. and Du Pont; for example, it included a branch
devoted to the mathematical theory of ballistics and methods of computation. It can be regarded as a
scientific testing ground for the design and firing of guns and shells; in the words of P. S¢Aivaniz

1920 history of the ballistics work done there, “As far as possible all of the customary refinements of
the physical laboratory are being introduced so as to let no avoidable error creep into the work [the con-
duction of range firings][Schwartz, 1920, 10Jand, prior to the work at Aberdeen, “Range observing,
computing, range table computation and all computing in general were not conducted on a truly scientific
basis"[Schwartz, 1920, 3]As Norbert Wiener described it, “It was a period in which all the armies of the
world were making the transition between the rough old formal ballistics to the point-by-point solution
of differential equations...[Wiener, 1953, 256]Since the contributions of Gronwall are inseparable
from those of his fellow mathematicians and lie several layers within the theory they developed, some
background is needed.

The division in which Gronwall found himself was the Range Firing Section, whose goals, as stated
in the postarmistice document “The Range Firing Section of the Proof Department, Aberdeen Proving
Ground: Its Objects, Its Development, and Its Accomplishments,” were the conduction of range firing, the
improvement of projectile design, the preparation of range tables and the advancement of ballistic theory.
It was the last goal to which Gronwall made several contributions. The role of mathematics in ballistics
theory had several justifications in the eyes of the participants; the author of the preceding document
stated that “Another important function is that of making improvements in ballistic theory in order that
no incident of firing may be unexplained. Nowhere in America other than at the Proving Ground is there
such a wealth of original data which may be made use of in the verification of original thelfiResje
Firing Section, 1918, 1].e., the firing data could be used to test the theories proposed by the ballisticians
and, conversely, firings both routine and unusual could be accounted for by theory.

An important goal for the mathematicians called to the Proving Grounds in the Fall of 1918 was the
construction of range firing tables for the many different types of arriving field guns, including new
antiaircraft weapons. Among the variables to be considered in developing these tables were accurate
measurement of cross wind, rear and head winds, density of air, angle of elevation, rotation of the earth,
and type of shell and gufi.Several of these variables had only recently needed to be considered because
the newer guns had higher angles of elevation, thus creating trajectories which penetrated into higher,
less dense atmosphere. The existing ballistic theory proved inadequate for these new conditions and thu:
required modification. “In order to take accurate account of these data and in order to apply to the many
problems uncovered in experimental range firing the best mathematical talent, Major Veblen procured
for the Proving Grounds the services of a number of prominent mathemati¢Raasge Firing Section,

1918, 3] Each new weapon needed a firing range table, and, in the words of Gilbert Ames Bliss, one of
the prominent mathematicians at Aberdeen, “The business of the mathematical ballistician is to compute
the data required for range tables and to assist in the arrangement of the data in a form as convenient a
possible for use in the fieldBliss, 1944, 13] Interest in computing the entire trajectory of a shell, as
opposed to merely knowing its fall point or maximum ordinate, was linked to the antiaircraft problem;
“The first important problem [in the ballistics of the new war] was the computation of antiaircraft range

42 p_schwartz is in all likelihood the “Mr. Philip Schwartz” listed on p. 4[bfoulton, 1919]under “Civilians of the Ballis-

tics Branch” with the information “(now 2nd Lt.), B.S. (Columbia University), detailed from the Aberdeen Proving Ground,
Computer, May 24, 1918, to July 1, 1918."

43 This list of variables recalls the comments in our second section about the increasing complexity of industrial problems.
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tables so as to give the characteristics of the trajectory at any point, for use with antiaircraft guns which
shot at high velocities and at all angles up to 90 degrggsfiwartz, 1920, 6]

As previously noted, the existing theory was inadequate for the new weapons. It had however reached
the stage that its variables had been tabulated (the so-called Siacci tables, after the Italian theorist), anc
with these tables, four equations which linked them, and basic trigonometric functions, most practical
ballistics problems were assumed to be solvd@lger, 2001, 924-926]The tables were the result of
certain approximations in the solutions of the differential equations of the motion of the projectile which
were inappropriate for the higher elevation weapons. The first of the major mathematical developments
was made by Forrest Ray Moulton, a professor of astronomy at University of Chicago, who along with
Veblen was attached to Ordnance in the winter of 1917. This development was a new numerical method
of solution for the basic system of differential equations governing the flight of a projectile: if the origin
of the Cartesian coordinate system is taken as the muzzle of the gun, pasékie horizontal and
directed at the target, positiyeaxis vertical and directed upward, positire@xis directed to the right of
the line of fire, the equations were

X' = —E)C/, y//= —Ey/—g, Z//=—EZ/, (1)
whereg is the acceleration of gravity,

Eo G(v)H(y)’ @)
C

and

V= /x/2_|_y/2_+_z/2. (3)

The initial conditions for = 0,

Xo = 0, xé = Vo COS,
yo=0, y;=uvoSina,
20=0, z5=0, 4)

whereuy is the initial velocity andr the angle of departure and all derivatives are with respect totime

The functionG was called the Gavre function, an experimentally determined piecewise continuous func-
tion which attempted to account for the drag on the projectile as a function of its velHcayspecific
negative exponential function to account for atmospheric density¢attte “ballistic coefficient,” a con-

stant which essentially was assumed to contain all the information about the projectile. The projectile was
assumed to act as a particle. Moulton developed what came to be known as the “method of small arcs,” a
numerical method for “wrenching” a solution out of the above equations, to cite a contemporary phrase
much in use. Details of this method may be foundlimckson, 1921]

Two issues are relevant to the absorption of mathematics into this setting. First, although it is com-
monly assumed that Moulton’s experience with astronomy and its computations of the orbits of planets
made him particularly well suited for this work, by his own admission this qualification was irrelevant:
“The introduction of the method of solving numerically differential equations is so simple and obvious
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that any one familiar with the general field of differential equations would hardly fail to do substantially
what | did” [Moulton, 1928, 246]he wrote in a reply to a review of his 1926 summary voluNesv

Methods In Exterior Ballistics [Moulton, 1926] Second, he regarded another contribution as being “very
important,” namely “I laid down for the first time explicit conditions under which the process is valid in

a strict mathematical sense. One having any considerable degree of mathematical sophistication would
not feel at liberty to ignore the question of the validity of the process on which he bases all his conclu-
sions”[Moulton, 1928, 247]Thus the mathematician in Moulton needed proof of the convergence of the
process he developed as much as the process itself, which was regarded as an “instant success, both wi
respect to increase in accuracy of computation, and also with respect to gain in time in comparison with
other short arc method$Schwartz, 1920, 514

The next contribution also came from Moulton. If a trajectory for a projectile has been computed
assuming “normal conditions,” it is of interest to know how that trajectory would change if one of the
variables on which the calculation depended were changed slightly; what would happen, for example,
if a wind arose, or a different amount of firing powder were used, imparting a different initial velocity.
One could of course recompute the trajectory with the new conditions, but an alternative, instituted by
Moulton, was to “regard the differences between the coordinates of the projectile on the two trajectories
as new unknown functions af to write down differential equations which have these functions for
solutions, and to treat the new equations, or a system of equations derived from them, by a method of
numerical integration similar to that used in the original trajectory computafitackson, 1921, 22]

The new variables were called the differential corrections. The computation of these corrections, though,
in their many numerous combinations, was “still a tedious process even by the method Major Moulton
derived for use with his trajectory computatioriSthwartz, 1920, 5]

This problem was solved by Gilbert Ames Bliss of the University of Chicago, a former student of
Moulton His contribution was written up in a series of internal memos, called “blueprints” due to the
kind of paper on which they were written, beginning in November of 1918. His solution invoked the idea
of the adjoint to a linear system of differential equations. Suppose one has a system of, say, four linear
differential equations

&' =ar& +bin+c10 +dit + ey,
' = az§ + ban + c20 + daT + ey,
o' = az& + b3n + c30 +dsT + e3,
T = au€ + ban + c40 + dsT + e4. (5)

Then one can define the adjoint system as

)N =a1h + axp + azv + aap,
—/,L/ =DiA + b + b3v + bap,

44 One interesting observation made by Schwartz was that the calculating machines used for the computational work, vividly
referred to by Wiener as “crashers,” actually made the method of short arcs feasible: “Calculating machines have been intro-
duced, thus causing a great saving in time and labor. One of the aids in making the short arc method by numerical integration,
practicable was the Monroe calculating machine [comma in the origifdfiwartz, 1920, 5]

45 A full treatment of this approach may be found in Bliss’s 1944 bRilss, 1944]



334 A. Gluchoff / Historia Mathematica 32 (2005) 312-357

—U = 1A + ot 4 c3v + cap,
—p' =dih +dopu 4 dzv + dap. (6)

All derivatives are taken with respect to time. The adjoint system is a topic in the classical theory of
differential equations; a summary of its use there may be fouf@dnrsat, 1917]The variables in the
two systems are related by an easily derived fundamental relation

T
[A& + un +vo + pt]i=) = /(kel + pez + nez + pes) dr. (7)
0

Bliss’s insight consisted of noting that the original Moulton system for the differential corrections could
be written as a system like the first just given (using onlgnd y coordinates for the sake of simplic-

ity) with all the expressions involving actual changes in the variables in question, like drag function, air
density, etc., contained in the expressiense;, es, es; the other coefficients involved known quanti-

ties or those already computed along the unperturbed trajectory. The adjoint system, whose variables
have no actual physical meaning, does not involve ¢heand thus once the original trajectory has
been computed, the adjoint may be solved without inputting any of the changes in the new trajectory,
since all its coefficients are obtained from the original system. Now, for example, a change in range
can be computed by noting that it can be expressed in terms of the new variables by settihg

u = cot(angle of hit of projectilg, v =0, andp = 0 atr = T on the left-hand side of the equation. Then
integrating the adjoint system backwards from T to ¢+ = 0 one can compute the values of its variables

at all values oft down tor = 0. Then, using the fundamental relation above with the computed values
of the adjoint variables and the changes giverepyhroughe, in the right-hand side of the equation,

the desired change in range can be found with one integration of a single function only. Thus the work
involved in finding the range correction involves one numerical integration of a linear system and a single
definite integration of a single function for any changes in the original variables, not a new numerical
integration for each chand®é.

This discovery was unanimously praised by all accounts of the history of the range table problem at
Aberdeen, due to its substantial savings of computational effort. Again, the mathematical aspect of this
contribution is our main concern. For Bliss the method was more than just a clever rearrangement of
variables to expedite computation. Like Moulton, Bliss addressed the issue of the convergence of his
method in two purely mathematical papers in fransactions of the American Mathematical Society
[Bliss 1920a, 1920b]The theory involved notions of functional analysis, then commonly referred to as
functions of lines, which at that time was at the boundary of pure mathematical research. Bliss himself
recorded his surprise that a subject so theoretical should have practical application in bfHist;s
1927] and Norbert Wiener spoke of Bliss’s “brilliant use of the new theory of function@ééner,

1953, 260] As late as 1944, when Bliss wrote his book on exterior ballistics for use in the Second
World War, W.E. Milne wrote irMathematical Reviews that “It is interesting to observe how the subject

of adjoint differential equations, once an esoteric theory of ‘pure’ mathematicians, has now become a
commonplace tool of practical enginee[Milne, 1944]

46 Gronwall made a small addition to these reports involving another transformation of the variables to ease computation
[Gronwall, 1919b]
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Gronwall’s time with Ordnance began in the Fall of 1918; he is listed in the 1918 “Objects” report
under “Surveying and Theoretical Research.” He blueprinted several reports on various computational
aspects of range firing tables over the next several months, and by February 20, 1919 had a prelimi-
nary report, “Qualitative Properties of the Ballistic Trajectory,” which he later enlarged for publication
[Gronwall, 1920] In it he proceeded as in earlier work, accepting as given the differential equations for a
trajectory for which Moulton developed his numerical method of integration, and deriving from them by
means of analysis properties that such a trajectory would have, given various hypotheses on the functions
E, G, andH. This was an exercise in pure analysis, and familiar tools such as Chebyshev’s integral in-
equality for monotone functions, Schwartz’s inequality, and the generalized mean value theorem appear.
He demonstrated his liking for absorbing existing literature on a subject by comparing some of his results
and derivations to those of older ballisticians.

Gronwall’'s stay at Aberdeen was longer than that of most of his other colleagues, ending roughly in
mid-July 1919 with an appointment as technical expert with the Office of Ordnance in Washington, DC.
Once again Veblen played the role of benefactor by helping Gronwall secure this p6Skimnimme-
diate supervisor was Dunham Jackson, his old competitor for priority in the nonnegative trigonometric
sum result of 1912. It was in this situation that he made his major contribution: in a letter to Veblen dated
August 14, 1919T.H. Gronwall to Oswald Veblen, August 14, 1918E wrote:

As soon as | arrived here some problems in differential corrections were put up to me, and the result
was a rather lengthy investigation of various aspects of the theory. A couple of days ago, | made what
seems a rather important discovery, namely that the Bliss adjoint system has a first integral, which is
XA+ y u+x"xr1+ y"u1 = const in the notation of Bliss’ first paper. This reduces the adjoint system from
the third order to the second, and | expect that the numerical work in computing the differential corrections
will reduce, by the new method the details of which | am now developing, by something like 40% for the
range corrections, and 60% for the anti-aircraft trajectories.

Some words of explanation are in order. Bliss’s adjoint system in the form given in this section has
four linear differential equations, but one of these is the trivial relatienconstant; another virtue of the
Bliss method is thus that it immediately reduces the amount computational work by presenting a system
with only three nontrivial equations. Gronwall discovered a “first integral” for this system, which for our
purposes may be described as a relation among the variables in the system which can be used to reduc
the number of differential equations, in this case from three to*f@learly this was an important
discovery in the days when computations were done by hand or adding machine. The discovery can
be seen to depend on two essentially equivalent observations: (1) that the velocity components of the
original trajectory satisfy the differential equations for the corrections, and thus when substituted into the
“fundamental relation” between original and adjoint systems give the relation discovered by Gronwall
[Jackson, 1921, 29)r (2) that the original system of differential equations for a trajectory do not involve
the independent variable™directly. It was the latter that Gronwall pointed out in Aisansactions paper
on differential correctionfGronwall, 1921]

47 “Now that the victory [in the fight for this new position] is won, | wish to thank you for your efforts in getting this appoint-
ment”[T.H. Gronwall to Oswald Veblen, July 11, 1919]

48 The notion of a first integral of a system of differential equations has a precise mathematical definition which can be found,
for example, iNGoursat, 1917, 74-76]



336 A. Gluchoff / Historia Mathematica 32 (2005) 312-357

In this paper Gronwall indeed noted that “...the adjoint system is thereby reduced to the sec-
ond order...and in consequence, the numerical computation of the variations is materially shortened”
[Gronwall, 1921, 505]but the bulk of the paper is again concerned with the properties of the differential
corrections which can be made to follow from this shortened form of the adjoint system. “Of greater the-
oretical interest is the fact that, the system of linear differential equations involved being of the second
order, the general behavior of their solutions may be determined in a fairly complete mpBrgerivall,

1921, 505] Thus we have the typical mix of computational concern with theoretical development so
characteristic of his work. Formulas for the variation in range and maximum ordinate due to changes in
initial velocity, angle of departure, and following wind are found, and theorems such as “For low tra-
jectories. . . the range increases less rapidly than the square oftthlevielocity” [Gronwall, 1921, 519]

are proved. Comparisons to results of classical ballistics are again made. The paper proceeds throug}
20 pages of hypnotically evolving equations, each thoroughly related to the others. These results were
communicated at an October 1919 meeting of the American Mathematical Society.

This result of Gronwall’s, though not as deep as Bliss’ original ideas, was accepted as of great use in
reducing computational time for the range firing tables, and his name was usually mentioned in conjunc-
tion with Bliss’ in post-war accounts of the activities of these mathematicians. As an example, Gordon F.
Hull, in his 1919 article “Some Applications of Physics to War and Peace,” that stated “Professor Bliss
gave an inclusive method of computing variations in range, altitude and time due to changes in air den-
sity, winds, muzzle velocity. Dr. Gronwall greatly simplified and extended the work of Bliss, and made
other important contributiongHull, 1919, 225]

It is not clear how many range tables were actually constructed using these methods, as the end of
the war made these objectives less pressing, but the one sign of their perceived importance is their inclu-
sion in two ordnance textbooks. Dunham Jackson'’s ordnancglamitson, 1921 ]published in October
1919, contained a last-minute Supplementary Note which related that “At the time when the [preface
was] written, Dr. Gronwall was engaged in working out the practical details of a modification of Profes-
sor Bliss’s method, by which the labor of computing differential variations is materially reduced. This
method has been found so effective that a section describing it has been inserted in Chdptaksbh,

1921, 6] Gronwall's reduction was also included MCourse In Exterior Ballistics by Roger Sherman
Hoar[Hoar, 1921, 90]a textbook for the first course of instruction in the new ballistic methods given in
the United States, at the Ordnance School of Application in the winter of 1919-1920. Hoar went so far as
to declare that “Gronwall discovered a new first integral which revolutionized the computaftites’,

1927, 325}9

It is worth noting that the new mathematical methods of range firing computations had their detractors.
In P. Schwartz’s critical study mentioned above one finds reservations expressed, among which is the

49 This statement was contained in Hoars review of MoultolNew Methods in Exterior Ballistics (University of

Chicago, 1926), a piece which occasioned a nasty reply foulton [1928] The reply took some swipes at Gronwall.
Regarding the statement about the newly discovered first integral: “Perhaps he [Hoar] was misled by the great detail with which
Dr. Gronwall set forth his results ... He [Gronwall] devotes many pages to writing out the elementary transformations to derive
my equations for the differential variations and those of Professor Bliss for the adjoint system. As for the ‘discovered new first
integral,’ it is a direct consequence in this particular problem of general principles which have been well known for at least fifty
years”[Moulton, 1928, 249] This presumably refers either to the fact that the fundamental relation linking a system with its
adjoint is the basis for the new first integral discovered by Gronwall or that a system in which a variable is suppressed can be
reduced to a system of lower order. This reply as a whole holds additional interest for its contrast of different ideas of what
constituted mathematical sophistication at the time.
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difficulty of the mathematics itself: “Mathematicians may say that the Siacci method is based on poor
and complicated methods and that army officers have been kept away from the study of ballistics on this
account, but a casual glance at the published papers on the short arc [Moulton] method and the methoc
of computing differential corrections will make one think that the Siacci mathematics is much simpler.

A complete understanding of the mathematics of the new methods including the differential corrections
involves an understanding of a great deal of higher mathemdtatiwartz, 1920, 6]This sentiment

is repeated by J.E. Rowe in a review of Moulton’s book: “Thus the problem, from the standpoint of the
practical ballistician at least, is one of engineering mathematics. What is to be gained by making the
mathematical method of approximation more difficult than is necessary?. . . Let us aim to get the physical
data or tabulated data as accurately as possible, and the method of approximation as simple as possible
Surely this is the practical point of view, and it must be admitted to be preeminently the case when one
takes into account the kind of educational training usually possessed by army officers of any nation. Their
training must be broad and practical in the extreme, and they want mathematics presented in as simple
and usable [a] form as possiblfRowe, 1928, 231]Both authors point out that the short-arc method is

only as accurate as the assumptions built into it, such as the drag and air density laws, a point with which
the mathematicians would surely agree. The limitations of the use of the tables by artillerymen in the
field is also discussed by Schwartz.

As for Gronwall, he stayed on at Ordnance in Washington, computing tables and doing other pure
mathematical research. As with J.E. Littlewood’s tenure in England in a similar situation, his own re-
search occupied much of his time. His career in America thus far earned him a starred entry in the 1921
edition of American Men of Science [Cattell and Brimhall, 1921, 274P On the other hand, Hille met
Gronwall at some time during this period; in his memoriam Hille states without elaboration thag*
[Gronwall] was already a disillusioned man, modest, quiet, and retifiddte, 1932, 780] But appar-
ently his restless nature asserted itself again, for suddenly in 1922 he departed for New York City, a move
of some surprise to his colleagues.

9. The Neumann integral and its evaluation

The year 1922 was significant for the American Telephone and Telegraph Company in New York City.
The organization’s technical journdlhe Bell System Technical Journal, began publication of research
articles. John Renshaw Carson, who had been working with A.T.&T. since 1914, published an important
mathematical analysis of frequency modulation theory which made a connection between bandwidth and
highest modulating frequency. (Recall that Carson was the target of Edwin Armstrong, NMa@sécle
was quoted in our second section.) Thornton Fry, whose discussion of the role of mathematics in industry
was previously discussed, convinced the Western Electric Company to form a separate mathematics
consulting department which was reproduced when he joined Bell Laboratories in 1925; in 1922 Fry had
collaborated with physicists and engineers on binaural location of sound and on phenomena in photocells.
In the following years such prominent mathematical talents as Harry Nyquist and George Campbell
(author of the paper “Selling Mathematics to the Industries”) made research contributions at A.T.&T.

50 «A star is prefixed to the subject of research in the case of about a thousand of the biographical notes. These are the thousanc
students of the natural and exact sciences in the United States whose work is supposed to be most important.”
51 For details of these contributions g8l Telephone Laboratories, 1975, ch. 10]
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Somehow T.H. Gronwall came into contact with A. T.&T. in the years 1922-1923, and made the ac-
quaintance of Carséfiand his collaborator Otto J. Zobel, a pair to whom we owe the first reference
to Gronwall as a “consulting mathematician.” In a July 1923 publicafiterson and Zobel, 1923, 17
(footnote)]the authors needed to study integral convolutions of the Bessel function ofrovddr sine
and cosine functions of arbitrary frequency. The values of these integrals had been tabulateg for
to 60, but for larger values they needed new information; this was provided by Gronwall in the form of
asymptotic expansions, though they were not reproduced in the paper. For this service Carson and Zobe
stated in a footnote: “The writers take pleasure in acknowledging their indebtedness to T.H. Gronwall,
consulting mathematician, who furnished asymptotic formulas for the computation of these int€grals.”
Significant in this regard is a comment by Hille: “*[Gronwall] used to complain that their [A.T.&T.’s]
problems required his knowing WatsofTkeory of Bessels Functions by heart”[Hille, 1932, 776] The
book in question had appeared in 1922 and was an outstanding work of scholarship and pure mathematic:
(see[Askey, 1995]for a summary of this book), and Gronwall's familiarity with it shows his voracious
mathematical appetite as well as his tendency to use the most current literature to solve problems (recall
his use of Love’s theory of elasticity for the keyed shaft problem).

Among other problems tackled by Gronwall on behalf of A.T.&T. at this time was that of evaluat-
ing the Neumann integral of a certain pair of loops. We will need some background on this object. In
1845 and 1847 F.E. Neumann published stufiieumann, 1845, 1844f the laws of electrical induc-
tion which gave rise to an integral expression as followsClgand C, be two curves, and then define
M= fcl fcz(cos(e))/r ds, ds1. Thus one has an iterated line integral over bGtlandCs, ¢ is the angle
between the arc length elements dnd d», andr is the distance between,dand d,. This expression
is now called the Neumann integral, and it is one way of calculating what came to be called mutual in-
ductance. The physical situation in which this arises is that of two cir€yitand C, in one of which,
say(Ci, a current flows. If that current changes, there is a magnetic field set up ateuwthich in turn
induces an electric current . The electromotive force thus induceddn is equal toM (di /dr), where
i is the current inC; and M is by definition the coefficient of mutual induction, or mutual inductance.
The Neumann integral, it can be shown, is one way of evaluating this quantity. If the ralgsaotd C,
are reversed, the constavithas the same value; thus the term “mutual.” The Neumann integral is depen-
dent only on the geometry of the curves, though it relates various electrical and magnetic quéntities.
Another concept in this class is self-inductance: each turn of a wound coil, for example, links with the
magnetic field produced by its own current and currents in the other turns of the coil inducing a counter

52 Gronwall may have met Carson at Princeton, where the latter was an instructor in electrical engineering during the academic
year 1913-1914. Carson attended Princeton as an undergraduate and received an electrical engineering degree in 1909 and
Masters of Science in 1912.

53 Gronwall kept in contact with Carson as late as 1929, as indicated by a reference Carson made in his paper of that year
[Carson, 1929, 785p “an unpublished memorandum [by Gronwall] communicated to the writer” on the subject of the paper.
Carson made several other significant contributions to communications theory, most prominently single sideband, an efficient
means of signal transmission. His 1926 b§Gkrson, 1926]a rigorous treatment of the Heaviside operational calculus to solve

the differential equations of circuits, is classic in the field.

54 A typical derivation of this quantity in physics textbooks is to relate it to the magnetidflagt up by the current if'y,
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electromotive force. When a wound coil becomes a component of a circuit it is called an inductor. In-
ductance in either case is measured in henries. A coil has 1 H of self-inductance if a current change of
1 Astinduces 1 V of counter electromotive force; it has 1 H of mutual inductance if a current change
of 1 As~!induces an electromotive force of 1 V in the other coil. Self-inductance can also be thought of
as the sum of all mutual inductances of all pairs of filaments which compose the coil.

Neumann himself had evaluated the double integral for the case of two congruent parallel coaxial
square loops and expressed the answer in closed-form rational functions involving logarithms and square
roots; the work is an exercise in techniques of integration. The task of evaluating these integrals for vari-
ous configurations soon got caught up in developments in electrical technology, specifically with devices
used to measure electrical quantities, like resistance and amperage, and later with communications tech
nology. James Clerk Maxwell, in his 1873 wofkTreatise On Electricity And Magnetism, considered
evaluating the Neumann integral, “...a qtignof great importance in the theory of electric currents”
[Maxwell, 1954, vol. 2, 46]for the case of two parallel coaxial circles and was led to an expression
involving elliptic integrals. He also took the trouble to tabulate values of his expressions “on account of
the importance of the quantity in electromagnetic calculationfMaxwell, 1954, 339]

As an example of the use of the Neumann integral in electrical metrology, we briefly discuss a scheme
devised by J. Viriamu Jones of University College, Cardiff, in the late 1880s and 1890s for determining
resistance. Jones had adopted a method of Conrad Lorenz for measuring this quantity by suspending
by conducting wires a metallic disc in the “mean plane” of a coaxial coil with one layer of wire. The
conducting wires were connected to a resistance to be measured with the same current passed through tt
coil and the resistance. When the disc is rotated there is set up due to the electrical and mechanical force:
generated an equatiginy = Ry, whereM = mutual inductance of the coil and the circumference of
the disc,R = resistancen = the rate of rotation of the disc, and= current through the coil and the
resistance. Thus if is known andM can be calculated, the resistance can be fduodes, 1891]In
an earlier paper of 1888ones, 1889]Jones had done the calculationMf which he expressed as an
infinite series of elliptic functions and truncated after five terms. In a follow-up paper in [I89@s,

1898] Jones pointed out a more general “theorem” inherent in this device, as well as a revised method
of calculatingM. The theorem relates the force between a cylindrical current sheet and any fixed second
curve and culminates in the equatibn= y,y (M, — M1), whereF is the force between the current sheet

and the second curve in the direction in which the current sheet was generatid, current in the
second curvey the current per unit length in the sheet, aifg and M, the mutual inductances of the
second curve with the initial and terminal curves of the current sheet. Thus if the current is identical in
both objects and the mutual inductances can be calculated, the current can be measured. Jones conclud
with a note that this investigation was undertaken ih consequence of the ‘Report of the Electrical
Standards Committee of the British Association’ made at Toronto, in which mention is made of the
importance of redetermining the ampefédnes, 1898, 205p

whereu is the constant permeability,is the current inCq, B is the magnetic field produced by the change in the current,

A is its vector potential, and andr are as before§; and S, are surfaces bounded I8y, andC,, respectively. Note that the
Neumann integral is thus a purely geometric quantity. See, for exafRgleofsky and Phillips, 1962, 17.4]

55 Maxwell’s treatise contains a chapter on various instruments for the measurement of electrical quantities, including an 1849
method of Kirchoff for measuring resistance which requires a mutual inductance calculation. It is also possible to measure
inductance itself by a similar scheme once resistance and current are known; in fact, the first paper by Rosa and Grover in the
Bulletin of the Bureau of Sandardsin 1904 suggests such a metH&bsa and Grover, 1904{This paper was presented at the
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As technology developed, the need for more accurate measurements of electrical quantities became
apparent, and international conferences devoted to developing standards for these units became wide
spread; the development of radio further increased this tfeled1901 the Bureau of Standards in the
United States was created largely in response to the need to establish electrical standards. There existe
a need in U.S. industry for a single, consistent basis for measurements of power, current, impedance,
voltage, and other electrical units. The role played by inductance calculations in this work is evident in
the publication in 1911 of “Formulas and Tables for the Calculation of Mutual and Self-Indu¢Rosa
and Grover, 19113 a 237-page compilation of theory and techniques of evaluation of these quantities,
including the use of the Neumann integral, by Rosa and F.W. Grover. Much of this material draws from
the numerous individual papers which appeared irBiiiéetin of the Bureau of Sandards from 1904 on;
this work was itself a revision of a 1907 collection by the autiérs.

A perusal of the pages of this document, as well as later Bureau of Standards publications on mutual
inductance, shows some of the computational difficulties in evaluating this expression, which was the
problem put to Gronwall by A.T.&T. The introduction points out that a great many formulas for calcula-
tion of mutual and self-inductance exist, and consequently there is a choice to be made by one applying
them, “because of the greater accuracy or convenience of one as compared with the[Btheasind
Grover, 1911, 5] The first section alone, for example, treats the case of two coaxial circles considered
by Maxwell, but by this time there were six subsections each devoted to a family of techniques for eval-
uating the Neumann integral in this case alone. Difficulties in dependence on tables of elliptic integrals
were pointed out in the case of Maxwell’s treatment. Many series expansiddsaoé presented, some
considered “very convergent” within certain ranges of variables. Some series work better when the circles
are close together. In some of these series terms are dropped when one variable is small compared witl
another, resulting in simplification of the expression used. The size of the error committed is mentioned
in many cases by relating the magnitude of the negligible quantity to the magnitude of the corresponding
term in the series. Statements such as the following appear: “. .. a converging series which is often more
convenient to use than the elliptical integral formula, and when the circles are nearly of the same radii
and relatively near each other the value given is generally sufficiently ef@ota and Grover, 1911,

International Electrical Congress in St. Louis in 1904.) Clearly issues involving the accuracy of measurements are also involved
in these methods.

56 An interesting and amusing indication of the influence of radio on the increased attention paid to measurement and calcula-
tion of electrical quantities can be found in the preface to the 1921 revised editiosatite Measurementsin Electricity and
Magnetism, by Andrew Gray [1921] The first edition had appeared as two volumes, the first in 1888 and the second in 1893. In
the preface of the 1921 edition Gray, a professor at the University of Glasgow, expresses exasperation with the neglect of this
subject by contemporary physicists more interested in modern theoretical developments: “In the interval since the publication
of the First Edition of this book the subjects of physical study have changed enormously, and if it were not for the needs of
Wireless Telegraphy, | question whether the theory and practice of absolute measurements would at the present time commanc
serious attention. It has even been said that radioactivity and the phenomena of X rays are the only things worthy of the attention
of physicists ... Asitis, we have now an army of students and others talking glibly of Einstein and of quantum theory, whose
attention to the fundamentals of dynamics and physics has been wofully [sic] §l@yat), 1921, preface, v]

57 |n a section in a related worlGrover, 1922]there occurs the statement, “At the Bureau of Standards a set of single layer
coils wound on bakelite forms of such a shape that each turn has the shape of a 12-sided polygon has been used as standards
inductance in radio measuring circuits. Itis, accordingly, a matter of importance to be able to calculate accurately the inductance
of coils of this type from their dimension$Grover, 1922, 738]

58 The volume[Hak, 1938]is an even more comprehensive collection containing 687 individual references to papers on the
Neumann integral dating from 1845 through 1937.
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13].5° On the other hand, some series are shown to converge, leaving en error of one part in &Million.
The section culminates with a table suggesting which formula to use for the best results as a function
of the values of-»/r;, wherer; andr, are respectively the longest and shortest distances between the
circles. Tables of elliptic functions are given in the volume, and many examples are viérked.

The problem for which Gronwall was consulted by A.T.&T. was the evaluation of the Neumann inte-
gral for two squares in a configuration to be described. The use of this value was given by Gronwall as
follows: “In the design of apparatus for the absolute measurement of radio field intensity, it is necessary
to compute the mutual inductance of two square coils in the following position: In a vertical plane, place
two squares of siddsand L, wherel < L, so that their centers coincide and a pair of sides in each square
are vertical. Rotate the square of side lerigtirough an angle about a vertical axis passing through the
midpoints of the horizontal sides, and move the square of side ldntitrough a distanck perpendicu-
larly to the original planeL and! being given, the design of the apparatus requires the numerical values
of I [the Neumann integral] for several values/ofind a large number of values @f...” [Gronwall,

1925, 516-517]Unfortunately, the exact nature of the device has not become available to the author,
but it seems likely that it is in the class of instruments including that of Jones discussed previously, in
which a loop, coil or disc is suspended within another coil and currents applied. “Radio field intensity”

is an archaic phrase which can be used for magnetic or electric field intensity, apparently the ultimate
guantities of interest, and the mutual inductance appears to be a stepping stone in its calculation as it
was in the determination of resistance or current by Jones. The apparatus also requires the restriction tha
I/L < 0.35, for reasons not explained.

In 1909 F.F. MartenfMartens, 1909eveloped an expression for the Neumann integral of any two
skew lines; his general expression involved a finite summation of complicated expressions involving
trigonometric functions of auxiliary variables as well as the inverse sine function. He, did, however,
specialize this to the cage= 0 of Gronwall's problem, a fact not noted by Gronwall. These expressions
were rejected by George Campbell in a 1915 pd@ampbell, 1915, 42bn the same subject as being
“involved and unsatisfactory for actual use,” though in fact they were used quite extensively by Grover
and Rosa in determining the inductance of polygonal coils and by others in calculating self-inductance
of antennae of polygonal shapes (see, for exanjBleshenoff, 1928] Campbell provided alternative
formulae in special cases, and an ingenious analog device for estimating the integral, but these were in

59 This is not meant as a denigration of the work under consideration, which takes great pains to illustrate the many techniques
and their appropriate use, but rather as a contrast to the single work of Gronwall in which the error term in analyzed in more
mathematical detail.

60 It is interesting to note that in the 1948 edition of the book an accuracy of a part in a thousand is the stated general goal.
Also, graphs drawn from the tabulated data are subject to the criticism thatterpolation from the tables is simpler and more
accurate than that obtainable from the cur@&3sa and Grover, 1948, Introduction, xiMhe volume[Hak, 1938]has many
nomograms, including one alignment nomogram.

61 | ater editions of this work, which became a “bible” for such computations, included more specific comments aimed at
engineers and the design process, going into much greater detail on the difficulties involved in making choices among the
formulae. These include the difficulty of evaluating special functions in exact solutions, the near cancellation of terms read
from tables of these functions in the course of a calculation, the determination of the rate of convergence of various series
expressions, and the need to combine solutions by integration or summation to cover more complicated inductors. The issues of
determining the inductance or mutual inductance in an existing circuit by calculation and designing an inductor having a given
inductance by use of these formula are also discussed. The issues are further complicated by the possibility of direct physical
measurement, as mentioned earlier, with the attendant measurement errors.
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turn rejected by Gronwall, who stated: “While these formulas are very interesting from a theoretical point
of view, they do not work well in the present problem... the formulas referred to would consequently
have to be evaluated separately and independently for each combination of vaiuesdof. Even with
the aid of the graphical method proposed by Campbell, this numerical work becomes rather formidable”
[Gronwall, 1925, 516]

Gronwall’'s solution to the problem occupies 20 pages, and his treatment again shows his expertise as
a pure mathematician dealing with an applied problem. He obtains the value of the integral as an infinite
series of even powers af=[/L with nth coefficient equal to

n 2h
Y fam(x)cos2m — Do,  x=—. 9

m=1 L

The series converges under the restrictior? 2 1+ x2, and thef,,, are polynomial functions of =
1/(1+ x?) andb = 1/,/2 + x2. Lest this all sound hopelessly complicated, he includes the comment that
if only terms up toz = 3 inclusive in the series are retained, then an error of less than 0.002 is made. The
functions f,,, for n =1, ..., 3 are explicitly given. Thus the actual computation of the approximation
involves only the four basic arithmetic functions, square roots, and the cosine function. The error has
also been provided, uniformly over all choices of the variable satisfying the two restri¢tibns 0.35
and 2.2 < 1+ x2. We will summarize in one paragraph the outline and special features of this paper.

In the first section the Neumann integral is found by routine substitutions to be equal to the sum
of two double integrals over thie-1, 1] x [—1, 1] of the kernel(1/r) expressed in terms of variables
set up for the apparatus. In the second section these kernels are reexpressed in terms of infinite serie
involving Legendre polynomials. The convergence of these series is guaranteed by the restifction 2
1+ x2. Noting carefully that these series converge uniformly, he reverses the order of integration and
summation to obtain, after some involved algebra, the single infinite series having the required even
powers ofi. The coefficients of this series are then double integrals of a combination of various Legendre
polynomials. In the next section he bounds the error involved in truncating the series at an atbitrary
this section invokes the analyst’s tools of triangle inequalities for sums and integrals, reduction formulas,
dominating terms in a series by other terms to achieve an inequality, and increasing the domain of an
integral of a positive function to make use of a known integral value in bounding. The result is a bound
on the remainder of the truncated infinite series; the bound value is numerically compared with the exact
remainder in the case of truncation after three terms. In the fourth section he replaces the coefficients in
their double integral form with the finite trigonometric series expressions given previously. This involves
use of relations between the Legendre polynomials and so-called associated Legendre polynomials as
well as the Laplace form of Legendre polynomials to separate the double integrals into the product
of two single integrals of auxiliary variables. These are then pulverized into integrals involving only
trigonometric functions to make them tractable for evaluation. In the fifth and final section his bound
from the third section shows that if only the first three terms of the original infinite series are retained, the
error of less than 0.002 is committed under the condition0.35, and then the coefficients of the first
three terms are evaluated explicitly. It is clear from the method that greater accuracy could be obtained
if desired, at the cost of having to evaluate more functions to use in his approximating expressions. The
restriction/ < 0.35L is only used here.

The use of special functions such as the Legendre polynomials was not unique to Gronwall: other au-
thors had used Bessel functions, for example, to expand the kernel of the Neumann integral. One of the
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aspects of this paper which is striking, however, is the care with which the estimate of the infinite series

is done. A typical paper in which Bessel functions are used may leave the answer with those functions
unevaluated or provide an infinite series for them to be truncated by the user with general comments as
to the rapidity of convergence under various qualitative relations among the vafidbiedock, 1908]

Other stylistic features present here are similar to those of his earlier papers: the carefully related se-
guence of equations and variable definitions, the art of transforming extremely complicated expressions,
the tabulating of lists of specific functions. One gets a sense of the great amount of pure mathematical
effort expended in rendering the integral computable in elementary terms.

This work did not find its way into either of the large collections of such formulas mentioned previ-
ously. Perhaps this was due to the complicated nature of the coefficient functions, which take nearly a
page to list. It was, however, presented to the American Mathematical Society on April 28, 1923; the
published version carries the footnote “This investigation was undertaken at the request of the American
Telephone and Telegraph Company, and is published with their permi§sion.”

10. Columbia University and the Debye—Hiickel theory

In a note to “The Secretary, Columbia University” dated December 22, 1923, Victor K. La Mer, then
an instructor of chemistry at Columbia University, made the following request: “Dear Mr. Hayden: Will
you please have the paymaster draw a check for $100.00 in favor of T.H. Gronwall for the next date of
payment (before January 1st) and charge the same to my researctViikhd’a Mer to Secretary Hay-
den, December 22, 1923fhis is the first evidence of Gronwall's permanent association with Columbia,
an association which lasted the rest of his life, and of his collaboration with La Mer, which lasted through
the 1920<2 Similar requests appear later in the 1920s, at which point La Mer was an assistant professor.
These requests, together with two joint publications and two related papers, are some of the fruits of the
collaboration between the two men.

La Mer had received his Ph.D at Columbia in 1921 and was at this point at the beginning of his research
activities. In the academic year 1922-1923 he had a fellowship which allowed study in Copenhagen and
Cambridge, and by 1928 he was chairman of the division of inorganic and physical chemistry of the
American Chemical Society. In 1933 he was named chairman of the New York section of the Society. He
went on to enjoy a long and distinguished career.

62 During the spring of 1923 Gronwall was proposed as a candidate for the National Academy of Sciences. Much of the
correspondence describing the debates on this issue within the Academy and among other mathematicians of the day is to be
found in the Oswald Veblen Papers, National Archives, Washington, DC. The correspondence shows the efforts which Veblen
exerted on Gronwall’s behalf in trying to influence various members to vote in Gronwall’s favor. The case for membership was
argued at length in the Academy by George Birkhoff, whom Veblen had delegated for the job, in a meeting which must have
been contentious. The membership was not obtained. The correspondence between Birkhoff and Veblen on this matter may be
found in the Oswald Veblen Papers, Box 2, Library of Congress.

63 For the role of Columbia University as a “Times Square” for mathematics, a meeting place for the entire Northeast corridor,
seg[Lorch, 1988-1989]Gronwall had of course been to Columbia many times prior to this decade, for example during his low
period of 1917. His obituary in thew York Times says “Hee [sic] went to Columbia in 192Dr. T.H. Gronwall, obituary,

May 12, 1932] It is likely that he spent much time there after his arrival in New York in 1922, but Hille dates his collaboration
with La Mer only from 1925.
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Among his interests at this time was the newly developed Debye—Hickel theory of electrolyte solu-
tions, published in 192@ebye and Hiickel, 1923This theory addresses the behavior of salts dissolved
in a suitable solvent such as water; under these circumstances the salt dissociates into the ions of whick
it is constituted. The behavior of such solutions is different from that of neutral dissolved substances like
sugar, due to the presence of the charged ions. The theory was intended to explain measurable propertie
of these solutions from certain basic assumptions, specifically accounting for the “excess electric poten-
tial arising from the unequal distributions of the ions,” to quote La Mer’s descriptidhiilie, 1932,

779] The theory can be seen as a historical milepost in the understanding of electrochemistry, an on-
going process dating back to the earliest investigations into electricity, but having a distinct modern era
beginning in the 1880s with the dissociation theory of Svante August Arreh&hius.

La Mer's interest in the theory appears to have begun quite soon after its publication, and one aspect,
in particular, caught his attention: the limitations inherent in the authors’ mathematical treatment. The
fundamental equation of the Debye—Hickel theory is obtained by combining the Poisson equation for
electrostatic potential with Boltzmann's statistical density law to obtain the differential equation
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In this equation we havé; = electrostatic potential due to an ion of tité kind at a distance from

that ion, e = unit electrical chargeD = dielectric constant of the solutio& = Avagadro’s number,

k = Boltzmann’s constanty = volume of solution which containgy moles of solvent ana@; moles

of ion of theith kind, T = absolute temperature, ang = closest distance of approach of two ions,
assumed to be the same for all ions in the solution. This differential equation came to be known as the
Poisson—-Boltzmann equation. In their solution Debye and Hiickel expanded the exponential functions
on the right-hand side but retained only the linear term in each summand. It was on the basis of the
solution of this linearized equation that the original theory was developed, and experimental verification
or contradiction of it referred to this version of the equation.

A great deal of work was done in response to the Debye—Huickel theory both on theoretical extensions
and experimental verifications. Some of these experiments yielded results which contradicted the original
theory, and applications of the theory to certain types of salts produced ion diameters which seemed
unreasonably small or in some cases even negative, an obvious absurdity. In an annotated translation of :
German physical chemistry tefucken et al., 1925, footnote, 328Jiblished in 1925 La Mer suggested
that some of these inconsistencies might disappear if all of the terms in the original differential equation,
not just the linear terms, were kept. It was for the solution of this purely mathematical problem of the
expanded differential equation and the comparison of its solution to experimental results that Gronwall
was consulted.

64 For a summary of this history sékaidler, 1993] Arrhenius, incidently, took his Ph.D. at Uppsala in 1884. This account
makes it clear that even the idea of dissociation of a salt into its constituent ions was at one time controversial, and many theories
were put forth to account for the phenomena of electrolysis.
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Gronwall’s first response was typical of a pure mathematician’s point of view: in an address to the
American Mathematical Society on January 2, 1926 he presented a [aoenvall, 1927aJwhich
considered the existence of the solutions to differential equations which were generalizations of the
Poisson—Boltzmann type, citing the Debye—Huckel paper as motivation, but noting that the authors
“assume without proof the existence of a unique solutiflafonwall, 1927a, 355]Specific smooth-
ness hypotheses on the coefficient functions were given. The techniques consist of modifications of
the well-known Picard method of iteration, and references to earlier treatments of the subject are
given. In some cases Gronwall was able to remove certain superfluous assumptions from earlier re-
sults. Properties of these solutions were also investigated, as in his ballistics work. Following work
done in 1926° Gronwall reported in March 1927 in a paper to the National Academy of Sciences
[Gronwall, 1927bjon his solution of the complete Poisson—Boltzmann equation for the case of symmet-
rical salts of valence typé&;, —z), without providing details of this solution. This special case reduces
the number of summands on the right-hand side to two, thus creating a single hyperbolic sine func-
tion of the input. In this paper Gronwall produced a correction factor based on his solution which
spoke to the issue of the ionic diameters: with this factor “ ...negative diameters camgear loc-
cur, and very small positive ones are likewise excluded, as appears from the following table: ...
[Gronwall, 1927b, 201] The table compared experimental results with the newly calculated diame-
ters.

It was also in 1927, according to Hille, that Gronwall was appointed Associate in Physics at Columbia,
a position he retained until his death in 198X hese papers thus form part of what Hille termed the last
“period of intense activity start[ing] in 1925 and last[ing] with undiminished strength until his final illness
and death[Hille, 1932, 776]

The bulk of Gronwall’s contribution to the Debye—Hyuickel theory is contained in a 35-page paper which
appeared in 19285ronwall et al., 1928]This paper was co-authored by La Mer and Karl Sandved, who
was on a fellowship at Columbia in 1927. It is, of the four applied papers we are considering, the most
involved from both the pure and applied points of view. We will again attempt a summary of it, but in
this particular case much will have to be left out. The first section is a summary of the problem and
the contents of the paper, which is organized so that the reader “der die viele Mathematik nicht liebt”
[Gronwall et al., 1928, 358inay skip to the last of the eight sections to obtain the needed comparison
with the variables as predicted by the theory and the experimental data. The first section merely states the
Poisson—-Boltzmann equation and rewrites it by expanding and rearranging the exponentials. The seconc
treats a theoretical issue which we will omit. The third section converts the differential equation into an
equivalent integral equation by forming the Green'’s function for the related homogeneous differential

65 several requests by La Mer for support for Gronwall from his research fund date from the year 1926. These and the other
documents quoted in this paper relating to Gronwall's association with Columbia University are to be found in the Columbia
University Archives and Columbiana Collection.

66 Hille points out that “This connection seems to have suited him fully. There were no teaching obligations; he had complete
control of his own time and an abundance of new intriguing problems to solVgHille, 1932, 776] According to the pay

card issued for Gronwall for this time (the first page of which is missing in the file at Columbia University Archives), however,
there was no salaff.H. Gronwall, University Record, undated]
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equatiorf’ To this equation is proposed a series solution of the form
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In this development the functiong,, (o, &) remain to be determined. This is done by substituting the
series into the integral equation and developing a recurrence relation fgr,the £). The quantities

which are to be calculated from these functions and compared with experiment are then determined in
terms of they,, (x, x); these are the total excess free energy and the activity coefficients of the solvent and
solute. All these manipulations are formal only; considerations of the convergence of the infinite series
representations are postponed until Section 4, where uniform and absolute convergence are proved by
majorant method which requires much pure analysis; at one point a theorem on the radius of convergence
of a power series with positive coefficients is cited (from the contemporary 1927 two-valetmiauch

der Funktionentheorie by Bieberbach). The fifth section has as its goal the proof that a fundamental
law of the Debye—Hiickel theory, the Debye limit formula, is still valid with the retention of all the
terms in the original differential equation. This section is impossible to summarize in a sentence, but
one interesting calculation has the dielectric coefficient assuming complex values in a use of the Cauchy
integral formula.

These sections highlight Gronwall’s pure analysis skills, the remaining sections show his applied math-
ematics abilities. Considering the symmetric case (ions with pairwise equal valence), he notes that the
terms with even powers in his series expressions vanish, then proceeds to calculate the first three odc
power expressions in these series for approximation purposes. This involves the creation of auxiliary
variables called(;, X3, X5, andY;, Y3, andYs whose algebraic and integral combinations compose the
terms he desires. These variables are all found and expressed in terms of integrals of rational functions,
yet more auxiliary series, and the exponential integral funcion) = f;ﬁx e;" du.®® In Section 7 were
tabulated values of the six variables just mentioned as well as algebraic combinations of them necessary
to compute the truncated versions of the activity coefficients needed for comparison with experimental
values. Finally, in Section 8, these truncated versions are computed and compared with experimental
data for several specific salts. It is, in fact, the electromotive force which is one of the precise quantities
compared; this can be related easily to the activity coefficients. (In a followup paypesff et al., 1931,

2252] one finds the observation that “...and, in general, electrical measurements are the most precise
and trustworthy. ..” aspposed to, say, thermal measurements.)

It should be apparent that this paper involved an enormous amount of work, yet it was not the end
of Gronwall’s involvement with the Debye—Hlickel theory. He generalized his procedures in the 1930

67 Although this paper cites no reference for this technique, a followup pi&reiff et al., 1931, 2288mentions the re-

cently (1924) issued Courant—Hilbert clasMethoden der Mathematischen Physik [Courant and Hilbert, 1924, 273-278%

a reference for the method. The conversion of a differential equation to an integral equation can most easily be understood
by a special case, namely the undergraduate topic variation of parametdi#/ilsgeand Barrett, 1982, 127-1379r a nice
treatment.

68 Elementary properties of this function were developed wifGironwall et al., 1928, Section 6] he Debye—Hiickel theory

was listed as one of the applications for which values of the exponential integral function needed tabuldisborynof the
Computation Laboratory of the National Bureau of Sandards by Arnold Lowan [1948, 9]a student of Gronwall at the time of
Gronwall’s death. Lowan became the head of the Mathematical Tables Project in 1938.
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Ph.D. dissertation of Lottie June Greiff, a student of La Mer’s, and much of the calculations for this
work remained unpublished. Again the conjoining of pure analytic skill with the ability to process a solu-
tion for computation provided a combination resulting in useful contributions to a science. If Farrington
Daniels’ dictum about the lack of expertise in mathematics being the largest impediment to progress in
chemical research in the country were true, Gronwall’'s expertise provided a notable advance. “Only a
mathematician with Gronwall’s gift for analysis and most uncommon grasp of the literature of chemistry
and physics could have contributed the elegant solution which he gave,” remarked La Mer in Hille’s
memorial[Hille, 1932, 780]

One other aspect of this work needs to be discussed. The work done by Gronwall and La Mer dealt only
with low-concentration solutions. The original intent was to see whether “the very marked discrepancies
which frequently persistetb extreme dilutions in the most significant data could be attributed to an
incomplete mathematical developmeftille, 1932, 780] to quote La Mer again from Hille (emphasis
added). The introduction to the 1928 paper makes it clear that the results obtained show good agreemen
only in the case of low concentratiéh.

The issue is of more than scientific import, since industry typically is interested only in the properties
of high-concentration solutior§.Since Karl Sandved, one of the collaborators on the paper, was partially
supported by a Du Pont Fellowship, it is natural to ask if this support was a result of interest by Du Pont
in the subject matter at hand, the more so since a 1926 research announcessgntcaby Gronwall
and La Merf{Gronwall and La Mer, 1926%poke to their interest in extending the Debye—Hickel theory
to concentrated solutions.

It is not possible to give a definitive answer to this question, though there are some possibilities to
consider. In the 1920s Du Pont was reorganizing their already existing research department to take ac-
count of the use of pure science research in their endeavors. Part of this strategy was the initiation of
fellowships, which at this point were frankly to be used as recruiting tools to increase their research staff.
“Typically, Du Pont annually gave a [university] department one or more industrial fellowships, and the
recipient department rotated the Du Pont fellowships among its professors, who in turn granted them to
their studentsTHounshell and Smith, 1988By 1927 the effectiveness of this scheme was called into
guestion; one aspect up for criticism was that the recipients might not be doing work of interest to the
company. The result was the suggestion that the fellowships be assigned to particular professors. Par
of this plan involved the formation of a committee to “maintain a complete scholastic record of the in-
dividuals to whom these awards are assigned by the colleges, details of the research work performed
and other data pertaining to the subjgétounshell and Smith, 1988, 29@uch a committee may have
been behind the request made to Sandved on June 9, 1927 to “write them [Du Pont] a letter giving an
outline of his [Sandved’s] previous training and also a brief description of the research work he proposes
to undertake while holding the fellowshipF.D. Fackenthal to C.H. Sandved, 192iridicating that the
new program was in effect at this point. The alternative is that the fellowship funds were distributed to
Columbia University’s Department of Chemistry as evidence of general recruiting interest, or of interest
in La Mer himself, regardless of the nature of the research undertaken.

69 “Es stellt sich daraus, dass fiir kleine Konzentrationen—und fiir diese allein ist ja die ganze Debye—Huckelsche Theorie
berechtigt—unsere Formeln mit den beobachtungen gut ubereinstini@emiwall et al., 1928, 358]

70 La Mer himself made this point in a 1935 review Bifectrolytes by Hans Falkenhagen: “The title of Chapter 11, “More
Concentrated Solutions,” may prove somewhat disappointing in that one who has not been dealing with the subject might
expect that the concentrated solutions of industrial importance are to be disciiss®tEr, 1935, 154]
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The work of Gronwall and La Mer found its way into texts on physical chemistry of the day: Falken-
hagen’s 1932 volum§Falkenhagen, 1934jiscussed it and compared it to other competing thedties.
The work was cited in texts of the late 1950s, but by the late 1980s it appears that citations had ceased.
One factor working against its impact was the complexity of the equations used to express the measurable
gquantities and the tedium involved in using the tables, which could have had errors. But at the time the
paper was considered a solid contribution to the theory of electrolytes in solution.

11. Lastyears

On April 1, 1929 Gronwall wrote to Oswald Veblen detailing his computing activities in support of
the work with Victor La Mer, in particular noting that an assault on the seventh order term in his series
solution was desirable, and that he had “also other schemes in quantum theory which call for extensive
numerical calculation...” To carry out these aities he requested funds from the National Research
Fund “to engage the services of a computefT.H. Gronwall to Oswald Veblen, April 1, 1929The
tables in the 1928 paper had taken up three pages of the work, so clearly there was much computing
taking place. The last of the papers we consider is a brief treatment involving algorithms for solving a
well-worked-over problem and some attendant computational issues of the digital kind, as opposed to the
analog nomographical work Gronwall had done early in his career.

In the June—July 1929 issue of tAmerican Mathematical Monthly Gronwall published “The Number
of Arithmetical Operations Involved in the Solution of a System of Linear Equatigiisinwall, 1929]

The problem was to make a determination of the count for each of the additions, multiplications, and di-
visions necessary to solve a nondegenerditgn linear system of algebraic linear equations in variables

x1, ..., x,. Gronwall first notes that the problem has practical applications, citing the use of calculus of
variations in the elastic vibrations of a plate, which yields such a system fordakde rules out the use

of determinants immediately, “. . . since determinants of high order are among thamptesisant objects

to handle numericallyfGronwall, 1929, 325]Thus the issue is one of efficiency of computation: given

the elementary problem at hand, what is the least costly method? He states that systematic substitutior
appears to be the best approach: dividing the first equation through to achieve a coefficient of 1 on the
x1 variable, he solves far; in terms of the remaining variables and substitutes this into the remaining
equations? He finds the simple difference equations which relate the operation counts for the original
n by n system and the new— 1 byn — 1 system, and notes their solution follows quickly. The results
give familiar cubic polynomials im for the operation counts. He investigates the count in the case of

a symmetric coefficient matrix, and tries alternative substitution techniques, but states that none of the
other methods attempted produce fewer total operations than his first approach.

In the final sentence he notes that the choice of method for solution “may be influenced by the type of
calculating machine used; with a machine with automatic division, the first method is preferable, while

1 Falkenhagen states that after the setting of the original Poisson-Boltzmann equations with initial conditions, “The sub-
sequent calculations consist merely [!] of replacing [the differential equation] by a single integral equation with boundary
conditions. The solution of this equation may be obtained in the form of a s¢fakkenhagen, 1934, 271]

72 |n a 1900 paper which dealt with the same problem within the context of fitting a line td@atalseels, 1900, 53jhe

author remarks: “Nous supposons qu’on résolve les équations finales par élimination successive, parce que c’est ce procédé qL
est le plus souvent suivi par les calculateurs.”
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with a machine such as the “Millionaire,” where division is cumbersome but multiplication is extremely
rapid, the second method may have its advantaffessnwall, 1929, 327]This remark reminds us that

the increasing complexity of mathematical calculations was subject to the restriction of the calculating
devices of the day.

The Millionaire calculator was a Swiss machine patented in 1893 and put on the market in 1899. One
of its features was a mechanical multiplication table in which only one turn of the operating handle was
required for each digit of the multiplier; this was considered a speedup of the usual multiplication process.
Division was clumsy for, among other reasons, an estimate of the answer had to be entered before the
calculation of the actual answiBaxandall and Pugh, 1975Thus the method chosen was dependent on
a knowledge of calculating devices, which Gronwall surely had at this pbdint.

This is a mere note, and it would be unfair to saddle it with more significance than is appropriate, but
itis clear that, within its confines, it shows both the pure mathematician’s awareness of approaches to the
simple problem at hand as well as the applied knowledge of computational devices of the day. This was
not the first consideration of the problem: as early as 1853 Bitemymé [1853ktated without proof a
cubic polynomial iz as the total operation count for solving amy » system, and in 1900 Goedseels
provided another estimate; both papers are within the context of fitting a line té*data.

In his last years Gronwall worked on problems involving quantum mechanics, as suggested by his
letter to Veblen. He published a paper on the hydrogen wave equation in 1931, and his preliminary work
on the helium wave equation was collected after his death in 1932, ultimately to be used by J.H. Bartlett,
Jr. to good effect in a 1937 publication, for which Gronwall is also crediBadtlett, 1937; Gronwall,

1937] He was invited in 1929, along with five others, to participate in a symposium on the mathematics
of engineering, sponsored by the American Mathematical Society on a Saturday of its annual meeting,
the specific topic being the differential equations of enginedfighardson, 19297° But his material
circumstances appeared to have deteriorated during these last%#ils.speaks only of Gronwall’'s

“final illness and death{Hille, 1932, 776]Jon May 9, 1932. In addition to Hille’s piece in theulletin,
Gronwall was remembered by J.A. Shohat of the University of Pennsylvania in “The Life and Work of
T.H. Gronwall” during the 17th annual meeting of the MAA in December of 18@®hat, 1933]and

by an obituary by Columbia University mathematician Joseph F. Ritience [Ritt, 1932]

Gronwall’'s career in America highlights several aspects of the role of mathematics in scientific and
industrial settings in the first decades of the 20th century. It is convenient to address these issues by
referring to one final contemporary account of the relationship of mathematics to industry, that of the
Cornell University Professor of Engineering Vladimir Karapetoff, whose career spans a time overlapping

73 How much familiarity a typical American pure mathematician would have which such instruments at this time is hard to
judge, but a remark ifiLocke, 1924]states “Certain it is that the calculating machine has not attracted the attention of the
mathematician to the extent it deserves, witness the complete absence of literature on the subject in American technical journals
and an almost equal void in foreign journalsbcke, 1924, 422]

74 Goedseels’ count was made by treating addition and subtraction as having value one each, and finding the log or antilog
of a number as one operation each; no multiplications or divisions were calculated as such. The references for Goedseels anc
Bienaymé may be found iffrarebrother, 1999Neither considered machine dependence.

75 “This part of the program is being arranged because of a wish expressed by some members of each of the two groups—
mathematicians and research engineers—for closer cooperation.”

76 One sign of this can be seen in the United States Census of 1930, which lists Gronwall as a “roomer” with address 3609
Broadway, a 29-unit complex with lower rent than his earlier 68 Bank Street dwelling, where he occupied one of five units. Of
course the Stock Market crash of 1929 may also have played a role in this change.
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that of Gronwall. Karapetoff, a Russian-born and educated electrical engineer, came to America in 1902,
worked for Westinghouse Electric and Manufacturing Company in East Pittsburgh, Pennsylvania until
being offered a position at Cornell University in 1904, where he stayed until his retirement in 1939. In
an article entitled “The Mathematical Thread in My LiffRarapetoff, 1939] written at the end of his
career, he offered a few observations which are useful in summarizing our work.

Karapetoff’s first comment is that “There would be less waste, more speed, better performance, and
better chance for our products on international markets if more mathematics, theoretical physics, and
analytical mechanics were used in our industrip&irapetoff, 1939, 65]He did not feel that it was
necessary, however, to give engineering students more instruction in these matters, but preferred a “bucke
brigade” arrangement, as he experienced in Germany at that time:

A practical radio man is troubled with the performance of a vacuum tube and is at the end of his resources
as to remedies. He discusses the difficulty with a theoretical practician who feels that the electrons could
not be made to move in paths desired by the practical man. He sees the elements and the factors in the
problem but cannot express them mathematically. So he strips the problem of the unessentials and lays it
before a practical theoretican who expresses the relationships and the desiderata in a mathematical form.
However, he is not able to solve the resulting equations, lays the problem before a theoretical theoretican
in that particular field of equations, and gets advice on how to proceed. The problem then travels back and
finally reaches the practical practician, perhaps in the form of a few numerical data, a curve, or a simple
formula, with which he can proceed with the probldKarapetoff, 1939, 65]

This description fits in well with the conception of Gronwall as a consulting mathematician, clearly
identifiable with Karapetoff’s “theoretical theoretician.” This kind of activity was Gronwall’s chief role
in each of the four consultations highlighted above; his solution of Saint-Venant’s equations for the stress
on a keyed shaft assumed that the theory had already been worked out, for example. There was a plac
for his outstanding mathematical abilities, provided a theory already existed, as was the case for the
Neumann integral, the ballistics equations, and the Poisson—Boltzmann equations of the Debye—Huickel
theory. Karapetoff’s bucket brigade idea is somewhat at odds with the idea that more science and applied
mathematics needed to be taught in universities, a position taken for example by Bliss and Birkhoff and
Gronwall himself (recall his complaint regarding the lack of useful engineering mathematics in university
settings, upon reviewing Runge’s lectures.) In either case a lack of this kind of knowledge in higher
education is revealed.

Karapetoff then remarks that “There is a widespread naive belief among engineers (the belief being
fostered by elementary courses in engineering) that a practical problem can always be solved step by
step. You first decide upon the length of the shaft; from this you determine its diameter. Then you com-
pute the size of the flywheel, etc. In reality, this is a problem in simultaneous equations, all the variables
being interdependent in a rather complicated manner. .. The important point is for the engineer to see this
interdependence clearlyKarapetoff, 1939, 65-66He mentions that he had constructed several instru-
ments which mechanically displayed the relations among several variables satisfying equations arising in
engineering problems. Here we encounter the desire for computational devices which incorporate higher
mathematics into a usable form, reducing sophisticated mathematics to routine calculation. This reminds
us that Gronwall had taken pains in each of the works discussed to make his solutions usable to comput-
ers, as was required for the absorption of higher mathematical ideas. Also inherent in this remark is the
observation that during this era mathematics began to be used as a tool for application because, amon
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other things, it had the ability to express the relationships between many relevant variables simultane-
ously; the idea that these relationships should be acknowledged and used, a commonplace of today’s
mathematical modeling, was apparently not universally accepted at this time. Bliss and Campbell had

mentioned this idea in their essays. The best of our examples of the inclusion of many variables is the
treatment of ballistics given by the Aberdeen group, where such factors as air density, angle of fire, wind,

rain, and other variables were simultaneously incorporated into the model of the ballistic trajectory.

The last of the three major points made by Karapetoff is that “Theoretical achievements outside this
country remain unknown to our engineers, or are disregarded by them for long periods of time, to the
detriment of the industry, and indirectly of the country at large. The same is true of new branches of
mathematics, first proposed for assistance in a new engineering problem... As a practical man once saic
to me: ‘You cannot generate electricity out of the square root of minus one’... Conjugate functions,
Fourier Series, differential equations of damped oscillations, matrices, tensors—all these had to fight
their way into our engineering circle$karapetoff, 1939, 66]Gronwall clearly was working in a time
when there was an increasing use of this kind of higher-level mathematics, especially in the treatment
of electrical problems, but it was not readily accepted by all, and those who practiced it were only on
rare occasions organized into laboratory settings: “A few large industrial organizations, such as the Bell
Telephone System and General Electric Co., are on a fair way to permanent self-sufficiency [with regard
to employing scientific and mathematical “middlemen”], but smaller concerns still are at the stage thus
expressed to me by an owner: “I hire a Ph.D. and prod him to solve my problems; then | fire the Ph.D””
[Karapetoff, 1939, 66]The response to the 1922 publication of the Saint-Venant treatment of torsion in
bars illustrates the willingness on the part of some to indulge the newer approaches, but the reservations
expressed by P. Schwartz to the new methods of calculating ballistic trajectories also demonstrates the
wariness of others of the new higher mathematical ideas.

Gronwall’'s career in America illustrates issues discussed by Karapetoff as well as other commentators
we have cited, perhaps the more so because his role as consulting mathematician was more a matte
of default than design, not a choice he would have preferred to make. His first love was clearly pure
mathematics, and his outstanding work there is universally acknowledged and cited. Even in the last
years of his life he continued to publish papers on harmonic functions, summability, and Bessel functions.
However, his eccentricities did not allow for a permanent position either in the academic world or in an
industrial setting such as Bell Laboratories, and his drifting life thus illustrates the many changes of the
day rather than revealing him as a major figure in any of them. The rise of the industrial laboratory and
its slow acceptance of mathematics as a tool, the pioneering use of mathematics in a war-time setting, the
deficiencies of college engineering mathematics, the attitudes of various parties to the use of increasingly
sophisticated mathematics in applied settings, the importance of the reduction of theory to computation,
and the need for more high-level mathematics in physics and chemistry were all issues experienced
by Gronwall, but his interest in this work and devotion to it was not comparable to that of full-time
practitioners such as Steinmetz, Campbell, Fry, or Karapetoff. Yet his contributions show an incisive
mathematical mind quite aware of the needs of the users of this mathematics, which include some major
scientists and engineers such as Victor La Mer and J.R. Carson.

His life also indirectly reflects the growth and consolidation of the American mathematical commu-
nity. As the mathematics departments of major universities such as University of Chicago, Harvard,
Princeton, and Columbia were established and grew, we find Gronwall associated with them in various
ways, contributing to their growth, and we find mathematicians attempting to help him in his wayward
course. This assistance took the form of both job placement at the Aberdeen Proving Grounds and Gov-
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ernment Ordnance and funding for research in pure mathematics (the conformal mapping work). The
most significant helper in this regard was Oswald Veblen, but G.D. Birkhoff argued on his behalf and
E.H. Moore administered grant funds for him after applying for a Bache Fund award for research in pure
mathematics. The well-documented communications among these men show a degree of organization o
mathematical culture, another obvious instance of which was the concentration of mathematical talent on
an emergency basis at the Aberdeen Proving Grounds.

An observation made to the author by Karen Parshall at the beginning of this work has proven quite
relevant: sometimes the contours of a mathematical community become clearer when one considers the
life of someone who does not readily fit into any of its existing categories. T.H. Gronwall was such a
figure in American mathematics of his day, and it might be appropriate to summarize what roles he did
not play. He was not a pure mathematician associated long term with a university in a teaching position,
though he published over 80 papers in pure mathematics and consulted with, among others, Edward
Kasner and Joseph Ritt of Columbia University as well as J.L. Walsh and Caroline Seeley. He was not an
applied mathematician at a university whose publications would be of occasional interest to engineers,
though some of his work resembles such material. He was not a physicist or chemist at a university,
though he worked with such people and published papers on physical and chemical topics. He was not
a long-term employee of the National Bureau of Standards or other government agency, as was Edward
Rosa (the NBS physicist who contributed to a large literature in electrical metrology) though his mutual
inductance paper would have fit in well with that agency’s publications. He was not a mathematician
employed long term by an industrial concern, as were J.R. Carson and George Campbell, though he
worked with such people. He was not a professor of engineering at a university, though some of his work
might have come from the theoretical side of such an employee.

It would seem that Gronwall’'s self-description as a consulting mathematician in 1925 provides the best
summary of his professional life not just at that point, but from the beginning of his career in America,
though not by premeditation. His analytical abilities were available to those who desired the full use of
pure mathematics, be it industry, government, or academia, and each experienced an increasing need fc
these services in the period we have described.

In a letter of October 17, 1924 to L.E. Dickson, occasioned by his unsuccessful attempts to secure an
NAS membership for Gronwall, Oswald Veblen expressed, with some impatience, his friend Gronwall’s
single-minded devotion to his work: “The actual fact is that Gronwall is a man who has no interest in
anything except scientific work, and he consequently appears to all normal people as somewhat wrong”
[Oswald Veblen to L.E. Dickson, October 17, 192A]gentler assessment is that given by Hille when
he wrote, “His [Gronwall's] life shows that his unruly spirit found expression, joy, and satisfaction in
scientific thinking and creatiorfHille, 1932, 780]
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