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Abstract

Consider a sum of Markov dependent lattice variables. The normal approximation is trivial for
this sum if the total variation distance is considered. Replacement of the normal approximation
by its Poisson structured analogue changes the situation radically. Moreover, considering the
Markov binomial distribution we prove that signed Poisson approximation can be more accurate
than both the normal and Poisson approximations. Possible improvements due to asymptotic
expansions are discussed. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The aim of this paper is giving some possible alternatives to the normal law for
sums of dependent lattice random variables. Applying normal approximation to lattice
distributions we encounter two problems related to the di�erences in supports. First, the
Edgeworth expansion contains additional summands to compensate the jumps of the
approximated distribution. Second, it is impossible to get any but trivial estimate for all
Borel sets. In general, other standard in�nitely divisible approximations cannot improve
the situation. For example, the standard Poisson approximation (even with long asymp-
totic expansions) is inapplicable for a sequence of random variables. In this paper we
show that problems mentioned above can be solved using the signed Poisson approach,
i.e., by replacing the normal approximation by its lattice Poisson-like analogue. More-
over, the signed Poisson approach allows us to use one approximation, instead of two
or more. In Section 3 we prove that, for some parameters of the Markov binomial
distribution, the signed Poisson approximation is of the same or better accuracy than
the better one of the normal and Poisson approximations.
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For more detailed formulations we need the following notation. Let Ea denote the dis-
tribution concentrated at a point a ∈ R; E ≡ E0. All products and powers of measures
are understood in the convolution sense, i.e., FG{A} = ∫R F{A − x}G{dx}; F0 ≡ E.
For a �nite measure W we denote by Ŵ (t) its Fourier–Stieltjes transform and by ‖W ‖
its total variation norm. We also denote exp{W}=∑∞

k=0W
k=k! (the exponential of W )

and |W |= supx|W{(−∞; x)}| (an analogue of the uniform Kolmogorov distance). We
denote by C positive absolute constants that can vary from line to line. Similarly, by
C(·) we denote constants depending on the indicated arguments only. Sometimes, to
avoid a possible confusion, we supply constants C with indices (as, e.g. in Eq. (1.3)).
We always use the letter � to denote a quantity satisfying |�|61. If F and G are �nite
measures, then

‖FG‖6‖F ‖ ‖G‖ ; ‖exp{F}‖6exp{‖F ‖}; |F |6‖F ‖ ;
‖F ‖ =26 sup

B
|F{B}|6‖F ‖; (1.1)

[exp{F}(t) = exp{F̂(t)}; F̂G(t) = F̂(t)Ĝ(t); Êa(t) = eita; Ê(t) = 1:

The supremum in Eq. (1.1) is taken over all Borel sets B. Note also that any Poisson
distribution can be written in the form exp{�(E1 − E)} with �¿ 0. In Sections 3 and
4 we also use the usual convention(

a
j

)
=
a(a− 1) · · · (a− j + 1)

1 · 2 · · · j : (1.2)

For a ∈ R and a positive integer j. The real part of a complex number H is denoted
by ReH .

De�nition. Let � ∈ R, and let F be a distribution. Then exp{�(F − E)} is called a
signed compound Poisson measure. In particular, exp{�(E1 − E)} is called a signed
Poisson measure.

Emphasize that, in comparison with a standard compound Poisson distribution we
have for �¡ 0, signed measures of �nite variation. We have to note, however, that
one can also �nd in the literature the terms generalized Poisson and pseudo-Poisson
measures. We abbreviate convolutions of signed compound Poisson and signed Poisson
measures by SCP and SP, respectively. In this paper, SP approximations are, as a rule,
convolutions of two Poisson-like measures, while we use the abbreviation SCP when
the compound measure has a more complicated structure. Note that all SCP measures
are in�nitely divisible.
It seems that Presman (1983) and Kornya (1983) were the �rst, who used SP mea-

sures as approximations (though other properties of the signed exponential measures
were already used before, see Cuppens (1975)). The result of Presman (1983) is the
following.

Theorem 1.1. Let 06p61=2. Then

‖((1− p)E + pE1)n − exp{np(E1 − E)− np2(E1 − E)2=2}‖
6C1 min(np3; p3=2n−1=2): (1.3)
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Presman’s approximation is an example of asymptotic expansion in the exponent.
Remarkably, the standard Poisson approximation with one term of asymptotic expansion
provides the rate of accuracy min(np3; p2), (see, e.g., Barbour et al. (1992)) which is
always greater than (or, at least, equal) to the estimate in the right-hand side of (1.3).
Thus, asymptotics in the exponent favourably di�er from the standard asymptotics. On
the other hand, one can consider Presman’s approximation as a discrete analogue of
the normal law (it ensures the matching of two moments). The Berry–Esseen, theorem,
however, provides the rate of accuracy (np)−1=2, which is always greater than (or,
at least, equal) to the right-hand side of Eq. (1.3). Thus, we conclude that the SP
approach can produce approximations essentially better than the known asymptotic
expansions. One easily checks that Presman’s approximation can be also written as
exp{(np− np2)(E1 − E)− np2(E2 − E)=2}.
For independent summands, SP and SCP approximations were successfully applied

in many �elds, see Hipp (1986), Kruopis (1986a,b), Borovkov (1988), �Cekanavi�cius
(1996, 1997, 1998) and references therein. On the other hand, it seems that only
Borovkov and Pfeifer (1996) considered SCP approximations for the distributions of
Markov chains. We do not review, however, their result, since our paper is devoted
to a scheme di�erent from theirs. We consider sums of Markov dependent variables.
They are constantly getting a lot of attention, see Dobrushin (1953), Sering (1975),
Sirazhdinov and Formanov (1979), Wang (1981, 1992), Gani (1982), Serfozo (1986),
Barbour et al. (1992, Section 8:5), Geske et al. (1995) and references therein. The
authors mentioned above considered the normal, Poisson, and compound Poisson ap-
proximations. Thus, in our paper we obtain a re�nement of some known results using a
new signed Poisson approach. We also show how asymptotic expansions to the known
Poisson or compound Poisson approximations can be constructed.
The structure of this paper is the following. In Section 2, we consider a sequence of

Markov dependent variables and show bene�ts of the replacement of normal approxi-
mation by its SP analogue. In Sections 3 and 4, we use the sum of Markov dependent
Bernoulli variables for proving the universality of SP and SCP approximations. In
Section 5, we obtain some local estimates. Section 6 contains concluding remarks.

2. SP approximation for a sequence of Markov dependent variables

Let �0; �1; : : : ; �n; : : : ; be an s-state Markov chain with the transition matrix P=(pij)s1
and initial distribution �. Suppose P is irreducible and aperiodic. Note that we deal
with a sequence of variables. Therefore �j and P do not depend on n. The main pur-
pose of this Section is the demonstration of a greater exibility of SP measure, in
comparison with the standard Poisson law. As a rule, the standard Poisson approxi-
mation is used in the scheme of series, and not for the sequence of random variables.
We also show that, in comparison with the normal law, the SP approximation also
has at least two advantages. Both are related to the fact that an approximated measure
and its approximation are concentrated on the same lattice. Thus, we can use the to-
tal variation distance and avoid additional summands in asymptotic expansions, which
are necessary for the normal approximation. Moreover, as far as both approximations
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are on the same lattice, the estimates do not depend on the maximum span of the
lattice.
There are many results on the normal approximation to Markov dependent variables.

We chose a quite partial situation allowing us to demonstrate some bene�ts of the SP
approach more clearly. We use the approach of Sirazhdinov and Formanov (1979). Let
f be a bounded function. Set

Sn0 =
n∑
j=0

f(�j): (2.1)

Let hj =f(j); j=1; : : : ; s. Denote by �j(n) the time spent in state j until the moment
n, i.e.,

�j(n) =
n∑
k=0

I{�k = j};

where I{·} denotes the indicator function. Then

Sn0 =
s∑
j=0

hj�j(n): (2.2)

We denote by Fn0 the distribution of Sn0. Let �M (t1; t2; : : : ; ts) denote the eigenvalue of
Q(t1; t2; : : : ; ts) = (pkj exp{itj})s1 having the greatest absolute value. Set

pj =
1
i
@ ln �M
@tj

∣∣∣∣
t1=···=ts=0

; �kj = −@
2ln �M
@tk@tj

∣∣∣∣
t1=···=ts=0

:

Sirazhdinov and Formanov (1979, p.14) showed that, in a neighborhood of zero, the
characteristic function of (�1(n); �2(n); : : : ; �s(n)) can be expressed as the sum

�nM (t1; : : : ; ts)A(t1; : : : ; ts) + �C(P; s)|t|�n1; 0¡�1¡ 1: (2.3)

Here

A(t1; t2; : : : ; ts) =�T(t1; t2; : : : ; ts) x (t1; t2; : : : ; ts)yT(t1; t2; : : : ; ts) e;

e = (1; 1; : : : ; 1)T; �T(t1; t2; : : : ; ts) = (�1eit1 ; �2eit2 ; : : : ; �seits);

(�1; �2; : : : ; �s) =�;

and x(t1; t2; : : : ; ts) and y(t1; t2; : : : ; ts) are the eigenvectors of Q(t1; t2; : : : ; ts) correspond-
ing to �M (t1; t2; : : : ; ts):

yT(t1; t2; : : : ; ts)Q (t1; t2; : : : ; ts) = �M (t1; t2; : : : ; ts)yT(t1; t2; : : : ; ts);

Q(t1; t2; : : : ; ts) x (t1; t2; : : : ; ts) = �M (t1; t2; : : : ; ts) x (t1; t2; : : : ; ts);

yT(t1; t2; : : : ; ts) x (t1; t2; : : : ; ts) = 1:

C(P; s) is a non-negative constant depending on P and s. Note that, in Sirazhdinov
(1952), A(t1; t2; : : : ; ts) is expressed in terms of determinant of Q(t1; t2; : : : ; ts).
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Let �1; �2; : : : ; �s be the numbers de�ned by the formal equation

�j =
@A(t1; t2; : : : ; ts)

@tj

∣∣∣∣
t1=···=ts=0

: (2.4)

The numbers �1; : : : ; �s depend on the initial distribution �. Set

K =
s∑
j=1

�jhj; L=

 s∑
j=1

hj
@
@tj

3 ln �M (t1; : : : ; ts) |t1=···=ts=0 ;
n� = n

s∑
j=1

hjpj; n�2 = n
∑
k; j

�kjhkhj: (2.5)

If �2¿ 0, then we can de�ne the standardized sum

Sns = (Sn0 − n�)=(�
√
n):

Let Fns be the distribution of Sns, and let � be the standard normal distribution. Set

M (t) =
it
�
√
n
K +

(it)3

6�3
√
n
L:

Suppose �1(x) has the Fourier–Stieltjes transform e−t
2=2M (t). Let Z(x) =S(�

√
nx +

n�)e−x
2=2(2�n�2)−1=2, where S(x)=[x]−x+1=2 and [x] denotes the integer part of x.

Now we can introduce the main assumptions of this section. We assume that

among h1; : : : ; hs; there are at least two di�erent numbers; (2.6)

h1; h2; : : : ; hs are integers with the gr:c:d: equal to 1; (2.7)

the quadratic form
s−1∑
k; j=1

�kjtk tj is positive de�nite: (2.8)

Note that Eq. (2.8) implies �2¿ 0. Assumption (2.6) is not very restrictive, since in
the case of coinciding hj we have Sn0 ≡ Const. It is possible to replace Eq. (2.7) by
the requirement that all hj belong to the same lattice. However, a suitable centering
and norming would produce the same situation as in Eq. (2.7), see, e.g., Gnedenko
and Kolmogorov (1954, p. 232).
Theorem 2.1 follows immediately from the non-uniform estimates obtained in

Sirazhdinov and Formanov (1979, p. 36).

Theorem 2.1. Let assumptions (2:6)–(2:8) be satis�ed. Then

sup
x

|Fns(x)− �(x)− �1(x)− Z(x)|= o(n−1=2): (2.9)

We shall replace � by its SP analogue. Set

G0 = exp
{
�2 + �
2

(E1 − E) + �
2 − �
2

(E−1 − E)
}
; (2.10)

G01 = K(E1 − E) + n(L− �)(E1 − E)3=6; (2.11)
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Ĥ0(t) = Ĝ0(t=(�
√
n))exp{−it�=(�√n)}; Ĥ01(t) = Ĝ01(t=(�

√
n)); (2.12)

�̂0(t) = F̂ns(t)− Ĥ n0 (t)(1 + Ĥ01(t)); �̂01(t) = F̂ns(t)− e−t2=2(1 +M (t));
(2.13)

�̂02(t) = e−t
2=2(1 +M (t))− Ĥ n0 (t)(1 + Ĥ01(t)):

We can now formulate the main result of this section.

Theorem 2.2. Let assumptions (2:6)–(2:8) be satis�ed. Then

‖Fn0 − Gn0 ‖ =O(n−1=2); (2.14)

‖Fn0 − Gn0(E + G01)‖ = o(n−1=2): (2.15)

Remark 2.1. The measure G0 was introduced in Kruopis (1986b) who proposed to
call it the normal–Poisson approximation.

Remark 2.2. For the sums of independent random variables; some analogues of
Eqs. (2:14)–(2:15) were considered in �Cekanavi�cius (1998).

Remark 2.3. Though one can center and norm both Fn0 and G0 as in Theorem 2:1;
this hardly makes sense; since both measures are concentrated on the same lattice.

Note that G0 satis�es simple recursions and, hence, can be used in practical calcu-
lations, see Kruopis (1986b).

Proof of Theorem 2.2. We will prove Eq. (2.15) only. Estimate (2.14) can be obtained
similarly. Since Fn0; G0, and G01 are concentrated on integers and �¡∞, we can use
the approach of Presman (1983). We omit t for brevity. By the inversion formula of
Presman (1983) we have

‖Fn0 − Gn0(E + G01)‖6C
∫
|t|6��√n

(|�̂0|+ |�̂′′
0 |)dt

6C
∫
�n1=66|t|6�n1=2

+C
∫
�n1=26|t|6��n1=2

+C
∫
|t|6�n1=6

= J1 + J2 + J3; (2.16)

J36C
∫
|t|6�n1=6

(|�̂01|+ |�̂′′
01|)dt +

∫
|t|6�n1=6

(|�̂02|+ |�̂′′
02|)dt = J31 + J32

(2.17)

for a positive number �¿ 0. We further need some auxiliary results from Sirazhdinov
and Formanov (1979, pp. 31–33).
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Lemma 2.1. Let assumptions (2:6)–(2:8) be satis�ed. Then there exist numbers �;
�2¿ 0; 0¡�¡ 1, and a function �1(n) such that; for |t|6�n1=6 and j¿0;∣∣∣∣∣dj�̂01dtj

∣∣∣∣∣6�1(n)√
n
(max(1; |t|))max(2j; j+3)e−�2t2 + O(�n) (2.18)

and limn�1(n) = 0. Furthermore; for all |t|6�n1=2;∣∣∣∣∣djF̂nsdtj

∣∣∣∣∣6C(j; s; P)max(1; |t|)e−�2t2 ; (2.19)

where C(j; s; P) is a constant depending on j; s and P.

Lemma 2.2. Let assumptions (2:6)–(2:8) be satis�ed. Then; for j¿0 and
0¡�¡ |t|¡�;

|F̂ ( j)ns (�
√
nt) = O(�n); 0¡�¡ 1: (2.20)

By the de�nition of G0 we have, for all |t|6�,
|Ĝ0(t)|6exp{−�2sin2(t=2)}6exp{−�2t2=�2}:

Hence

|Ĥ n0 (t)|6e−Ct
2
: (2.21)

Combining (2.16)–(2.19) we obtain

J1 + J2 + J31 = o(n−1=2): (2.22)

It remains to estimate J32. We have

|�̂02|6 |Ĥ n0 − e−t
2=2 − ne−t2=2(Ĥ0et2=(2n) − 1)| |1 + Ĥ01|

+ ne−t
2=2| Ĥ0et2=(2n) − 1− �(it)3=(6�3n3=2) | |1 + Ĥ01|

+e−t
2=2|(1 + �(it)3=(6�3n1=2))(1 + Ĥ01)− (1 +M (t))|: (2.23)

Applying Bergstr�om’s (1951) identity

an − bn − nbn−1(a− b) =
n∑
j=2

(j − 1)an−jb j−2(a− b)2 (2.24)

and the trivial estimate |t|kexp{−Ct2}6C(k)exp{−Ct2=2}, we obtain
|�̂02|6Cn−1e−Ct2 : (2.25)

It is not di�cult to verify an analogous estimate for �̂′′
02:

|�̂′′
02|6Cn−1e−Ct

2
: (2.26)

From estimates (2.25), (2.26) and (2.16), (2.22) we get the statement of the theorem.
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3. Approximation of the Markov binomial distribution

In this section, we obtain an analogue of Eq. (1.3), thus proving the universality of
SP approximation for a sum of Markov dependent Bernoulli variables. Unlike the pre-
vious section, now we consider the scheme of series, when the transition probabilities
may depend on n.
The Markov binomial distribution was studied by many authors. Among numerous

publications devoted to this case, we would like to refer the reader, for example,
to Koopman (1950), Dobrushin (1953), Sering (1975), Wang (1981, 1992), Gani
(1982), Serfozo (1986), and references therein. These authors usually considered the
Poisson or compound Poisson approximations only. Some estimates of the accuracy
of approximations were established. However, with few exceptions all these estimates
depend on the existence of limiting Poisson (compound Poisson) law. But such an
existence means that parameters should be small. We do not study such partial cases
preferring to concentrate on a larger set of parameters covering, simultaneously, a few
possible limiting distributions. The main attention is paid to the rate of approximation.
We must also note that the Markov binomial distribution can signi�cantly di�er from
the binomial distribution. Thus, for example, it has at least seven limiting laws, some
of which are not even in�nitely divisible, see Dobrushin (1953).
Let �0; �1; �2; : : : ; �n be a Markov chain with the initial distribution

P(�0 = 1) = p0; P(�0 = 0) = 1− p0:
We assume that

P(�i = 1|�i−1 = 1) = p; P(�i = 0|�i−1 = 1) = q;
P(�i = 1|�i−1 = 0) = �q; P(�i = 0|�i−1 = 0) = �p; p+ q= �q+ �p= 1:

Let the transition matrix be

P =

(
p q

�q �p

)
: (3.1)

Set

Sn = �1 + �2 + · · ·+ �n:
Denote the distribution of Sn by Fn. We call Fn a Markov binomial distribution. Note
that, in the literature, the de�nition of the Markov binomial distribution slightly varies
from paper to paper (e.g., sometimes �0 is added to the sum Sn). Our de�nition corre-
sponds to that of Serfozo (1986). The compound Poisson limit occurs when p0 → 0;
n �q→ �, and p→ p̃¡ 1 as n→ ∞. If p̃= 0, then we have the Poisson limit. There-
fore, the natural assumption should be �q+p→ 0. But in this case we would not cover
the classical normal case, where �q and p are constants. Therefore, we assume that �q
and p are small enough (the “smallness” is determined by the method of proof), but
not necessarily vanishing. Let

p61=20; �q=(q+ �q)61=30: (3.2)

Note that, under Eq. (3.2), the limiting distribution can be the compound Poisson
(including Poisson), degenerate, or normal distribution.
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We further need some notation. Set

�1 =
�q

q+ �q
; �2 =

2q �q(p− �q)
(q+ �q)3

; (3.3)

G1 = exp{�1(E1 − E) + (�2 − �21)(E1 − E)2=2}; (3.4)

G2 = exp{(�1 + (�2 − �21)=2)(E1 − E) + (�2 − �21)(E−1 − E)=2}: (3.5)

We further assume that n¿1. We can now formulate the main result of this section.

Theorem 3.1. Let assumption (3:2) be satis�ed. Then

||Fn − Gn1 ||6C2(p+ �q)2min((n �q)−1=2; n �q) + C3|p− �q|min(1; (n �q)−1=2) (3.7)

and

||Fn − Gn2 ||6C4(p+ �q)min((n �q)−1=2; n �q) + C3|p− �q|min(1; (n �q)−1=2): (3.8)

Before proving Theorem 3.1, we want to discuss some aspects of estimates (3.7)–
(3.8). If p = �q, then Sn becomes the sum of independent Bernoulli variables. Conse-
quently, Fn becomes the binomial distribution. Then (3.7) is equivalent to Presman’s
result (1.3). (However, our assumption (3.2) is stronger than merely p61=2.) Now
consider the case p; �q ∼ const. Both estimates (3.7) and (3.8) are of order n−1=2, i.e.,
both approximations are then comparable to the normal one (and hold for a stronger
metric). Both G1 and G2 are also comparable with the Poisson approximation. Very
sharp results were obtained for �q=o(n−1), but not for larger p and �q. For a stationary
Markov chain, a sharp general result can be found in Barbour et al. (1992, p. 165),
but our case is not necessarily stationary. Therefore, we state a result for the Poisson
approximation.

Theorem 3.2. Let assumption (3:2) be satis�ed. Then

||Fn − exp{n�1(E1 − E)}||6C5(p+ �q)min(1; n �q) + C3| �q− p|min(1; (n �q)−1=2):
(3.9)

For �q = p, estimate (3.9) is of the right order and coincides with the result of
Prokhorov (1953). Comparing Eqs. (3.7) and (3.8) with Eq. (3.9) we see that both SP
approximations are sharper in the sense of order (or, at least, of the same order) than
the Poisson approximation. To compare G1 and G2, �rst note that the approximation
G2 corresponds to the normal-Poisson case (recall Section 1). Moreover, �1 and �2−�21
are the main parts of ESn=n and Var Sn=n − ESn=n respectively. On the other hand,
as one can notice from Eqs. (3.7) and (3.8), G1 is an analogue of Presman’s (1.3)
approximation and is sharper than G2 for small values of parameters.
SP approximations can be improved by asymptotic expansions. We consider one

example only. Set

�3 = 6q �q( �q− p)( �q+ q( �q− p))=(q+ �q)5; (3.10)
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A1 = ( �q− p)( �q− p0(q+ �q))=(q+ �q)2; A2 = �3=6− �1(�2 − �21)=2− �31=3:
(3.11)

Theorem 3.3. Let assumption (3:2) be satis�ed. Then

||Fn − Gn1{E + A1(E1 − E) + A2n(E1 − E)3}||
6C6(p+ �q)3min((n �q)−1; n �q) + C7| �q− p|( �q+ p)min((n �q)−1; 1): (3.12)

Remark 3.1. If p and �q are constants; then Eq. (3:12) is of order O(n−1). Thus
Eq. (3:12) is an analogue of the Edgeworth expansion. It is speci�c that it holds for
all Borel sets and needs no additional S-like summands; just like the SP expansions
considered in Section 2.

Proof of Theorem 3.1. The proof is based on Perron’s formula. Solving the charac-
teristic equation we obtain

F̂n(t) = �̂n1(t)Ŵ1(t) + �̂
n
2(t)Ŵ2(t); �̂1;2(t) = (peit + �p± D̂1=2(t))=2;

Ŵ1;2(t) =
p0
2
(1± (q+ �q+ p(eit − 1))D̂−1=2(t))

+
(1− p0)

2
(1± (q+ �q+ p(eit − 1) + 2( �q− p)(eit − 1))D̂−1=2(t));

where D̂(t) denotes the discriminant of the characteristic equation. Note that, by
Eq. (3.2), it can be expressed in the following way:

D̂(t) = (peit + �p)2 + 4eit( �q− p) = (1 + �q− peit)2(1 + 4 �q(eit−1)=(1+ �q−peit)2)
= (q+ �q+ p(eit − 1))2(1 + 4q( �q− p)(eit − 1)=(q+ �q+ p(eit − 1))2):

(3.13)

We further introduce some auxiliary �nite measures. Set

B=
1

q+ �q

∞∑
j=0

(
p

q+ �q

) j
(E1 − E) j; Y = 4 �q(E1 − E)B2; (3.14)

B̃=
1

q+ �q

∞∑
j=0

( −p
q+ �q

) j
(E1 − E) j; Ỹ = 4q( �q− p)(E1 − E)B̃2;

D̃ =
∞∑
j=0

(−1=2
j

)
Ỹ j: (3.15)

Let �1 and �2 be �nite measures corresponding to the eigenvalues �̂1(t) and �̂2(t),
respectively. Then

�1 =
1
2

pE1 + �pE + ((1 + �q)E − pE1)
∞∑
j=0

(
1=2
j

)
Y j

 ; (3.16)
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�2 =
1
2

pE1 + �pE − ((1 + �q)E − pE1)
∞∑
j=0

(
1=2
j

)
Y j

 ; (3.17)

Fn = �n1W1 + �
n
2W2; (3.18)

W1 =
1
2
{p0{E + ((q+ �q)E + p(E1 − E))B̃D̃}
+(1− p0){E + ((q+ �q)E + p(E1 − E) + 2( �q− p)(E1 − E))B̃D̃}

=
1
2
{E + D̃}+ (1− p0)( �q− p)(E1 − E)B̃D̃; (3.19)

W2 =
1
2
{E − D̃} − (1− p0)( �q− p)(E1 − E)B̃D̃: (3.20)

(Note that ((q+ �q)E + p(E1 − E))B̃ ≡ E.)
We intentionally used two di�erent expansions of the discriminant for �i and Wi.

By the properties of total variation norm we have

||Fn − Gni ||6 ||�n1W1 − Gni ||+ ||�2||n||W2||
6 ||�n1 − Gni || ||W1||+ ||Gni (W1 − E)||+ ||�2||n||W2||: (3.21)

By Eq. (3.2) we have ||W1||6C, ||B||61=(q+ �q)620=19, ||Y ||61=3, ||B̃||620=17 and
||Ỹ ||62=3. Hence

||W2||6(1− p0)| �q− p| ||E1 − E|| ||B̃|| ||D̃||+ ||Ỹ ||
∞∑
j=1

||Ỹ ||j−1=26C| �q− p|:

(3.22)

Quite similarly we establish that, for i = 1; 2,

||Gni (W1 − E)||6 ||Gni (E1 − E)||C| �q− p|: (3.23)

For the estimates with respect to the total variation distance we will use the following
auxiliary result (see Presman (1985) or �Siaulys and �Cekanavi�cius (1988)).

Lemma 3.1. Let R̂(t) =
∑∞

j=−∞ Rj exp{itj};
∑∞

j=−∞ |Rj|¡∞. Then; for all ¿ 0; a
and v ∈ R;( ∞∑

j=−∞
|Rj|
)2
6
(
1
2
+

1
2�

)∫ �

−�

(
|R̂(t)|2 + 1


|(R̂(t)e−itv)′|2

)
dt:

Applying Lemma 3.1 with v = n�1 and  = max(1; (n �q)−1=2)), one easily shows that
the right-hand side of Eq. (3.23) is less than C| �q− p|min(1; (n �q)−1=2).
By properties of the total variation norm we have

2||�2||6 ||pE1 + �pE − (1 + �q)E + pE1||

+ ||(1 + �q)E − pE1|| ||Y ||
∞∑
j=1

∣∣∣∣(1=2j
)∣∣∣∣ ||Y ||j−1

6 1=2 + 2(p+ �q)(1 + 1=2)651=60: (3.24)
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Thus

||�2||n6(51=120)n6e−n ln 2 = e−Cn: (3.25)

From Eqs. (3.21), (3.22), and (3.25) we see that to �nish the proof it su�ces to
estimate ||�n1 − Gni ||. Expanding �̂1(t) in powers of eit − 1 we obtain

�̂1(t) = 1 + �1(eit − 1) + �22 (e
it − 1)2 + �3

6
(eit − 1)3 + C� �q( �q+ p)3|eit − 1|4;

(3.26)

�̂′
1(t) = ie

it
(
�1 + �2(eit − 1) + �32 (e

it − 1)2
)
+ C� �q( �q+ p)3|eit − 1|3: (3.27)

Taking into account the form of Gi after quite standard calculations we get

|�̂1(t)− Ĝ1(t)|6C �q(p+ �q)2|t|3; |�̂′
1(t)− Ĝ′

1(t)|6C �q(p+ �q)2t2; (3.28)

| (e−it�1�1(t))′ |6C �q|t|; | (e−it�1Ĝj(t))′ |6C �q|t| (j = 1; 2); (3.29)

|�̂1(t)− Ĝ2(t)|6C �q(p+ �q)|t|3; |�̂′
1(t)− Ĝ′

2(t)|6C �q(p+ �q)t2: (3.30)

Moreover, we have, for |t|6�,

|�̂1(t)|6 1
2
|peit + �p+ (1 + �q− peit)(1 + Ŷ (t)=2)|+ 3

8
|1 + �q− peit | |Ŷ (t)|2

6 |1 + �1(eit − 1) + �qp|eit − 1|2(q+ �q)2(1− 2p=(q+ �q))−1

+ 3 �q2|eit − 1|2(q+ �q)−3=2

6 1− 2�1(1− �1) sin2(t=2) + 4�1 sin2(t=2)=17 + �21 sin2(t=2)120=19
6 1− 2�1 sin2(t=2)(1− �1 − 2=17− 60�1=19)
6 1− 24�1 sin2(t=2)=176exp{−Ct2 �q}: (3.31)

It is easy to check that, for |t|6�, the analogous estimates hold for Ĝ1(t) and Ĝ2(t):
|Ĝ1(t)|6e−Ct2 �q; |Ĝ2(t)|6e−Ct2 �q: (3.32)

Combining Eqs. (3.28)–(3.32) and applying Lemma 3.1 with  = max(1;
√
n) and

v= n�1 we obtain

||�n1 − Gn1 ||6C(p+ �q)2min((n �q)−1=2; n �q); (3.33)

||�n1 − Gn2 ||6C(p+ �q)min((n �q)−1=2; n �q): (3.34)

The statement of the theorem now follows from Eqs. (3.21)–(3.23), (3.25), (3.33) and
(3.34).

Proof of Theorem 3.2. The proof is very similar to that of Theorem 3.1. The only
exception is that Eqs. (3.28)–(3.29) are replaced by

|�̂1(t)− P̂1(t)|6C �q(p+ �q)t2; |�̂′
1(t)− P̂′

1(t)|6C �q(p+ �q)|t|;
|(e−it�1 P̂1(t))′|6C �q|t|:

where P̂1(t) = exp{�1(eit − 1)}.
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Proof of Theorem 3.3. By the properties of variation norm, Bergstr�om’s identity
(2.24), and Eqs. (3.14)–(3.20) we get

||Fn − Gn1(E + A1(E1 − E) + nA2(E1 − E)3||
6||�n1 − Gn1 − nGn−11 (�1 − G1)|| ||W1||+ n|Gn1(E − G)(�1 − G1)| ||W1||
+ n|Gn1(�1 − G1 − A2(E1 − E)3)| ||W1||+ ||Gn1(W1 − E − A1(E1 − E)
+ nA2(E1 − E)3(W1 − E))||+ ||�2||n||W2||

6
n∑
j=2

(j − 1)||�n−j1 Gj−21 (�1 − G1)2||+ Cn �q2(p+ �q)2||Gn−11 (E1 − E)4||

+ nC �q(p+ �q)3||Gn1(E1 − E)4||+ C| �q− p|( �q+ p)||Gn1(E1 − E)2||
+CA2n| �q− p| ||Gn1(E1 − E)4||: (3.35)

The rest of the proof is a systematic application of Lemma 3.1 with v=n�1; v=(n−1)�1
or v= (n− 2)�1.

4. Signed compound Poisson approximations

We consider the scheme of Section 3. Evidently, the estimates in Theorems 3.1–3.3
are trivial if n �q= �+ o(1), p0 = o(1), and p ≡ Const. This is easy to explain. These
conditions are su�cient for the existence of the limiting compound Poisson distribution
with the compounding geometric distribution. Moreover, under these conditions Fn is
close to its limiting distribution, but not to the normal or Poisson law. Consequently,
SP substitutes for the normal and Poisson approximations do not �t. In this section,
we consider an SCP approximation which is a universal replacement for the compound
Poisson and normal approximations. Note that the Poisson distribution is only a partial
case of the compound Poisson distribution.
The compound Poisson limit for sums of Markov dependent Bernoulli variables un-

der slightly varying de�nitions of Sn was obtained by many authors, see, for example,
Koopman (1950), Dobrushin (1953), Isham (1980), Wang (1981), Gani (1982), Brown
(1983), Serfozo (1986), Wang and B�uhler (1991), and references therein. Further de-
velopments in the theory of compound Poisson approximations can be found in Barbour
et al. (1992), Roos (1994), and Geske et al. (1995).
We will present one of the estimates of the accuracy of compound Poisson approx-

imation obtained by Wang (1992). The notation is that of Section 3. Let Hr be the
geometric distribution,

Ĥr(t) = reit(1− (1− r)eit)−1; 06r61;

Sn1 = �0 + �1 + · · ·+ �n−1, �¿ 0 and let Fn1 be the distribution of Sn1.

Theorem 4.1. (Wang, 1992). Let 0¡ �q; q; p061. Then

‖Fn1 − exp{�(Hr − E)}‖6max(p0; �q)(1 + 3n �q=q) + 2|(n− 1) �q− �|
+ n �q|(1− q)K(r; q) − (1− r)K(r; q)|: (4.1)
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Here K(r; q) is the point where the expression 1 − ((1 − r)k−1r)=(pk−1q) changes
the sign.

Estimate (4.1) is exible because of possible di�erent choices of � and r. However,
the rate of approximation in Eq. (4.1) is not better than �q+n �q2, i.e., the estimate is sharp
for small �q only. Considering our setting we shall improve the rate of approximation for
larger values of parameters. Here we consider only one of various possible compound
Poisson laws.
Set

06p6C8¡ 1; (4.2)

H = qE1
∞∑
j=0

pjEj; (Ĥ (t) = qeit =(1− peit)); (4.3)

where the distribution Fn was de�ned in Section 3.

Theorem 4.2. Let condition (4:2) be satis�ed. Then∣∣∣∣∣∣∣∣Fn − exp{ n �qq
q+ �q

(H − E)
}∣∣∣∣∣∣∣∣

6C9 max(p0; �q)min(1; (n �q)−1=2) + C10 min( �q; n �q2) + C11e−C12n; (4.4)

∣∣∣∣∣∣∣∣Fn − exp{ n �qq
q+ �q

(H − E)
}
p0(E + u1(H − E))

∣∣∣∣∣∣∣∣
6C13 �q(p+ �q)min(1; (n �q)−1=2) + C10 min( �q; n �q2) + C11e−C12n; (4.5)

where u1 = q2(p− �q)=(q+ �q)2.

Remark 4.1. Clearly; estimate (4:4) is decreasing if �q = o(1) and the condition p0 =
o(1) or n �q → ∞ is satis�ed. By adding meanwhile one member of asymptotics
we obtain that; in Eq. (4.5), this new approximation is decreasing whenever �q =
o(1) (independently of the behaviour of p0): Obviously; such assumptions are weaker
than required for the smallness of the estimate in Eq. (4:1).

Remark 4.2. If �q=o(n−1=2), then Eq. (4.5) is sharper than the Berry–Esseen estimate.

Now we shall consider SCP approximations. Set

a1 =
q �q
q+ �q

; a2 =− q �q2

(q+ �q)2

(
p+

q
q+ �q

)
;

a3 =
q �q2

(q+ �q)3

{
p2 �q+

qp(2 �q− q)
q+ �q

+
2 �qq2

(q+ �q)2

}
; (4.7)
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u2 =
q �q( �q− p)
(q+ �q)2

; u3 = a3 +
q2 �q3

3(q+ �q)3

(
1 + 2p+

3q
q+ �q

)
; (4.8)

G3 = exp{a1(H − E) + (a2 − a21=2)(H − E)2}: (4.9)

Unlike the situation in Section 3, we do not assume any condition on p, except (4.2),
i.e., we are going to get the estimates for almost every p, not only for a small one.
However, we assume that �q is quite small. Set

�q=(q+ �q)6(1− C8)=30: (4.10)

Of course, for �q = o(1), condition (4.10) is satis�ed when n → ∞. However, SCP
approximations considered below provide small estimates even for �q ∼ Const.

Theorem 4.3. Let assumptions (4:2) and (4:10) be satis�ed. Then

‖Fn − Gn3 ‖6C14(p+ �q){min(
√
�q=n; n �q2)

+max(p0; �q)min(1; (n �q)−1=2) + e−C12n}; (4.11)

‖Fn − Gn3p0(E + u1(H − E))‖
6C15{min(

√
�q=n; n �q2) + �qmin(1; (n �q)−1=2) + e−C16n}6C17n−1=2; (4.12)

‖Fn − Gn3{p0(E + u1(H − E)) + (1− p0)(E + u2(H − E)) + nu3(H − E)3}‖
6C18n−1: (4.13)

Remark 4.3. Various approaches can be used with respect to the asymptotics in
Eq. (4.12). We choose u1; u2; u3; so that Eq. (4.12) be always at least of order
n−1=2 and Eq. (4.13) be always at least of order n−1.

Proof of Theorems 4.2 and 4.3. The proof is quite similar to that of Theorem 3.1.
We have

B̂(t) =
1

1 + �q− peit =
1

q+ �q
+
p(eit − 1)
q+ �q

B̂(t); (4.14)

B̂(t) =
q

q+ �q
1

1− peit −
p �q
q+ �q

(Ĥ (t)− 1)B̂(t): (4.15)

Evidently, |eit−1|62|Ĥ (t)−1|. Expanding �̂1(t) as in Eq. (3.16) and using recursively
Eqs. (4.14) and (4.15) we obtain

�̂1(t) = 1 +
3∑
j=1

aj(Ĥ (t)− 1) j + �C �q3(p+ �q)|Ĥ (t)− 1|4; (4.16)

�̂′
1(t) = Ĥ

′(t)
3∑
j=1

jaj(Ĥ (t)− 1) j−1 + �C �q3(p+ �q)|Ĥ (t)− 1|3: (4.17)

For all t, we have

|Ĥ (t)− 1|262|Re Ĥ (t)− 1|: (4.18)
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Let |t|6�. Then by Eqs. (4.2), (4.10), (4.15), and (4.16) we get |Ŷ (t)|64=15 and,
consequently,

|�̂1(t)|6 |1 + Ŷ (t)=(4B̂(t))|+ 15|Ŷ (t)|2=(16 · 11|B̂(t)|)
6 |1 + a1(Ĥ (t)− 1)|+ 4 �q2(q+ �q−2|Re Ĥ (t)− 1|
+30 �q2|Re Ĥ (t)− 1|(11(q+ �q))−1(1− �q=q)−2

6 1 +
�q

q+ �q
(Re Ĥ (t)− 1)

(
1− C8 − 5 �q

q+ �q
− 152 · 60 �q
11 · 142(q+ �q)

)
6 1 + C �q(Re Ĥ (t)− 1)6exp{C �q(Re Ĥ (t)− 1)}: (4.19)

Similarly,

|Ĝ3(t)|6exp{C �q(Re Ĥ (t)− 1)}: (4.20)

Note also that Eqs. (4.2) and (4.11) are su�cient for obtaining

‖�2‖ 6 ‖p+ �q‖ + ‖Y ‖
2

1
1− 4=156|p+ �q|+ 30 �q

11(q+ �q)

6C8 + (1− C8)=15 + (1− C8)=116(1 + 4C8)=5¡ 1:

Therefore

‖�2‖n6e−Cn: (4.21)

Quite similarly we establish

�1 − G3 − u3(H − E)3 = V1(H − E)3 �q2(p+ �q); (4.22)

W1 − p0(E + u1(H − E)) = V2 �q(p+ �q)(H − E); W2 = V3(p+ �q): (4.23)

Here Vi are measures satisfying ‖Vi ‖6C, i = 1; 2; 3. For brevity, we omit t in the
equations below. By standard calculations we obtain

|�̂1 − Ĝ3|6C �q2(p+ q)|Ĥ − 1|3; |�̂′
1 − Ĝ′

3|6C �q2(p+ q)|Ĥ − 1|2;

|�̂1 − exp{a1(Ĥ − 1)}|6C �q2|Ĥ − 1|2;

|(�̂1 − exp{a1(Ĥ − 1)})′|6C �q2|Ĥ − 1|;

|(�̂ exp{−it�1)})′|6C �q|Ĥ − 1|; |(Ĝ3 exp{−it�1)})′|6C �q|Ĥ − 1|;

|(exp{a1(Ĥ − 1)− it�1})′|6C �q|Ĥ − 1|;∫ �

−�
exp{Cn �q(Re Ĥ − 1)} dt6C(n �q)−1=2:

Note that by properties of the variation norm

‖(H − E)exp{na1(H1 − E)}‖6 ‖(E1 − E)exp{na1(E1 − E)}‖
6Cmin(1; (n �q)−1=2); (4.24)
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where the last estimate can be obtained by applying Lemma 3.1. Similarly,

‖Gn3(H − E)‖6 ‖exp{a1(E1 − E) + (a2 − a21=2)(E1 − E)2}(E1 − E)‖
6Cmin(1; (n �q)−1=2): (4.25)

We have

‖Fn − Gn3 ‖6‖�n1 − Gn3 ‖ ‖W1 ‖ + ‖Gn3(W1 − E)‖ + ‖�2 ‖n ‖W2‖ ;

‖Fn − Gn3p0(E + u1(H − E))‖
6‖Fn − Gn3 ‖ ‖W1 ‖ + ‖Gn3(W1 − p0(E + u1(H − E)))‖ + ‖�2‖n‖W2‖ :

Analogous estimates hold for exp{a1(H − E)}. Note also that the left-hand side of
Eq. (4.13) is less than or equal to

‖�n1 − Gn3 − nGn−13 (�1 − G3)‖ ‖W1 ‖ + n‖Gn−13 (E − G3)(�1 − G3)‖ ‖W1‖
+ n‖Gn3(�1 − G3 − u3(H − E)3)‖ ‖W1‖ + ‖�2‖n ‖W2 ‖
+ ‖Gn3(W1 − p0(E + u1(H − E))− (1− p0)(E + u2(H − E))
+ nu3(H − E)3(W1 − E))‖ :

Further the proofs of Theorems 4.2 and 4.3 are very similar to those of Theorems
3.1 and 3.3. Without loss of generality, we can assume that, in Theorem 4.2, con-
dition (4.10) is satis�ed and then repeatedly use the estimates obtained above and
Lemma 3.1.

5. Local estimates

Besides integral estimates, it is possible to obtain local ones. Note that such estimates
are very natural, because we consider measures all concentrated on the integers. There
is no need for discretization of the approximating measure (in contrast, e.g., to the
situation in local theorems for the normal distribution). Evidently, local estimates can
be obtained for the approximations of Sections 2 and 4.

Theorem 5.1. Let assumptions (2:6)–(2:8) be satis�ed. Then

sup
m

|Fn0{m} − Gn0{m}|=O(n−1); (5.1)

sup
m

|Fn0{m} − Gn0(E + G01){m}|= o(n−1): (5.2)

Proof. The inversion formula states that, for any �nite measure Q is concentrated on
the integers,

Q{m}= 1
2�

∫ �

−�
e−itmQ̂(t) dt; (5.3)
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whence

|Fn0{m} − Gn0(E + G01){m}| =
1
2�

∣∣∣∣ ∫ �

−�
e−itm(F̂n0(t)− Ĝn0(t)(1 + Ĝ01(t)) dt

∣∣∣∣
6

1√
n

∫ �
√
n

−�√n
|�̂0(t)| dt:

The rest of the proof now coincides with that of Theorem 2.2.

Theorem 5.2. Let assumptions (4:2) and (4:10) be satis�ed. Then

sup
m

|Fn{m} − Gn3p0(E + u1(H − E)){m}|6C19n−1: (5.4)

Proof. The left-hand side of Eq. (5.4) is less than or equal to

sup
m

|�n1{m} − Gn3{m}| ‖W1‖

+ sup
m

|Gn3(W1 − p0(E + u1(H − E))){m}|+ ‖�2 ‖n ‖W2‖ :

By Eq. (5.3) and the results obtained in the proof of Theorem 4.3 we easily
deduce (5.4).

The main part of this section is devoted to the local estimates depending on m.
We further assume that m is an integer and 06m¡n. Consider the Markov binomial
scheme of Sections 3 and 4. We shall show that, for any combination of p and
�q, there exist SP approximations close to P(Sn = m). For approximation we would
apply m and n − m convolutions of the approximating SP measures not depending
on m in any other way. For brevity and convenience we assume that p0 = 1 and
denote Fn+1{m}= P(Sn+1 = m). Using the explicit expression in binomial coe�cients
of P(Sn+1 = m + 1) from Dobrushin (1953) the following inversion formula can be
obtained:

Fn+1{m}= 1
2�

∫ �

−�
(q+ �qeit)(qe−it + p)m( �p+ �qeit)n−m dt: (5.5)

(We are grateful to A. Bikelis who brought this fact to our attention). Set

G4 = exp
{(
p− p2

2

)
(E1 − E)− p2

2
(E−1 − E)

}
;

G5 = exp
{(

�q− �q2

2

)
(E1 − E)− �q2

2
(E−1 − E)

}
;

G6 = exp
{(

�p− �p2

2

)
(E−1 − E)− �p2

2
(E1 − E)

}
;

G7 = exp
{(

�q− �q2

2

)
(E−1 − E)− �q2

2
(E1 − E)

}
:
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Theorem 5.3. Let p0 = 1. Then for all n¿1; 1¡m¡n
(a) if p6C20¡ 1; �q6C20¡ 1 then

|Fn+1{m} − (q+ �q)Gm4 G
n−m
5 {m}|6 C21 max(p; �q)

max(1; mp+ (n− m) �q)6
C22
n
max(p; �q)
min(p; �q)

;

(b) if p6C20¡ 1; �p6C20¡ 1 then

|Fn+1{m} − (qEn−mGm4 Gn−m6 + �qEn−m+1Gm4 G
n−m
6 ){m}|

6
C23 max(p; �p)

max(1; mp+ (n− m) �p)6
C24
n
max(p; �p)
min(p; �p)

;

|Fn+1{m} − (q+ �q)En−mGm4 G
n−m
6 {m}|6 C25

max(1; mp+ (n− m) �p) ;

(c) if q6C20¡ 1; �q6C20¡ 1 then

|Fn+1{m} − (q+ �q)EmGm7 G
n−m
5 {m}|

6
C26 max(q; �q)

max(1; mq+ (n− m) �q)6
C27
n
max(q; �q)
min(q; �q)

;

(d) if q6C20¡ 1; �p6C20¡ 1 then

|Fn+1{m} − (q+ �q)En+1Gm7 G
n−m
6 {m}|

6
C28 max(q; �p)

max(1; mq+ (n− m) �p)6
C29
n
max(q; �p)
min(q; �p)

:

Remark 5.1. Note that the local estimates presented above are sharp whenever the
parameters (p; �q etc.) are of the same order.

Remark 5.2. Note that all C in Theorem 5:3 do not depend on m.

Remark 5.3. Obviously; using the fact that Q{m+ a}=(E−aQ){m} we can reformulate
all results replacing En−mGm4 G

n−m
6 {m} by Gm4 Gn−m6 {2m− n} etc.

Proof. We have

|(q+ peit)− Ĝ4(t)|6Cp2|sin(t=2)|3; |( �p+ �qeit)− Ĝ5(t)|6C �q2|sin(t=2)|3;

|q+ peit |; |Ĝ4(t)|6exp{−Cp sin2(t=2)};

| �p+ �qeit |; |Ĝ5(t)|6exp{−C �q sin2(t=2)}:
Then by Eqs. (5.3) and (5.5)

|Fn+1{m} − (q+ �q)Gm4 G
n−m
5 {m}|

6
1
2�

∫ �

−�

{
|q+ �qeit | |e−itm| |((q+ peit)m − Ĝm4 (t)) ( �p+ �qeit)n−m

+ Ĝm4 (t)(( �p+ �qeit)n−m − Ĝn−m5 (t))|+ �q|Ĝm4 (t)Ĝn−m5 (t)| |eit − 1|
}
dt
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6C
∫ �

−�
exp{−C(mp+ (n− m) �q)sin2(t=2)}((mp2 + (n− m) �q2)|sin3(t=2)|

+ �q|sin(t=2)|) dt
6Cmax(p; �q)(max(1; mp+ (n− m) �q))−1=2∫ �

−�
exp{−C(mp+ (n− m) �q)sin2(t=2)} dt

6Cmax(p; �q) (max(1; mp+ (n− m) �q))−1:
All other estimates are obtained by the same way.

6. Concluding remarks

In this paper we considered theoretical aspects of the new SP approximations of
discrete distributions. It seems that not only Poisson approximations should be mod-
i�ed due to the signed Poisson approach, but, in many cases, the classical normal
approximations also should be revised.
What can be said about the computational aspects of SCP measures? Approximations

G1 and G2 have simpler structures than G3 and, therefore, are more convenient for
practical applications. On the other hand, G3 holds even when G1 and G2 fail. However,
as it was shown by Hipp (1986), even G3 can be applied in practice (the recursive
formulae and numeric examples are given). There are other actuarial papers, where
computational aspects of SP and SCP approximations are treated. For example, from
the practical point of view SCP measures are discussed in Kuon et al. (1987). Note also
that G1 and G2 have quite simple structures and can be expressed in Bessel functions
and Hermite polynomials, respectively. Consequently, for their computation, in addition
to recursions (see Kruopis 1986b, Borovkov and Pfeifer (1996)), the well-developed
theory of special functions also can be applied.
One SP approximation is as good as the set of all limiting laws for the binomial

distribution, see Eq. (1.3). In Section 5, we saw that, to some extent, the same can be
said about the local SP approximations for the Markov binomial distribution. However,
it is unclear, whether it is possible to construct an SCP approximation comparable with
all limiting laws when the uniform or variation distances are considered.
The approximation G3 is only one of the possibilities. For example, with the same

rate of accuracy, G3 can be replaced by the SCP approximation having the Fourier–
Stieltjes transform

exp
{

�q(eit − 1)
1 + �q− peit −

�q2(2 + q+ �q)
q+ �q

(eit − 1)2
(1 + �q− peit)

}
:

As it follows from Theorems 3.3 and 4.3, all asymptotics should be constructed not
only for �n1, but for W1 as well.
In general, we used an operator technique which is very similar to that of Deheuvels

and Pfeifer (1986). On the other hand, in the case we needed more precise estimates,
we applied Lemma 3.1, i.e., we used the characteristic function method. However, the
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constants obtained were not reasonably small, therefore we concentrated our e�orts only
on the rates of approximations. A more precise estimation of constants probably would
require methods less standard than those used in this paper. We only note that, for
small values of �q and p, the choice of parameters may be slightly di�erent from ours
and similar to that proposed by Borovkov and Pfeifer (1996). Such a choice cannot
improve the rate of accuracy, but may result in smaller values of absolute constants.
We must also note that asymptotical constants are not large. For example, in

Theorem 3.1, let p0 = 0; p = Const61=20; �q → 0, and n �q → ∞ as n → ∞. Then
‖Fn−Gn1 ‖ =O((n �q)−1=2). Applying quite standard calculations (just like in Prokhorov
(1953)) we get

lim
n→∞

√
n �q‖Fn − Gn1 ‖ = 0:190 : : :

p2

(1 + p)3=2
60:000442 : : : :

In Section 4, we mentioned that the compound Poisson limit for the Markov bino-
mial distribution was obtained by numerous authors. Di�erent methods were used for
this purpose. Here we give one more method based on a local approach. Consider
the Markov binomial distribution from Section 3 with p0 = 1. The last assumption
means that, the compound Poisson limit with the compounding geometric distribution,
cannot be a limiting law, see Eqs. (4.1) and (4.4). Which limit can we expect in
this situation? The answer can be obtained from Eq. (4.5) (or, e.g. from Dobrushin’s
(1953) paper). However, we think that the following local approach is of its own
interest. Let Hr and H be the same as in Section 4, i.e., Ĥ (t) = qeit =(1 − peit) and
Ĥr(t)=reit =(1−(1−r)eit); 0¡r61. It is easy to verify that, for all integers k¿0; j¿0,

q
2�

∫ �

−�
(q+ peit) jeit(k−j) dt =

1
2�

∫ �

−�
Ĥ k+1(t)e−it( j+1) dt: (6.1)

Let ’k; k = 1; 2, be de�ned by

’k(x) =
∞∑
j=0

�kjxj;
∞∑
j=0

|�kj|¡∞: (6.2)

Then by Eq. (6.1) we get the relation

q
2�

∫ �

−�
’1(p+ qe−it)’2(eit) dt =

1
2�

∫ �

−�
e−it Ĥ (t)’1(e−it)’2(Ĥ (t)) dt: (6.3)

Applying Eq. (6.3) to Eq. (5.5) we obtain the following inversion formula for all
06m¡n:

Fn{m}= 1
2�

∫ �

−�
Ĥ (t)e−it(1 + �qĤ (t)=q)( �p+ �qĤ (t))n−m−1e−itm dt: (6.4)

From Eq. (6.4) it is evident that, indeed, Fn can be close to some compound distribu-
tion. We formulate this fact as follows.

Proposition. Let n �q→ � and q→ r ¿ 0 as n→ ∞: Then
‖Fn − E−1Hr exp{�(Hr − E)}‖ → 0 as n→ ∞: (6.5)
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Proof. From the results of Section 3 it is easy to obtain that, under the conditions of
proposition,

ESn =
(n+ 1) �q
q+ �q

+
q

(q+ �q)2
(1− (p− �q)n+1)− 1 = O(1): (6.6)

Therefore by Chebyshev’s inequality we have, for m¿n1=2,

Fn{(m;∞)}6E|Sn|=m=6E|Sn|n−1=2 = o(1): (6.7)

Analogous relation holds for E−1Hr exp{�(Hr−E)}. Now let m6n1=2. By the inversion
formulas (6.4) and(5.3) we get (we skip the dependence on t in the Fourier transforms):

|Fn{m} − E−1Hr exp{�(Hr − E)}{m}|

6
1
2�

∫ �

−�
(|( �p+ �qĤ)n−m−1e−it(m+1)|(| �qĤ 2=q|+ |Ĥ − Ĥr|)

+|Ĥre−it(m+1)|(|( �p+ �qĤ)n−m−1 − exp{(n− m− 1) �q (Ĥ − 1)}|
+|exp{(n− m− 1) �q (Ĥ − 1)}| |1− exp{(m+ 1) �q (Ĥ − 1)}|
+|exp{n �q(Ĥ − 1)} − exp{�(Ĥ − 1)}|+ |exp{�(Ĥ − 1)}
−exp{�(Ĥr − 1)}|)) dt: (6.8)

It is easy to show that the right-hand side of Eq. (6.8) is o(1) as n → ∞. Therefore
by the Sche�e dominant convergence theorem we obtain (6.5).
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