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The myofiber geometry of the left ventricle (LV) changes gradually from a right-handed helix
in the subendocardium to a left-handed helix in the subepicardium. In this review, we
associate the LV myofiber architecture with emerging concepts of the electromechanical
sequence in a beating heart. We discuss: 1) the morphogenesis and anatomical arrangement
of muscle fibers in the adult LV; 2) the sequence of depolarization and repolarization; 3) the
physiological inhomogeneity of transmural myocardial mechanics and the apex-to-base
sequence of longitudinal and circumferential deformation; 4) the sequence of LV rotation;
and 5) the link between LV deformation and the intracavitary flow direction observed during
each phase of the cardiac cycle. Integrating the LV structure with electrical activation and
motion sequences observed in vivo provides an understanding about the spatiotemporal
sequence of regional myocardial performance that is essential for noninvasive cardiac
imaging. (J Am Coll Cardiol 2006;48:1988–2001) © 2006 by the American College of
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eart failure is a growing problem worldwide (1). Almost 5
illion Americans have heart failure, and a further 550,000

re diagnosed with heart failure annually (2). The current
iological models used for understanding the syndrome of
eart failure are insufficient in explaining the benefits of
everal newer emerging therapies (3). These limitations may
esult from inaccuracies in modeling the structure and
hysiology of the left ventricle (LV), which becomes mal-
daptive and disorganized. A report from a recent National
nstitutes of Health meeting drew attention to the existing
aps in the understanding of the normal structure and
unction of a beating heart (4). In particular, the regional
nhomogeneity of mechanical shortening and lengthening
equences in the LV wall, which result in a highly efficient
lobal function of the normal heart, despite presence of
tructural anisotropy, remain contentious and incompletely
haracterized (5–8).

Normal ventricular function requires coordinated electri-
al activation and contraction. Given the 3-dimensional
attern of ventricular activation and contraction, the assess-
ent of mechanical activation using conventional imaging
ethods is a complex task. Although electrical depolariza-
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ion follows an anatomically predefined sequence in healthy
ndividuals, physiological mechanical activity is character-
zed by a higher degree of nonuniformity (9). The impact of
ardiac resynchronization therapy on global systolic and
iastolic performance in dyssynchronous hearts particularly
as renewed an interest in understanding the physiological
onuniformities of regional LV performance (10,11). Be-
ause QRS duration alone fails to predict reverse remodel-
ng, imaging techniques with high temporal resolution have
een actively sought for more accurate characterization of
egional LV deformation (10,11). Simultaneous integration
f LV muscle fiber geometry and function at a regional level
ith global sequence of cardiac deformation in different
hases of the cardiac cycle remains an area of intense
nvestigation.

In this review, we first summarize the parameters that are
equired for describing LV geometry and deformation.
urther, we describe the emerging concepts regarding the
equence of electromechanical activation and LV intracav-
tary flow within the anatomical context of the helical

yofiber arrangement of the LV wall.

EFT VENTRICULAR GEOMETRY

ormal LV geometry has been conceptualized as a
rolate ellipsoid shape (12) with its long-axis directed
rom apex to base. Therefore, short-axis cross sections of
he LV should reveal a circular geometry. However,
ecause of a curved posterolateral wall and a flat anterior

all (13), the short-axis cross sections obtained by
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ardiac imaging techniques do not appear circular. In
ddition, the endocardial surface is extremely irregular
ecause of the presence of papillary muscles and trabec-
lae (12). Significant nonuniformities also exist in the LV
all, particularly with regard to the thickness. The
osterolateral wall is significantly thicker than the sep-
um. A gradual thinning of the LV wall is observed
oward the apical segments (13).

UANTITATIVE TERMS IN LV MECHANICS

uring a cardiac cycle, the LV wall shortens, thickens, and
wists along the long axis. Shortening and thickening can be
uantified by measuring regional strain. Strain or myocar-
ial deformation from developing forces is expressed as
ither the fractional or the percent change from the original
imension (14). Positive radial strains represent wall thick-
ning (radial deformation), whereas negative strains repre-
ent segment shortening (e.g., circumferential shortening,
ongitudinal shortening, and fiber shortening). These strains
an be expressed either in a local cardiac coordinate system
r a local fiber coordinate system (13). Three perpendicular
xes orienting the global geometry of the LV define the local
ardiac coordinate system: radial, circumferential, and lon-
itudinal. The local fiber coordinate system is defined by the
ollowing: 1) the radial axis similar to the local cardiac
oordinate system, 2) the fiber axis tangent to the surface
nd parallel to the local fiber orientation, and 3) the
ross-fiber axis, tangent to the surface and perpendicular to
he fiber.

Echocardiographic techniques like tissue Doppler imag-
ng have excellent temporal resolution (�4 ms) and provide
he instantaneous velocity of myocardial motion. The ve-
ocity data can be postprocessed for calculating parameters
uch as displacement, strain rate, and strain. Numerical
ntegration of velocity over time results in displacement
urves. Strain rate, which is the rate of change of deforma-
ion, is derived as a spatial derivative of velocity, whereas
emporal integration of strain rate is used for calculating
egional strain (14).

Left ventricular rotation, twist, and torsion are terms
ften used interchangeably in published reports for explain-
ng the wringing motion of the LV. For this review, the
erm “rotation” will refer to the rotation of a short-axis
ections of LV as viewed from the apical end and defined as
he angle between radial lines connecting the center of mass
f that specific cross-sectional plain to a specific point in the

Abbreviations and Acronyms
IVC � isovolumic contraction
IVR � isovolumic relaxation
LV � left ventricle/ventricular
MRI� magnetic resonance imaging
yocardial wall at end diastole and at any other time during m
ystole (15). The unit of rotation is degrees or radians. The
ase and apex of the LV rotate in opposite directions. Twist
efines the base to apex gradient in the rotation angle along
he longitudinal axis of the LV and is expressed in degrees
er centimeter or radians per meter (16). Torsion and twist
re equivalent terms. Torsion also can be expressed as the
xial gradient in the rotation angle multiplied by the average
f the outer radii in apical and basal cross-sectional planes,
hereby representing the shear deformation angle on the
picardial surface (unit degrees or radians) (17). This nor-
alization can be used as a method for comparing torsion

or different sizes of LV. When the apex-to-base difference
n LV rotation is not normalized, the absolute difference
also in degrees or radians) is stated as the net LV twist
ngle (16).

EVELOPMENTAL CHANGES

he heart increases in size by 2 orders of magnitude
uring development but, unlike the mature heart, the
mbryonic heart grows by hyperplasia (18). The helical
rrangement of myofibers is evident at a very early stage
f cardiac development and can be accelerated or delayed
y manipulating the loading conditions (19). At the stage
f an embryo, the primitive tubular heart develops from
wo layers of epithelial cells (20) (Fig. 1). The inner layer
roliferates and grows toward the ventricular cavity as
heets and chords that develop into trabeculae. Cells in
he outer layer proliferate and undergo progressive com-
action in response to the functional needs of a growing
mbryo. The early embryonic heart responds to changes
n its mechanical environment. Pressure overload, for
xample, leads to increased thickness of the trabeculae
nd to precocious spiraling of the trabecular architecture
18,20).

The propulsion of blood flow in an embryonic tubular
eart parallels an initial isotropic electrical activation se-
uence that spreads from the most caudal portion of the
ubular heart toward the cranially located outflow (21).
sing a model of embryonic zebrafish heart tube, it has

ecently been suggested that this blood propulsion is not
ecause of peristalsis but the result of dynamic suction of the
ubular heart (22). Soon after the initial contractions, the
rocess of cardiac looping begins to transform the heart into
curved tube (18). During looping, the heart tube under-

oes ventral bending and torsion to create the basic pattern
f the mature heart (23). Formation of torsional component
f the looping promotes a change from the propulsive
ovements of the tubular heart to the twisting pattern seen

n adult life. Further maturation of the LV wall is accom-
anied with emergence of a specialized His-Purkinje con-
uction system that progressively alters the immature base-
o-apex sequence of electromechanical activation into a

ature apex-to-base pattern (21).
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With regard to mechanical performance, an interesting
eature of an early trabeculated heart is the pattern of
entricular filling. Filling of an early embryonic looped heart
ccurs predominantly in late diastole, primarily because of
trial contraction, and shifts into early diastole after the
ddition of outer ventricular layers (24). A good correlation
s seen to exist between the thickness of outer compact

yocardium and the suction performance of a developing
eart. A mutant mouse model with underdeveloped outer

ayers of myocardium shows diastolic dysfunction with
iminished suction gradient and reduced force development
uring ejection (24). Thus, the progressive addition of outer
ompact spiral layers contributes to the efficient ejection and

igure 1. Embryonic development of the left ventricular wall in a chick. (A
ndocardium (En) by acellular cardiac jelly (CJ). (B) The inner layers proli
hrough the intertrabecular spaces (ITS). The outer layers proliferate and
he sixth embryonic day, the compact layer has thickened and is invaded by
eart, the multilayered compact architecture of the left ventricular wall is
mp). On the right side of each picture is a schematic drawing illustrating
, C, 100 �m; D, 500 �m. Reproduced from Sedmera et al. (20) with p
uction performance of the developing heart. w
EFT VENTRICULAR ARCHITECTURE IN ADULT LIFE

arly historic descriptions of the relation between myocar-
ial structure and function were based on the belief that the
eart comprised distinct muscle bundles that worked like
keletal muscles, with the long axis spiraling around the
eart chambers (25,26). Subsequent descriptions of myo-
ardial architecture have ranged from laminated sheets,
ayered fibers, and complex nested syncytium to a unique
and-like arrangement (25–31). Torrent-Guasp et al.
28,29) attracted major attention in recent years to their
roposed model in which the continuum of myocardial
rchitecture was depicted in the form of a muscle band that

e tubular myocardium (My) (2 to 3 cell layers thick) is separated from the
to form trabeculations (Tr), which are nourished by the blood circulating
go compaction (Co) and are covered by epicardium (arrowhead). (C) By
loping coronaries from the epicardial surface. (D) In the neonatal (day 10)
y appreciated with the innermost layer merging with the papillary muscle
ajor steps in development of ventricular myoarchitecture. Scale bars � A,

sion.
) Th
ferate
under
deve

clearl
the m
as spatially organized into 2 distinct helicoids. Although
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he model emphasized the importance of counter-
irectional helical anatomy in the LV, the embryological
rigin and existence of a unique band-like arrangement in
he LV has been debated by other investigators (7,8,31).

The myocardial cells are single-nucleated and are them-
elves supported loosely within a continuous matrix of
brous tissue. Groups of myocytes are surrounded by
ondensations of the endomysial weave, thus forming the
erimysium, which aggregates a meshwork of myocytes into
he so-called myofibers (31). The attachments between
eighboring cells and matrix accommodates shearing be-
ween cardiac muscle fibers (32) and dynamic alterations in
yocardial fiber direction during different phases of cardiac

ycle (33).
Most studies have analyzed the architecture of the myo-

ardium in transmural plugs of ventricular tissue that permit
detailed examination within a given region of myocardium

34–36). Myofiber morphology has either been described
ased on orientation of individual fibers or as multiple
yocyte “sheet” arrangements separated by extensive “sheet-

leavage” planes. For describing the global arrangement,
ost studies and computational models have depicted LV
yocardial architecture as a transmural continuum between
helical fiber geometries, where right-handed helical ge-

metry in the subendocardial region gradually changes into
eft-handed geometry in the subepicardial region (33,37,38)
Fig. 2). Mathematical models have shown that this coun-
erdirectional helical arrangement of muscle fibers in the
eart is energetically efficient and is important for equal
edistribution of stresses and strain in the heart (37).
ncidentally, a counterdirectional arrangement of muscle
bers in the LV mirrors the structural theme that exists for
ropulsion in other organ systems, such as the alimentary
ract, in which smooth muscles in 2 opposite directions
enerate peristaltic waves (39). Similarly, biophysical studies
n various animals have shown the use of synergistic though
nversely oriented pairs of skeletal muscles for propulsion,
ocomotion, or flying (40). The counterdirectional arrange-

igure 2. Helical arrangement of muscle fibers in the left ventricle of an

ircumferential-longitudinal plane changes from a left-handed helix in the sub
elical arrangement of the endocardial region is also reflected in the arrangeme
ent of muscle fibers helps maintain stability and mini-
izes energy expenditure (40).
For quantification of fiber orientation, the helix and

ransverse angles were introduced by Streeter et al. (27). The
elix angle represents the angle between the circumferential
xis and the projection of the myofiber onto the
ircumferential-longitudinal plane. The myofiber helix an-
le changes continuously from the subendocardium to the
ubepicardium, from a right- to a left-handed helix (Fig. 2),
ypically ranging from �60° at the subendocardium to �60°
t the subepicardium (41). The tranverse angle represents
he angle between the circumferential axis and the projec-
ion of myofiber orientation onto the radial-circumferential
lane (41) and ranges between �20° to �20° (33). Le Grice
t al. (42) found that collagen binds adjacent myocytes
ogether forming layers known as lamina or sheets, which
ypically are 4 cells thick and separated by cleavage planes.
n the basis of this finding, other investigators incorporated

he helix angle (�) and the sheet angles in longitudinal
adial plane (�=) and circumferential radial plane (�==) in
escriptions of the myofiber and sheet arrangements (43).
Figure 3 shows the arrangement of sheets and cleavage

lane in the longitudinal cross-sectional plane (�=). A radial
rrangement of fiber sheets and cleavage planes produces a
istinct layered appearance (33). Figure 4 shows the ar-
angement of fiber sheets and cleavage plane in a radial
ross-sectional plane (�==) taken through the mid LV and
iewed from the LV base. The cross sections of the sheets
ithin the short-axis sections diverge from the midwall.
uch a characteristic appearance of myofiber arrangement
an also be identified in the human LV when viewed in its
hort axis and was first described by Greenbaum et al. (44)
nd recently also reviewed by Anderson et al. (31,45). These
ransmural differences in orientation of muscle fibers and
leavage planes within the myocardial wall can be appreci-
ted noninvasively using diffusion tensor magnetic reso-
ance imaging (MRI) (Fig. 5) (46) and high-resolution
ltrasonography (Video 1 and supplementary Fig 1. [see

ted adult porcine heart. The arrangement of muscle fibers as seen in the
explan

epicardium (A) to a right-handed helix in the subendocardium (B). The
nt of trabeculae near the apex (C). A � anterior; P � posterior.
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ppendix]). When a high-resolution ultrasound transducer
s moved over an explanted porcine heart specimen from the
pex toward the base, the panning cross-sectional view as
een from the basal end of the LV shows an outer clockwise
nd inner counterclockwise movement of speckles due to
he counterdirectional arrangement of the fiber sheets in the
ubendocardial and the subepicardial regions (Video 1 [see
ppendix]). The predominant left-handed helical arrange-
ent of myofibers at the LV apex can be identified by

ardiac ultrasound even in a beating heart (Video 2 [see
ppendix]).

LECTRICAL SEQUENCE IN THE ADULT HEART

he fascicles of the His-Purkinje system are insulated from

igure 3. Arrangement of left ventricular fiber sheets and cleavage planes
n long-axis slices. (A) Longitudinal cross section of the left ventricle fixed
n diastole (hematoxylin and eosin stain). (B) Radial orientation of the
leavage planes and the quantification of diastolic and systolic angles of the
heets and the cleavage planes from the boxed area in A. Reproduced from
hen et al. (33) with permission.
he surrounding muscle during their course from the crest of
f
�

he septum toward the ventricular apex (21). The LV
yocardial wall is, therefore, first activated at the LV

ndocardium in septal and anterior free wall regions, close
o the LV apical endocardium (47). From these exits of the
urkinje system, the LV activation sequence travels from
pex to base with small differences in activation between the
eptum and LV free wall (47). Pacing from the LV apex has
een shown to provide a more physiologic sequence of
ctivation and LV function than that produced with right
entricular or LV free wall stimulation (48,49).

Although electrical gradients produced by the matching
equence of ventricular depolarization results in QRS com-
lex on surface ECG, the gradient’s underlying repolariza-
ion has been widely debated. Roughly, 3 types of repolar-
zation inhomogeneities play a role: 1) differences between
he right and left ventricle; 2) differences between apex-base

igure 4. Cross-sectional view of a rat’s left ventricle (LV) when viewed
long the short axis. The cross section obtained from the midsegment of
he interventricular septum has been viewed from the basal end of the LV.
he fiber sheets (dashed arrows) are seen to diverge away from midwall

hematoxylin and eosin stain) (A). The cleavage planes (arrow) separating
he myofiber sheets are distinctly appreciated using high-resolution con-

ocal laser scanning micrograph (B) magnification. Scale bar in B � 200
m. RV � right ventricle.
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nd anterior-posterior; and 3) transmural differences (50).
n previous investigations, the presence of a repolarization
radient between the “mid-myocardial region” (M-cells)
nd subendocardial and subepicardial regions has been
orrelated with the genesis of upright T waves in ventricular
edge preparations (51). However, studies of intact hearts
ave failed to provide evidence for transmural differences in
epolarization (52). Thus the genesis of T wave on surface
lectrocardiogram (ECG) may be largely due to the base-
o-apex gradient with minimum contribution from the
ransmural gradient (50,53).

ECHANICAL SEQUENCE OF AN ADULT HEART

sovolumic contraction. Cardiac isovolumic phases are
haracterized by transient changes in LV shape that produce
apid variations in regional velocities. Rushmer (54) had
hown that LV geometric changes during the initial phases
f systole were not isometric but were characterized by
brupt expansion of the external circumference. An advent
f tissue Doppler imaging further facilitated quantification
f rapid variations in regional velocities (55) during isovolu-
ic intervals. Both open-chest experimental animal models

nd human studies (55–57) have reported a bidirectional
ovement of the LV wall during isovolumic contraction

IVC) (supplementary Figs. 2 and 3 [see Appendix]).
ecent investigations from our laboratory and by others
ave shown that the biphasic longitudinal myocardial ve-

ocities and strain rate waveforms are consistently seen
uring IVC on tissue Doppler imaging (55–57) and result
rom a physiological asynchrony of shortening between the

igure 5. Assessment of cardiac muscle fiber orientation by diffusion tenso
lyph visualization methods have been used to investigate the helical struct
rientation (subendocardium) is shown in shades of purple, and left-hand
he cross-sectional view (B) has been viewed from the basal end of the lef

entricle; RV � right ventricle.
ubendocardial and subepicardial regions (57,58). a
In earlier descriptions of myocardial band hypothesis,
orrent-Guasp et al. (29) proposed that isometric contrac-

ion of the posterior basal epicardial region of the LV would
esult in a rigid external buttress, which could explain the
nner bidirectional movement of the subendocardial region.

owever, recent investigations in the intact human heart
ave shown that electrical activation of the posterior basal
picardial region occurs around the down-sloping of the R
ave or S wave on surface ECG (59). Mitral valve closure,
n the other hand, occurs approximately at the peak of R
ave (60,61), implying that mechanisms for closing the
itral valve are initiated within the LV even before the

osterior basal epicardial region is electrically activated.
ewer observations indicate that cardiac muscle activity

uring IVC is not isometric, and early shortening occurs
ithin the subendocardial myofibers in the anterior wall of

he LV (57,62). The shortening of the inner subendocardial
bers (right-handed helix) is accompanied with stretching
f the outer subepicardial fibers (left-handed helix) (57).
tretching of activated cardiac muscle fibers produces rapid

ncrease in myocardial stiffness (63,64). The “rigid external
ylinder” of the basal epicardial loop as hypothesized by
orrent-Guasp et al. (29) may correspond to this early

tiffening of the subepicardial fibers produced by transient
tretching; however, this requires further confirmation in
ivo. Shortening and stretching are reciprocal deformations
hat satisfy isovolumic mechanics, that is, shortening in one
irection is accompanied with stretching of the orthogonal
irection (57). Stretching of myofibers during IVC is also
mportant in initiating “stretch activation response,” an
ntrinsic length-sensing mechanism that allows muscle to

gnetic resonance imaging. In these examples (A and B), scalar and tensor
the heart muscle in an explanted fixed canine heart. Right-handed helical

lical muscle fiber orientation (subepicardium) is shown in shades of blue.
ricle. Reproduced from Zhukov and Barr (46) with permission. LV � left
r ma
ure of
ed he
djust the force and duration of subsequent shortening
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65–67). This has recently been proposed as the main basis
f the Frank-Starling mechanism of the heart (68). Stretch-
ng a myocyte that has been electrically activated in-
reases the force of subsequent shortening due to strain of
ttached cross bridges and acceleration of cross-bridge
ycling kinetics (69).

The papillary muscles are among the earliest portions of
he ventricle that are electrically stimulated. However,
uring IVC, despite the electrical signal to contract, the
apillary muscles also are stretched during IVC and early
eriod of systole while other portions of the ventricle are
ontracting (62,67,70). This motion has been attributed to
he increasing intraventricular pressure in early systole that
eads to closure of the mitral valve leaflets with increasing
ension on the chordae, which causes stretching of the
apillary muscles (67,70).
jection phase. Myocardial deformation during ejection
emonstrates extensive transmural tethering (71) such that
ubendocardial and subepicardial regions undergo simulta-
eous shortening along the fiber and cross-fiber direction
uring ejection (57,72). Subendocardial strains are higher in
agnitude than subepicardial strains (Fig. 6) (53). Within

igure 6. Longitudinal deformation of the anterior wall of the left ventricle
train). Longitudinal shortening starts during isovolumic contraction pe

engthening crossover of the basal anteroseptal segment is delayed until the end
sovolumic relaxation; 4, early diastole; 5, late diastole. ECG � electrocardiogr
ubendocardium, the magnitude of circumferential strains
uring ejection exceeds that of longitudinal strains (13)
Figs. 6 and 7). With regard to the timing, longitudinal
hortening strains for both regions show an apex-to-base
radient, so that successive shortenings are reached earlier at
pex and midsegments compared to the LV base (57,72).
hus, the direction of LV mechanical shortening parallels

he apex-to-base direction of electrical activation (47).
tudies of canine (73) and children’s (48) hearts also have
hown that an apex-to-base direction of LV pacing yields a
ore physiologic sequence of activation and LV function.
Previous tissue Doppler image analyses in the apex-to-

ase direction reported a velocity gradient but nearly uni-
orm strain and strain-rate gradients. Recent investigations
sing either direct sonomicrometry (53) or indirect mea-
urement by MRI tagging (13) have reported higher short-
ning strains within the LV apex. Results of Doppler strain
easurements are dependent on the angle between the scan

xis and tissue and may have inherent limitations in accu-
ately measuring deformation from curved regions of LV,
articularly near the apex. Measurements with a recently
eveloped technique of measuring 2-dimenstional strains by

dimensional speckle tracking of B-mode ultrasound images (2-dimensional
nd occurs earlier in the apex as compared with the base. Shortening-
by 2-
riod a
of isovolumic relaxation. Phase 1, isovolumic contraction; 2, ejection; 3,
am.
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peckle tracking of B-mode ultrasound images (74) also
uggest that radial and longitudinal strains and strain rates
re higher in the apex compared to the base (Fig. 6, Video
[see Appendix]) (75,76).

sovolumic relaxation and postsystolic shortening. Two
ypes of mechanical gradients operate during isovolumic
elaxation (IVR): apex-to-base and transmural gradients
Figs. 6 and 7). Near the LV apex, shortening of the
ubepicardium (left-handed helix) continues beyond aortic
alve closure and is accompanied with lengthening of the
ubendocardial layer (right-handed helix) (53,72). Near the
V base, lengthening of myocardial wall occurs along the

eft-handed helical subepicardial fiber direction and is ac-
ompanied with shortening and shear along the subendo-
ardial fiber sheets (i.e., right-handed fibers) (36,53).
hanges in LV cavity volume follow the deformation
attern of the subendocardium, with enlargement of the LV
avity at the apex.

Longitudinal and circumferential shortening of the myo-
ardial wall during the IVR period has been reported in

igure 7. Circumferential deformation of the subendocardial and subepicar
ltrasound images (2-dimensional strain). Note the presence of positive str
ircumferential strains of the subendocardial regions as compared with th
egion extends beyond the timing of aortic valve closure (postsystolic shor
lectrocardiogram.
ormal human subjects (77,78). Zwanenburg et al. (77) b
imed cardiac contraction in healthy subjects with high-
emporal-resolution MRI myocardial tagging and reported
hat several segments in the lateral wall and in the basal
egions contracted circumferentially beyond aortic valve
losure (Fig. 8). The occurrence of longitudinal postsystolic
hortening in healthy subjects was reported also by Voigt et
l. (78). Postsystolic shortening as a physiological phenom-
non may be explained on the basis of synergistic move-
ents that occur during IVR, that is, lengthening of the LV

egment in one direction is accompanied with shortening in
he other direction. Recent observations in beating porcine
earts indicate that a component of this reciprocal shorten-

ng occurs circumferentially near the apex and is linked with
onger repolarization intervals. Normal postsystolic contrac-
ion of the LV provides an apex-to-base and transmural
radient of deformation that may help in rapidly restoring
he geometry of LV cavity in early diastole (53,72). Delayed
orce development is predominantly seen in regions that
ndergo prestretching during IVC, that is, stretch activa-
ion, and results from recruitment of additional cross

gions of left ventricular apex by 2-dimensional speckle tracking of B-mode
lengthening) during the phase of isovolumic contraction. Note the higher
epicardial region. Peak shortening in some segments of the subepicardial
, arrow). Phases 1 to 5 are described in the legend to Figure 6. ECG �
dial re
ains (
e sub
ridges to sustain a state of prolonged force generation (69).
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Coexistence of shortening and lengthening deformations
ithin the LV wall during the isovolumic phases (57,58)
akes “contraction” and “relaxation” terms misleading for

efining the corresponding phases (IVC and IVR, respec-
ively). Instead, the terms of “isovolumetric ventricular
ontraction” or “systolic ventricular filling” due to a muscu-
ar mechanism recently have been suggested (79). However,
ublished reports are inconsistent with regard to the defi-
ition of “systole” and “diastole” (80). Even Wiggers, who
riginally defined the phases of cardiac cycle, found it most
ifficult to correlate end ejection with valve closure and to
elineate exactly the moment when “systole” ceases and
hen relaxation of muscle and ventricle starts (80). He

dmitted that this intermediary interval belongs, strictly
peaking, neither to the period of systole nor to that of
iastole (80). To avoid this uncertainty, we propose using
he term “‘pre- and postejection” isovolumic intervals for
roviding more succinct information because such defini-
ion can include existence of simultaneous myocardial short-

igure 8. Time sequence of circumferential shortening in a healthy subject
alve closure. � � measured data points; – � fitted line model to data fo
riangles � estimated Tonset; triangles � Tpeak. The vertical lines denote, fro
solid), and mitral valve opening (dashed). AL � anterolateral; AN � ant
eproduced from Zwanenburg et al. (77) with permission.
ning or lengthening within the LV wall. A
eft ventricular thickening. Continuum mechanics would
uggest that continuity of wall materials is all that is required
or LV wall thickening. Shortening in longitudinal and
ircumferential direction would result in thickeneing in the
adial direction for conserving mass. However, LV wall
hickening is not a resultant of simple shortening of indi-
idual myocytes in concert but an effect of shearing of
roups of myocytes across each other (Video 4 [see Appen-
ix]). Transmural shearing results from sliding and rear-
angement of myofiber sheets along cleavage planes during
he cardiac cycle (33,42,81). Rademakers et al. (82) used

R myocardial tagging and showed that cross-fiber strain
as near zero at the epicardium but was large at the

ndocardium and increased from base to apex. This study
oncluded that the primary source of myocardial wall
hickening was the interaction between the different layers
f the myocardium (82). The transmural variations in radial
eformation depend upon the regional differences in acti-
ation and electromechanical coupling of myocardial layers.

ged magnetic resonance imaging. Several segments contract beyond aortic
ating Tonset; circled � � end point of data used in the fit; upside-down
to right, the moment of aortic valve opening (dashed), aortic valve closure
AS � antero-septal; IL � inferolateral; IN � inferior; IS � inferoseptal.
by tag
r estim
m left
natomical M-mode echocardiography and Doppler can be
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sed for timing the transmural differences in the onset and
eaking of radial motion during different phases of cardiac
ycle (Fig. 9).
eft ventricular twist. In the past, dynamics of LV rota-

ion were assessed by implanting multiple radioopaque
arkers and biplane cine angiography (83,84). Currently,
V twist can be assessed noninvasively by MRI and
-dimensional echocardiography (85). Recently introduced
-dimensional strain echocardiography allows rapid and
ccurate measurement of regional twist angles or rotation
86). Rotation is conventionally viewed from the apical end
f the LV, with clockwise and counterclockwise rotations
hown in negative and positive degrees respectively. During
VC, the LV apex shows brief clockwise rotation (supple-
entary Fig. 4 [see Appendix]) (87,88). This is explained by

he predominant mechanical activity that develops along the
ight-handed helical direction during IVC because of short-
ning of the subendocardial region (89). During ejection,

igure 9. Direct in vivo imaging of anterior wall of a beating porcine left v
-mode imaging of the different layers of anterior segment of left ven

ontraction, the endocardium moves toward the cavity (blue arrows) and is
rrows). A reverse pattern of movement is seen during isovolumic relaxatio

lso are seen in tissue Doppler imaging, in the form of simultaneous red and b
yocardial wall during isovolumic contraction and vice versa during isovolumic
he apical rotation reverses becoming counterclockwise and
he direction corresponds with the orientation of the left-
anded helical subepicardial myofibers. Beyar et al. (84)
emonstrated for the first time in a canine model that a
ajor component of untwisting (clockwise rotation) oc-

urred during the IVR and early period of diastole. Subse-
uently, in another canine experimental study, it was shown
hat untwisting of LV apex was initiated within IVR
ollowing the first 20 ms of aortic valve closure and
pproximately 50% of untwisting occurred before mitral
alve opening (supplementary Fig. 4 [see Appendix]) (90).

Rotation of the LV base is opposite to that of the apex
ut is significantly lower in its magnitude. During IVC,
here is a brief counter-clockwise rotation due to the
echanical activity of the subendocardial fibers, which is

ollowed by clockwise rotation (twist) during ejection when
he subepicardal myofibers dominate the direction of LV
otation. The counterdirectional rotation of the LV apex

le using high-resolution linear array transducer (10 MHz). (A) Anatomic
ar apex at high temporal resolution (250 frames/s). During isovolumic

panied with a reciprocal outward movement of the subepicardium (white
ese reciprocal movements of the subendocardial and subepicardial regions
entric
tricul
accom
n. Th
lue colors within the inner and outer layers of the same segment of the
relaxation (B). Phases 1 to 5 are described in the legend to Figure 6.
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ith respect to the base results in a “wringing” movement
uring ejection. The pattern of net LV twist in which the
pex and the base rotate in different directions has been
xplained on the basis of varying spiral myofiber architecture
f the apical and basal region and apex-to-base and trans-
ural gradients in myosin phosphorylation (67,91).

EFT VENTRICULAR MECHANICAL SEQUENCE
YNCHRONIZES THE DIRECTION OF BLOOD FLOW

agnetic resonance imaging (92) and echocardiography
61,93) can be used for deciphering the 2-dimensional
eatures of LV intracavitary flow during different phases of
ardiac cycle. During high temporal resolution contrast
chocardiography (Video 6 [see Appendix]), bubbles are
racked in time and space for creating trajectories of blood
ow in 2 dimensions (61,93). Figure 10 shows the direction
f blood flow during each phase of the cardiac cycle
nalyzed by echo contrast particle imaging velocimetry.
fter the onset of a Q-wave on the surface ECG, just before

he mitral valve closure, the blood flow accelerates in the
pex-to-base direction, paralleling the apex-to-base direc-

igure 10. Digital particle image velocimetry profiles of left ventricular flo
nd administration to blood circulation, the echo contrast particles (micro
-dimensional ultrasound scan plane. The ensemble-averaged velocity mag
jection (b), isovolumic relaxation (c), early diastole (d), diastasis (e), and lat

ontraction with formation of a dynamic vortex across the inflow-outflow region
A � left atrium; LV � left ventricle. Reproduced from Sengupta et al. (61).
ion of electromechanical activation. This accelerated stream
nites with a large vortex that is formed across the anterior
dge of a closing anterior mitral leaflet (Video 6 [see
ppendix]). The forced acceleration of blood in the direc-

ion of LV outflow before the opening of the aortic valve
orrelates temporally with the reshaping movement of the
V wall seen during IVC. Contraction in one direction

right-handed helix) displaces blood, stretching the orthog-
nal direction (left-handed helix) during the isovolumic
eriod. Because the left handed helix direction faces the
utflow, blood is displaced towards the LV outflow before
he aortic valve opening (Video 6 [see Appendix]). Further
ropulsion of blood from the LV cavity results into ejection.
VR is characterized with rapid base-to-apex reversal of
lood flow (61,94) (Video 5 [see Appendix]). This explains
he physiologic significance of early endocardial relaxation
nd opening of the LV cavity near the apex during IVR.
his base-to-apex suction of blood during IVR helps to

ccommodate a greater base-to-apex surge of blood flow
nce the mitral valve opens during early diastolic filling.
oth early and late diastolic flows are characterized with

ring each phase of the cardiac cycle. Under specific conditions of dilution
es) can be tracked for calculating vectors and trajectories of flow within a
es are superimposed on the vector fields during isovolumic contraction (a),
tole (f). Note the apex-to-base redirection of blood flow during isovolumic
w du
bubbl
nitud
e dias
and the base-to-apex reversal of blood flow during isovolumic relaxation.
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ormation of a large anterior vortex across the anterior mitral
eaflet and a small posterior vortex across the posterior

itral leaflet (61,95). Intracavitary blood flow seen during
he different phases of the cardiac cycle thus provides enhanced
nderstanding about the significance of the apex-to-base se-
uence of mechanical activation. Since inflow and outflow of
he LV are found closely aligned at the “top” of the ventricle,
pex-to-base activation and contraction of the subendocardial
bers contributes to acceleration of blood flow in the direction
f the aortic outlet for optimal ejection (7,61).

INAL COMMENTS

e have reviewed the LV myofiber architecture with the
letromechanical activation and intracavitary blood flow
equence and provided the reasoning for complex deforma-
ion of a beating heart observed in vivo. The short-lasting
ighly localized deformations and the physiologic asyn-
hrony of cardiac deformation can be deciphered accurately
nly when analyzed in reference to the structural anisotropy
f the underlying myocardial architecture. This information
ecame available with the advent of high temporal resolu-
ion imaging methods and is fundamental for understanding
ardiac physiology, optimization of cardiac therapies and
lanning of surgical procedures used for restoring the LV
eometry (96). Another important objective in attempting
o discern the link between the structure and function of a
eating heart is to develop accurate computational models
hat can assimilate all imaging information for planning of
roper therapeutic strategies for a given individual patient
97). Understanding the cardiac structure–function relation-
hip will also be essential for generating true anatomical
onstructs and scaffolds that would guide the emerging field
f cardiac tissue engineering in time for designing future
omponents of a “bioartificial heart” (98).
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