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Asymmetric Bilayer Muscles. Cooperative and Antagonist Actuation
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A B S T R A C T

Thick films of polypyrrole-paraphenolsulfonic acid (PPy-HpPS), polypyrrole-dodecylbenzensulfonic acid
(PPy-DBS) and a bilayer PPy-HpPS/PPy-DBS (asymmetric bilayer) were electrogenerated from aqueous
solutions. Two bilayers: PPy-HpPS/tape and tape/PPyDBS were constructed. The angular displacement of
those three bilayer muscles was characterized in NaCl aqueous solution by cyclic voltammetry and
parallel video recording of the bending movement. The attained coulo-voltammetric (charge-potential),
dynamo-voltammetric (angle-potential) and coulo-dynamic (charge-angle) responses until different
cathodic potential limits were analyzed. The dynamo-voltammetric and coulo-dynamic responses from
the PPy-HpPS/tape and tape/PPyDBS muscles inform about the reaction driven ionic exchanges in the
two PPy films. Electrochemo-dynamical responses from the asymmetric PPy-HpPS/PPy-DBS bilayer
muscles are explained using those reactions. Cooperative dynamic effects exist when both layers follow
complementary reaction-driven volume changes (swelling/shrinking, or shrinking/swelling) due to
complementary entrance/expulsion of ions. The cooperative amplitude of the angle described by the
asymmetric bilayer muscle is one order of magnitude larger than those attained from each of the
conducting polymer/tape bilayer muscles. Antagonist dynamic actuation occurs when the two films
swell, or shrink, simultaneously originating narrower angular displacements. Improving cooperative
actuation or eliminating antagonist actuation and creeping by suitable selection of polymers and
electrolytes seem the way to get most efficient polymeric motors and industrial products.
ã 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Films of conducting polymers exchange ions and solvent during
electrochemical reactions for charge and osmotic balance [1–3].
Those reactive dense gels mimic, in its simplest expression
(reactive macromolecules, ions, water and reaction-driven con-
formational movements of the conducting polymer chains) the
intracellular matrix in cells. There reactions originate and support
life and life functions [4]. Any biological cell is a complex chemical
reactor in which most of the reactions cannot be described by
nowadays-available chemical models. Those models were devel-
oped from reactions taking place in gaseous phase or in dilute
solutions [5,6], quite far from the dense gel of the intracellular
matrix where functional reactions occur.

Several biomimetic properties of the conducting polymer
change with the polymer-counterion composition driven by the
reaction. Each of those properties allow the development of a
biomimetic reaction-driven device [1,2,7]. Among those devices,
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artificial muscles are transducers of the reaction-driven volume
variations, required to lodge or expel balancing counterions and
solvent, into macroscopic linear [8–16] or bending movements
from bilayer or multi-layer structures [17–29]. Thus, bending
artificial muscles can be considered as polymeric Faradaic motors
translating reaction-driven ionic and aqueous exchanges into large
angular movements. Thinking in the opposite direction artificial
muscles can be considered as useful tools for the identification and
quantification of different processes linked to the electrochemical
reaction. They are being used to clarity and quantify ionic and
aqueous exchanges [30,31], osmotic and electrosomotic processes
[32], creeping effects [33] and any other mechanical or chemical
influence on the electrochemical reaction of the constitutive
conducting polymer. During actuation a progressive variation of
both, inter and intra-molecular interactions (polymer-polymer,
polymer-ions, polymer-solvent and solvent-ions) occur inside the
CP film. Thus, by changing the solvent, or the salt, the reaction can
move from driving cation exchanges to anion exchanges, and vice
versa [34,35]. The muscle can be proposed as a tool to quantify the
evolution of the intra-molecular forces in reactive gels (artificial or
biological) during reactions [4]. Similar variations during parallel
biological reactions in functional cells defines health or illness [6].
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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An electroactive material layer (conducting polymer, redox
polymer, carbon nanotube, graphene, and so on) and a passive
(from the electrochemical point of view) material layer (tape,
plastic, metal, wood, and so on) constitute those bilayer muscles.
The passive film, if essential to generate the transversal muscular
stress gradient during actuation, consumes a fraction of the
applied electrical energy to be bended. As a result the muscular
energetic efficiency and the angular displacement, for the same
consumed charge, decrease.

One of the strategies followed trying to eliminate those two
adverse effects getting more robust and efficient polymeric motors
is by using asymmetric bilayer muscles. Two layers of the same
conducting polymer, here polypyrrole (PPy), constitute an
asymmetric bilayer muscle. One PPy layer is expected to swell
during oxidation by entrance of anions pushing the bending
movement. The second PPy layer must shrink during oxidation
(simultaneously) by expulsion of cations pulling the bending
movement. Reverse ionic exchanges, volumetric changes and
bending movements should occur during reduction of the
asymmetric bilayer. On this way both films are simultaneously
active and larger angular movements are expected by consumption
of the same charge, or of the same energy, than using polypyrrole/
tape bilayers.

Thus, for a good design of most efficient polymeric motors we
must select two compatible conducting polymers: bilayers can be
constructed by consecutive electrogeneration. The two layers
should present asymmetric volume changes during reaction. For
the first layer we have selected a polypyrrole blend electro-
generated in presence of the large dodecylbenzenesulfonic acid
(HDBS), the second was generated in presence of the shorter
paraphenolsulfonic acid (HpPS) [36]. The two organic ions, DBS
and pPS, generate very compatible films giving a uniform
interpenetrated bilayer.

Here we will explore the parallel electro-chemo-dynamical
characterization of the asymmetric bilayer muscle (PPy-HpPS/PPy-
DBS) and each of the PPy-HpPS/tape [37] or PPy-DBS/tape [38]
bilayers muscles in NaCl aqueous solutions. The aim is to
characterize the three selected bilayer muscles, identifying any
reaction-driven effect as ionic exchanges or intermolecular
interaction changes, cooperative and antagonist dynamic effects,
creeping effects, and so on. Advantages and disadvantages of using
Fig. 1. (a) Scheme of the PPy-HpPS/PPy-DBS, PPy-HpPS/tape and PPy-DBS/tape bilayer 

checked muscles, transversal paint strip and alligator metal electric contact. (b) A pict
asymmetric bilayer muscles for the development of industrial
products will be discussed.

2. Experimental methods

Either chemicals, methodologies and video recording of the
bending movement under electrochemical control have been
described in a previous work [39].

2.1. Preparation of Polypyrrole-paraphenolsulfonic acid/tape
(PPy-HpPS/tape) bilayer muscle

PPy-HpPS films were electrogenerated from 0.2 M pyrrole and
0.05 M HpPS aqueous solutions (50 mL). The working electrode
was a stainless steel plate having 6.6 cm2 of surface area. Two
similar stainless steel electrodes were used as counterelectrodes
CE, one by WE side at a distance of 1.0 cm in order to get a uniform
electric field. The reference electrode was Ag/AgCl (3 M KCl) from
Metrohm. Potentials in this work are referred to this electrode. A
constant current density of 0.5 mA cm�2 was applied to the WE
during 1 hour at 0 �C. After water rinsing the coated electrode was
dried in air for 24 hours. The electrode borders were scrapped and
two PPy-HpPS films were peeled off and weighed using a
microbalance, 20 mm thick and 4.8 mg mass. Those freestanding
films were cut into 20 mm � 1 mm strips. After determining its
mass, each strip was attached under pressure to a double-sided
tape from 3 M. A paint (Max Effect, MAXFACTOR) strip from 5.0 mm
to 12.0 mm of the upper border avoids the direct contact between
the electrolyte (by capillarity) and the metallic clamp that allows
the electrical contact (Fig. 1a). The final bilayer muscle inside the
solutions was 8 mm long.

2.2. Preparation of tape/Polypyrrole-dodecylbenzenesulfonic acid
(PPy-DBS/tape) bilayer muscle

A similar procedure was used to electrogenerate on a stainless
steel electrode a Polypyrrole-dodecylbenzenesulfonic acid
(PPy-DBS) film from 0.15 M pyrrole and 0.25 M DBSA aqueous
solution (50 mL). Two PPy-DBS film (one by side), 20 mm thick and
22 mg mass, were attained, cut in small pieces and attached to a
tape getting the final tape/PPy-DBS bilayer.
artificial muscles with the relative position of the two constitutive layers as in the
ure of a bilayer muscle in the cell and determination of the described angle.
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3. Results and discussion

3.1. Electrogeneration of the (PPY-HpPS/PPy-DBS) Bilayer Muscle

The AISI316 stainless steel working electrode was first coated
with a polypyrrole-dodecylbenzenesulfonic acid (PPy-DBS) film
following the procedure above described by consumption of 5.76C.
Fig. 2a shows the evolution of the electrode potential. The coated
electrode was then rinsed and kept in ultrapure water for 1 day in
order to eliminate the adsorbed organic acid molecules. The coated
electrode was then dried in air at room temperature during one
day.

After that the Pt/PPy-DBS electrode was used as the working
electrode (WE) in 50 mL of 0.05 M HpPS and 0.20 M pyrrole
aqueous solution. A PPy-HpPS film was electrogenerated following
the above-described procedure by consumption of 3.06C. Fig. 2b
shows the evolution of the electrode potential. Once generated the
steel plate coated with the PPy-HpPS/PPy-DBS bilayer was rinsed
with water and dried in air at room temperature for 1 day. Then the
borders of the steel coated electrode were scrapped and the two
PPy-HpPS/PPy-DBS bilayer films (one by steel side) were peeled off
from the metal. Those films were cut into smaller longitudinal
strips each 15 �1 mm, and 40 mm thick. The mass of every film was
determined using a microbalance. Each film was painted with a
transversal paint strip on both film sides from 2.0 mm to 5.0 mm of
the upper border. The paint closes the pores, avoids the electrolyte
capillarity towards the metal clamp required for the electrical
contact and the concomitant electrolyte discharge on the metal
clamp during experiments.

3.2. Bending artificial muscles

The three bilayer muscles, PPy-HpPS/PPy-DBS, PPy-HpPS/tape
and tape/PPy-DBS, were checked in parallel in the same electrolyte
and under the same electrochemical conditions.

Fig. 1a presents a scheme of each of the three studied bilayers
showing the relative position (left side/right side) of every layer
kept during the experiments, the transversal paint strip and the
clamp for the electrical contact. This relative position of the two
layers is a key point to get the reaction-driven ionic exchanges
from the angular movements (Section 3.5). Fig. 1b presents a
picture of a bilayer muscle in the experimental cell and how the
Fig. 2. Evolution of the potential during the electropolymerization (a) of PPy-DBS by app
stainless steel working electrode in 0.25 M DBSA and 0.15 M pyrrole aqueous solution at 0
for 3600 seconds through the PPy-DBS coated stainless steel working electrode in 0.05
described angle, or angular displacement is obtained. The angular
displacement is video recorded in parallel to the electrochemical
experiments.

3.3. Stationary Voltammetric (i/E) and Coulovoltammetric (Q/E)
Responses

Each of those bilayer muscles was submitted to 40 consecutive
voltammetric cycles between �0.4 V and 0.7 V at a scan rate of
10 mV s�1 at room temperature in 0.5 M NaCl aqueous solution. The
consecutive voltammograms show increasing currents. After
40 cycles stationary voltammetric responses are got: the consecu-
tive voltammograms overlap. Any previous structural memory
[40–43] from the electrogenerated polypyrrole films was thus
erased. Once the stationary response was attained the potential
limits can be changed getting stationary responses after only two
consecutive potential cycles.

Fig. 3a, b and c show the stationary voltammetric responses
obtained from PPy-HpPS/PPy-DBS, PPy-HpPS/tape and tape/PPy-
DBS, respectively, bilayer muscles between �1.0 V and 0.7 V at
10 mV s�1 in 0.5 M NaCl aqueous solution.

Fig. 3d, e and f shows the coulovoltammetric (Q/E) response
from a PPy-HpPS/PPy-DBS, PPy-HpPS/tape and tape/PPy-DBS
bilayer muscles got by integration of the voltammetric response
from Fig. 3a, b and c, respectively. Practically closed Q/E loops were
attained: anodic charges equal cathodic charges indicating that
only reversible film oxidation/reduction reactions are there
involved [44]. Any variation of the Q/E slope indicates a parallel
change on the reaction rate (r) [44–46]. The charge (Q) controls the
number (n) of exchanged ions:

dn ¼ dQ
zF

ð1Þ

where z is the valence of the ion and F is the Faraday constant. For
an empirical potential sweep rate n= (dE/dt) the PPy reaction rate
results:

r ¼ dn
dt

¼
dQ

�
zF

dE
�
n

¼ dQ
dE

n
zF

ð2Þ

where dQ/dE is the slope at any point on Figs. 3d, e and f [44].
Points 2, 4 and 5 correspond to inflexion points (slope changes)
that mean changes on the reaction rates. The maximum 1 and the
lying a constant anodic current density of 0.5 mA cm�2 for 7200 seconds through the
�C and (b) of PPy-HpPS by applying a constant anodic current density of 0.5 mA cm�2

 M HpPS and 0.20 M pyrrole aqueous solution at 0 �C.



Fig. 3. Stationary voltamnograms using a self-supported (a) PPy-HpPS/PPy-DBS film, (b) PPy-HpPS film and (c) PPy-DBS film from �1.0 V to 0.7 V, at 10 mV s�1 in 0.5 M NaCl
aqueous solution at room temperature. Coulovoltammetric responses obtained by integration of the voltammograms (d) from Fig. 3a, (e) from Fig. 3b and (f) from Fig. 3c.
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minimum 3 correspond to changes from the film reductions
(negative charge increments) to the film oxidations (positive
charge increments) and from film oxidations (positive charge
increments) to the film reductions (negative charge increments),
respectively. Point 6 indicates the cathodic potential limit.

The charge involved in the PPy-HpPS/PPy-DBS cycle (Fig. 3d) is
close to the sum of those charges involved in the tape/PPy-DBS and
PPy-HpPS/tape cycles (Fig. 3e and f). After clarification of the
reaction driven ionic exchanges between the two polypyrrole
blends and the electrolyte (Section 3.5) the structural changes
Fig. 4. Coulovoltammetric responses in NaCl aqueous solutions from a different cathodic
of 0.7 V every time using (a) the PPy-HpPS/PPy-DBS bilayer muscle (b) PPy-HpPS/tape 
driven by the reactions for the different potential ranges related to
different reaction rates will be identified in Section 3.6.

3.4. Influence of the Cathodic Potential Limit

Fig. 4a, b and c show stationary Q/E responses from the
PPy-HpPS/PPy-DBS, PPy-HpPS/tape and tape/PPy-DBS bilayer
muscles, respectively, after consecutive potential sweeps from a
different cathodic potential limit every time, ranging from �0.6 V
to �2.0 V (each loop minimum was taken as the charge zero origin)
 potential limit (ranging from �0.6 V to �2.0 V) up to the same anodic potential limit
bilayer muscle and (c) tape/PPy-DBS bilayer muscle.



M. Fuchiwaki et al. / Electrochimica Acta 195 (2016) 9–18 13
up to the same anodic potential limit of 0.7 V every time.
Coulovoltammetric responses from cathodic potential limits lower
than �1.0 V show a closed loop: the film oxidation charge equals
the film reduction charge [44].

For more cathodic potential limits every coulovoltammogram
shows two different parts. The closed loop on the right side
quantifies the charge (maximum to minimum range) consumed by
the reversible film oxidation/reduction in the full studied potential
range. For PPy-DBS (Fig. 4c) the redox charge of the closed loop
increases with the cathodic potential limit. The PPy-HpPS redox
charge increases with the cathodic potential limit until �1.5 V and
then decreases (Fig. 4b) for higher cathodic potential limits.

The open part on the left side defines a negative charge
increment (irreversible reduction charge) from the initial potential
to the final potential of the cycle. When the polypyrrole film was
generated in presence of small stable anions this irreversible
charge only starts at more cathodic potential limits than �3 V [46].
Thus, irreversible charges in Fig. 4 are attributed to the irreversible
evolution of hydrogen from the HDBS or from the HpPs
components of the polypyrrole blends [44,46]. On consecutive
cycles each consecutive coulovoltammetric response presents a
negative shift of the charge (charge creeping) [33] equal to this
irreversible charge.

3.5. Dynamo-voltammetric (angle/E) responses: reaction-driven ionic
exchanges

Each video-frame from the video recorded in parallel to the
potential sweeps gives the angular position of the muscle at the
concomitant potential as indicated in Fig. 1b. Fig. 5a, b and c show
the angular displacements (evolution of the angular position) of
the three studied bilayer muscles at each potential during the
potential cycle. Those are dynamo-voltammetric muscular
responses: evolution of the angular position with the potential.
Potentials at points (1), (10), (2), (3), (4) and (5) correlate those on
voltammetric (Fig. 3a–c) and coulovoltammetric (Fig. 3d–f)
responses. Pictures and schemas from Fig. 6a–c show the angular
position and the angular displacements (arrows), respectively, of
the three studied bilayer muscles between those points.

The angular displacement of the asymmetric bilayer is the
result of ionic exchanges in each of the two PPy blend films. Those
ionic exchanges can be clarified by electrochemo-dynamical
characterization of each pPy blend/tape bilayer muscle, keeping
the PPy blend film the same relative position that it has in the
asymmetric bilayer [37].
Fig. 5. Dynamo-voltammetric responses: evolution of the described angle as a function 

muscles: (a) PPy-HpPS/PPy-DBS, (b) PPy-HpPS/tape and (c) PPy-DBS/tape artificial mus
3.5.1. Dynamo-voltammetric responses from PPy-HpPS/tape bilayer
muscles

The PPy-HpPS/tape muscle shows (Figs. 5 b and 6 b) a bending
displacement of 14 degrees during the potential cycle and a
clockwise creeping dynamical effect (the initial position is not
recovered at the end of the cycle) of 1.5 degrees per cycle. Going
closer the dynamo-voltammetric response (Fig. 5b) shows a
clockwise bending movement of the bilayer from point (1) to point
(2) indicating that the PPy-HpPS shrinks by oxidation. According
with the basic electrochemical reactions from the different
families of conducting polymers the oxidation in this electrolyte
is initiated by expulsion of Na+ driven by the reaction:

PPy0
� �

pPS�ð Þn Naþð Þn H2Oð Þm
� �

gelA PPynþð Þ pPS�ð Þn þ n Naþð Þ
þ m H2Oð Þ þ n e�ð Þmetal ð3Þ

where PPy� represents the active sites on the polypyrrole chains
that will store positive charges after oxidation becoming PPyn+, n
being the number of removed electrons (e�) per chain and the
water molecules are exchanged to keep the osmotic pressure
balance forming a dense gel (indicated by subindex gel). The dense
gel shrinks during oxidation from point 1 to point 2 by expelling
balancing cations and solvent and swells during reduction from
point 4 to point 6 to lodge cations and solvent.

From point (2) until point (3) the anticlockwise bending
movement of the bilayer indicates that the PPy-HpPS swells during
oxidation by incorporation of anions. The driving reactions being:

PPy0HpPS
� �þ n Cl�ð Þ
þ m H2Oð ÞA PPynþHpPSð Þ Cl�ð Þn H2Oð Þm

� �
gel þ n e�ð Þmetal ð4Þ

where Cl� are the anions exchanged to keep the film electro-
neutrality. Reaction 4 should indicate that the HpPS acid remaining
inside the PPy film does not dissociates in this potential range for a
partially oxidized polypyrrole [37,39]. The gel swells by oxidation
(lodging anions and solvent) and shrinks by reduction (expelling
them). The HpPS remains trapped forcing the exchange of anions
from the electrolyte during oxidation reduction [37]. From point
(3), to point (4) the clockwise bending movement indicates that
the polymer reduces and shrinks by expulsion of Cl� (reaction
4 backwards).

As a partial conclusion the PPy-HpPS film shrinks/swells during
oxidation/reduction, respectively, in NaCl aqueous solution by
exchange of cations driven by reaction 3 at the more cathodic
potential range of the cycle. The film swells/shrinks by oxidation/
reduction, respectively, exchanging anions driven by reaction 4 at
the more anodic potential range of every cycle. The result of two
of the applied potential during a potential cycle from the different bilayers artificial
cles, during potential sweep at 10 mV s�1 in 0.5 M NaCl aqueous solution.



Fig. 6. Pictures and schemes of the different bilayers artificial muscles: (a) PPy-HpPS/PPy-DBS, (b) PPy-HpPS/tape and (c) PPy-DBS/tape artificial muscles, in 0.5 M NaCl
aqueous solution during voltammetric experiments between �1.0 and 0.7 V at 10 mV s�1 at room temperature. The points (1), (2), (3), (4) and (5) correlate with both, the
coulovoltammograms shown in Fig. 3 and the evolution of the described angles shown in Fig. 5.
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consecutive ionic exchanges during the potential cycle is two go
and back bending movements (Fig. 5b and schemas from 6 b) per
cycle.

3.5.2. Dynamo-voltammetric responses from tape/PPy-DBS bilayer
muscles

Responses from the tape/PPy-DBS muscle (Figs. 3 c, 5 c and 6 c)
show anticlockwise bending movement during oxidation. That
means that the PPy-DBS film shrinks by expulsion of cations.
During reduction the clockwise bending movement of the bilayer
indicates that the conducting polymer swells due to the entrance
of cations from the solution. The oxidation/reduction is driven by
the reaction [38]:

PPy0
� �

DBS�ð Þn Naþð Þn H2Oð Þm
� �

gelA PPynþð Þ DBS�ð Þn þ n Naþð Þ
þ m H2Oð Þ þ n e�ð Þmetal ð5Þ
The described bending amplitude per cycle was 35 degrees.
The dense gel shrinks during oxidation by expelling cations and

solvent and swells during reduction to lodge cations and solvent
(Fig. 5c).

3.5.3. Dynamo-voltammetric responses from PPy-HpPS/PPy-DBS
bilayer muscles

Using those ionic exchanges inside the concomitant potential
ranges for each conducting polymer/tape bilayer, angular move-
ments form the PPy-HpPS/PPy-DBS asymmetric bilayer muscle
(Fig. 5a) can now be clarified. A reduction charge flows through the
PPy-HpPS/PPy-DBS muscle under potential sweep from �1.0 V up
to the coulovoltammetric minimum (Fig. 3d), point (1). This charge
is not efficient to bend the muscle (Fig. 5a): that means that most of
the charge is consumed by irreversible hydrogen evolution from
the two films. From (1) to (2) a fast oxidation occurs (high slope
from Fig. 3d) promoting a clockwise bending movement (Fig. 6a,
pictures and schema 1–2). From point 1 to point 2 both constituent
layers oxidize (Fig. 3e and f) and shrink by expelling Na+ (reactions
3 and 5 forwards). The final results should be an antagonist
dynamic effect with both films contracting giving a shorter bilayer.
Nevertheless, the PPy-HpPS shrinks faster originating the observed
clockwise bending movement of 40 degrees. This is a surprising
positive result taking into account that the full amplitude
described by the PPy-HpPS/tape muscle was only 14 degrees
(Section 3.5.1). Here, in presence of antagonist effects, the
asymmetric bilayer describes larger amplitude.
Fig. 7. Coulovoltammetric response from (a) PPy-HpPS/PPy-DBS, (b) PPy-HpPS/tape and (
10 mV s�1 in 0.5 M NaCl aqueous solution, showing abrupt slope variations related to 

exchanged electrons and ions and F the Faraday constant) due to reaction change or str
changes indicates a potential characteristic of a structural/reaction change: E1, E10, E2, E3, E
charge of the concomitant structural process.
From (2) to (3) a slower oxidation rate (lower slope in Fig. 3b)
gives a large anticlockwise displacement (Figs. 5 a and 6 a from 2 to
3). In this potential range the PPy-HpPS film swells by oxidation,
following reaction 4 forwards with entrance of Cl� (Fig. 5c) and
pushes the bending bilayer. In parallel the PPy-DBS film shrinks by
oxidation (Figs. 5 c and 6 c) with expulsion of Na+, reaction
5 forwards, pulling the bilayer. The two layers cooperate (dynamic
cooperation) to get an anticlockwise amplitude of 69 degrees. This
amplitude is over five times the amplitude described by cycling the
PPy-HpPS/tape muscles (14 degrees) and almost two times the
angle described by the tape/PPy-DBS muscle (35 degrees) in the
full potential range.

From (3) to (4) a slow reduction occurs (Fig. 3d) while the
muscle bends clockwise (Figs. 5 a and 6 a 3–4). At the
coulovoltammetric maximum, point (3) Fig. 3d, both polymers
present their most oxidized state. During reduction up to point (4)
the PPy-HpPS film, as stated above, shrinks by expulsion of Cl�

pulling the muscle and the PPy-DBS film swells by entrance of Na+

pushing the muscle. Thus, volume variations originated by both
film reactions cooperate (cooperative dynamic effect) in that
potential range to bend the asymmetric bilayer (Fig. 6a, from 3 to
4). The bending amplitude was (Fig. 6a) 93 degrees. This is over
fifteen times the amplitude got by the PPy-HpPS/tape muscles
(6 degrees in the same potential range) and almost three times the
amplitude described by the tape/PPy-DBS muscle in the full
potential range (35 degrees).

Finally from (4) to (5) the film reduces (Fig. 3d) very fast and
then slowly from (5) to (6), while bending anticlockwise (Figs. 5 a
and 6 a 4–5). Both constituent films, the PPy-HpPS and the PPy-
HpPS, swell by entrance of Na+ originating an antagonist dynamic
effect. The PPy-HpPS swelling results most efficient pushing the
film 15 degrees anticlockwise (Fig. 6a).

The bending movement of the asymmetric bilayer is not fully
reversible under cycling presenting a clockwise creeping effect
(different between the muscle position at the beginning and at the
end of the cycle). Creeping effects were attributed to the
irreversible charge consumed at those potentials [33]. Antagonist
dynamic effects taking place here at those cathodic potentials
enhance the creeping effect. The creeping effect was clockwise
38 degrees: the response to consecutive voltammograms are
always angular displacements of 93 degrees but each dynamo-
voltammetric response sifts 38 degrees clockwise related to the
previous one (chemical creeping effect).
c) PPy-DBS/tape muscles when the potential was swept between �1.0 V, and 0.7 V at
abrupt changes of the reaction rates (dQ/dt = dn/dt, were n = Q/F is the number of
uctural transitions inside the film driven by the reactions. Each of the abrupt slope
4, E5; the charge difference between two characteristic potentials corresponds to the
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3.6. Reaction-driven structural changes

In Section 3.3 it was stated that coulovoltammetric slope
variations quantify, through Eq. (2), changes of the reaction rates.
Thus, Fig. 3d–f, are presented again, Fig. 7a, b and c, identifying
now the different slope changes during a potential cycle. Once
identified the reactions (reactions 1 and 2) driven the muscular
action the different reaction-driven structural processes linked to
each change of the reaction rate can be analyzed according with
previous results [37,46,47]. Starting and finishing in an oxidized
swollen film exchanging anions four reaction-driven structural
processes were identified from the closed Q/E loop: reduction-
shrinking, reduction-compaction, oxidation-relaxation and oxida-
tion-swelling [44]. Cation-driven reactions, PPy-DBS here, present
(Figs. 5 c and 7 c) six reaction-driven structural changes in one
loop: reduction-relaxation, reduction-swelling, reduction vacuolar
formation, oxidation-vacuolar relaxation, oxidation shrinking and
oxidation-compaction [46]. For the PPy-HpPS the ionic (Fig. 5b)
and structural (Fig. 7b) changes must be related to the consecutive
exchange of cations and anions: oxidation-shrinking with expul-
sion of Na+ from E10 to E2; oxidation-swelling with entrance of Cl�

from E2 to E3, reduction-shrinking with expulsion of Cl� from E3 to
E4, reduction-swelling with entrance of Na+ from E4 to E5,
reduction-lamellar formation going on the Na+ entrance from E5
through E6 until E1 and oxidation with vacuolar relaxation around
E10. Reaction-driven structural changes in the asymmetric bilayer
(Fig. 7a) are a result of the simultaneous structural changes in both
constituent films.

3.7. Coulo-dynamic (Q/angle) responses

Bilayer muscles based on CPs are claimed as Faradaic polymeric
motors: described angles follow a linear dependence of the
consumed charge [48–50]. This linearity is kept by both, CPs
exchanging cations or anions during its oxidation/reduction
[38,50]. The complex ionic exchanges here identified require
checking if the actuator still behaves as a Faradaic motor.

By combination of Figs. 3 and 5 the coulo-dynamic (charge-
angle) responses from the three-studied bilayer muscles, Fig. 8,
were attained. The coulo-dynamic behavior of the PPy-HpPS/PPy-
DBS muscle (Fig. 8a) is similar to that of the PPy-HpPS/tape muscle
(Fig. 8b) illustrating the preponderant electro-chemo-mechanical
contribution of the PPy-HpPS to the bending dynamics of the
asymmetric bilayer muscle. Both responses show two, in average,
linear oxidation/reduction sections each related to the prevalent
Fig. 8. Coulo-dynamic responses (bending angle described by the muscles versus consum
from the three studied artificial bilayer muscle, (a) PPy-HpPS/PPy-DBS, (b) PPy-HpPS/t
reversible exchange of anions or cations above described for the
PPy-HpPS layer: 1–2 (oxidation with Na+ expulsion) and 4–6
(reduction with Na+ entrance) and point 2–3 (oxidation with Cl�

entrance) and 3–4 (reduction with Cl� expulsion). Deviation from
the linearity and dynamic hysteresis between the anodic and
cathodic displacement for the same angle have been attributed to a
dynamic hysteresis on the entrance/exit of water molecules by
osmosis, a physical effect that always follow the faradaic exchange
of ions [34,51–53]. The coulo-dynamic behaviour of the tape/PPy-
DBS bilayer muscle in NaCl aqueous solution shows, Fig. 7c, a linear
dependence of the bending angle with the consumed charge,
corroborating the faradaic origin of the movement driven by
reaction 1: the number of electrons extracted from or injected to
the polymer chains controls either the number of exchanged
cations (Eq. (3)), the film volume variation, the stress gradient at
the layer/layer interface and the bending angle. The PPy-DBS film
shrinks by oxidation due to the expulsion of Na+ towards the
solution and swells by reduction due to the entrance of Na+. The
flattened 8 shape with some dynamic hysteresis (different angle
for the same charge) between the anodic and the cathodic
branches has been attributed to osmotic (hysteresis) and electro-
osmotic (double loop formation) exchange of water following the
ionic concentration variation [39].

Creeping effects (angular displacement from the beginning to
the end point of each potential cycle Fig. 7b and c) has been related
to some irreversible hydrogen evolution overlapping ionic
exchanges at the most cathodic potentials [33].

Form the comparative characterization of the three bilayers we
can summarize that the oxidation of the PPy-HpPS/PPy-DBS
asymmetric bilayer muscle is a result of the ionic exchanges driven
by the electrochemical reactions in the two studied polypyrrole
blends.

Fig. 7a shows a large chemical creeping effect (difference
between the muscle position at the beginning and at the end of the
potential cycle) of the asymmetric bilayer when compared with
the low creeping effect of those bilayers including a tape (Fig. 7b
and c). The presence of antagonistic dynamic effects in the
asymmetric bilayer muscle amplifies the creeping effect related to
those presented by each of the polypyrrole/tape bilayer muscles.

The bending asymmetric bilayer gives, as expected, cooperative
(synergic) dynamic effects when the electrochemical reaction
promotes reverse ionic exchanges and reverse volume variations
(swelling/shrinking or shrinking/swelling) in the two constituent
films. This cooperation results in a high actuation efficiency: the
angle described per unit of consumed charge (slopes from the Q/D
ed charges) during voltammetric experiments between �1.0 and 0.7 V at 10 mV s�1

ape and (c) PPy-DBS/tape, in NaCl aqueous solution.
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response) is higher (up to 15 fold) those described under parallel
electrochemical control by each of the two CP/tape bilayer
muscles.

When the bilayer reaction (oxidation or reduction) drives
volume variations of the two films in the same direction
(swelling/swelling or shrinking/shrinking) due to parallel entrance
or expulsion of ions in both layers originate antagonist forces at the
interface: the bending direction and the bending amplitude is
dominated by the most efficient layer, the CP layer having the most
efficient volume variation per unit of charge, the PPy-HpPS here.
The presence of antagonist effect amplifies creeping effects of the
constitutive layers that could be used as a tool for the quantifica-
tion of the relative. Antagonist dynamic effects complicate the
control of the muscle movement for robotic applications.

Asymmetric bilayer muscles while working under cooperative
effects are linear faradaic muscle: the large described angle is a
linear function of the consumed charge getting an excellent control
of the muscle movement and position.

4. Conclusions

Here we have presented a comparative study of the coulo-
voltammetric (Q/E), dynamo-voltammetric (angle/E) and coulo-
dynamic (Q/angle) behavior of the (PPy-HpPS/PPy-DBS) asymmet-
ric bilayer muscle and the two PPy-HpPS/tape and tape/PPy-DBS
bilayer muscles in NaCl aqueous solution.

The electrochemical reactions of the PPy-HpPS film and their
induced ionic exchanges control the bending behavior of the
asymmetric bilayer muscle.

When the ionic exchanges driven by the reaction (oxidation or
reduction) are opposed in each of the constituent layers (anion
entrance/cation exit, or cation entrance/anion exit) the asymmet-
ric bilayer originates cooperative dynamic actuation of the
constituent layers (swelling/shrinking, or shrinking/swelling)
and the amplitude of the described angular movement is greater
(synergic dynamical effect) than any of those described by the
PPy-HpPS/tape or the tape/PPy-DBS bilayer muscles in the same
electrolyte.

When the reaction-driven exchange of ions gives parallel
volume variations in the two constitutive layers (swelling/swelling
or shrinking/shrinking) originates antagonist dynamic actuation of
the two layers. The layer having the most efficient volume change
per unit of charge controls the bending movement of the
asymmetric bilayer: PPy-HpPS here. The antagonist actuation
originates narrower angles described per unit of consumed charge
(Q/angle slope) and improves creeping effects.

For the development of efficient asymmetric bilayer muscles it
must be avoided the presence of antagonist effect and that of
irreversible reactions consuming charge without generation of film
volume changes, as hydrogen evolution from the acid organic
components at high cathodic potentials or proton’s expelling at
high anodic potentials.
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