-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Elsevier - Publisher Connector

Available at
www.ComputerScienceWeb.com Information
POWERED BY SCIENCE DIRECT?® and R
ACADEMIC Computation
PRESS Information and Computation 186 (2003) 78-89

www.elsevier.com/locate/ic

A lower bound for integer multiplication on randomized ordered
read-once branching programs

Farid Ablaye?* and Marek KarpinskKi

a8\Vax-Planck Institute for Mathematics, Bonn, Germjany
bDepartment of Computer Science, University of Bonn, Germany

Received 18 February 1998; revised 14 February 2002

Abstract

We prove an exponential lower bound® 19" on the size of anyandomizecbrdered read-once branching
program computingnteger multiplication Our proof depends on proving a new lower bound on Yao’s random-
ized one-way communication complexity of certain Boolean functions. It generalizes to some other models of
randomized branching programs. In contrast, we provetésting integer multiplicationcontrary even to a non-
deterministic situation, can be computedrapdomizedrdered read-once branching program in polynomial size.

It is also known that computing the latter problem with deterministic read-once branching programs is as hard as
factoring integers.
© 2003 Elsevier Science (USA). All rights reserved.

Keywords: Deterministic and randomized branching programs; OBDD; Complexity; Lower bounds; Integer multiplication;
Randomized algorithms

1. Preliminaries

Oblivious(or ordered read-once branching programs become an important tool in the field of dig-
ital design and verification (see, for example, [7,17]). They are also known under the name “OBDDs”

“Research partially supported by International Computer Science Institute, Berkeley, by DFG Grant KA 673/4-1 and by
ESPRIT BR Grants 7097, and EC-US 030, and by the Max-Planck Research Prize.

* Corresponding author. Present address: Rheinische Friedrich-Wilhelms-Universitat Bonn, Institut fur Informatik, Rémer-
straye 164, Bonn DE-53117, Germany. Fax: +49-228-734440.

E-mail addressesablayev@ksu.ru (F. Ablayev), marek@cs.uni-bonn.de (M. Karpinski).

Lvisiting from University of Kazan.

0890-5401/$ - see front matter © 2003 Elsevier Science (USA). All rights reserved.
doi:10.1016/S0890-5401(03)00118-4

https://core.ac.uk/display/82445954?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

F. Ablayev, M. Karpinski / Information and Computation 186 (2003) 78-89 79

(ordered binary decision diagrams). There are some important functions which are computdtianaally
for the OBDDs. One of such functions is the integer multiplication [6]. The other function is testing mul-

tiplication for which there is an exponential lower bourf¥’2® known even for the nondeterministic
OBDDs [10]. An interesting open problem remained whether randomization can help in the computation
of these functions by the OBDDs. In this paper we show, for the first time, that the method of [3] yields
a polynomial size (©:°log* n)) bound for the latter function on randomized OBDDs. Interestingly, it

is known that computing that function by the deterministic read-once branching programs is as hard as
the integer factoring [13,17]. Further, we prove an exponential lower botftd%" on the size of any
randomized OBDD computing thieteger multiplication

During the last decade there were several attempts to find appropriate generalizations of a OBDD
model for hardware verification, strong enough to compute efficiently integer multiplication. But again,
the results showed that the integer multiplication remained hard also for these models [9,13].

In [3], a randomized model of a branching program was introduced. The usefulness of that model
was highlighted by the fact that there are many interesting functions which are hard for deterministic
OBDDs but are easy for randomized OBDDs. The first such a function was discovered in [3].
Among these functions is also @dique-only functionwhich is hard even for more general model
of nondeterministic syntactic reddtimes branching programs [4] (see also [18] for more ex-
amples).

It was proved in [2] that the randomized and nondeterministic models of OBDD are incompara-
ble. There was still a hope (note that the multiplication is hard for nondeterministic OBDDs [9]) that
randomized OBDDs can compute the integer multiplication in polynomial size. Our results show that
randomized OBDDs can test integer multiplication in polynomial size but the integer multiplication
itself requires exponential size.

Up to now it was not clear what is harder to multiply or to test the multiplication (see [14] for more
information). It is known thaDMULT (testing multiplication) is hard for thgyntactic nondeterministic
read-k-timesranching programs [10]. Note also tHiEMULT function isAC° equivalent taVIULT [8].

Our result answers thus to the problem raised in [17] about succinct representations of the functions
DMULT andMULT.

2. Basic definitions and results

We recall now some basic definitions (cf. [15,18]).

A deterministicbranching progranP for computing a Boolean functiog : {0, 1}* — {0, 1} is a
directed acyclic multi-graph with a distinguished source nodad a distinguished sink node The
outdegree of each nonsink node is exactly 2 and the two outgoing edges are labeled Byand
x; = 1 for the variabler; associated with this node. We call such a node;amode. The label¥; = §”
indicates that only the inputs satisfying= § may follow that edge in the computation. The branching
programP computes a functiog in an obvious way: for eact € {0, 1}" we let f (o) = 1 iff thereis a
directeds -+ path starting in the soureeand leading to the (accepting) nodsuch that all labels; = o;
along this path are consistent with= o102 - - - 0.

We define aandomizeddranching program [3] as a branching program having in addition specially
designatedandom(“coin-toss”) inputs. The values of these random inputs are chosen from a uniform
distribution, and an output of a randomized branching program become a random variable.

80 F. Ablayev, M. Karpinski / Information and Computation 186 (2003) 78-89

We say that a randomized branching programb)-computes a Boolean functignif it outputs 1
with probability at most: for input o such thatg(o) = 0 and outputs 1 with probability at leastfor
inputso such thatg(o) = 1. For /2 < p < 1 we write shortly ‘p-computes” instead of(1 — p, p)-
computes.” A randomized branching program computes a fungtiofith a one-sided-error if g is
(e, 1)-computed. We define the size 81, size(P) as the number of itsternal nodes (we refer to it
sometimes as the complexity &1).

A read-once branching program is a branching program in which every variable is tested at most
once in every path. A-ordered read-once branching program is a read-once branching program which
respects an orderingof the variables, i.e., if an edge leads frommamode to anx;-node, the condition
(i) < t(j) has to be fulfilled. An OBDD (alternatively, ordered read-once branching program) is a
t-ordered read-once branching program respecting some ordeoifgariables.

In the rest of this section we present main results of the paper. We start with defining a Boolean deci-
sion functionthe testing integer multiplication functidor alternativelydecision problem of recognizing
the graph of multiplicationDMULT as follows. DMULT : {0, 1}*" — {0, 1} andDMULT(X, Y, Z) = 1
iff XY = Z. HereX, Y, andZ are binary representations of integer numbg¥$,= |Y| = n, |Z| = 2n.

Theorem 1. Function DMULT can be computed by a randomized OBDD with a one-sgi@dgeerror
of size

6
n g N
(55 4)

We define now ainteger multiplication function MULBs follows. The functioMULT : {0, 1}%" —
{0, 1} defines theth bit, 0 < k < 2n — 1 in the product of twa-bit integers. That iSMULT (X, Y) =
2k, whereX = x,,_1---x0, Y = y,—1---yo, andZ = z2,_1 - - - zo. Now denote byMULT the function
MULT, which computes thmiddlebit in the productky. It is known that the middle bit is the “hardest”
bit (see, for example [13]).

Forp e (1/2,1),k € {0, ..., 2n — 1}, and a permutation of {1, ..., 2n} let P, (k, r) be a random-
ized OBDD with an ordering that p-computesMULT .

Theorem 2. Givenp € (1/2, 1). For everyr there exists & such that
size(Py(k, 7)) > 2"~ HWI/E,
whereH (p) = —plogp — (1 — p)log(1 — p) is the Shannon entropy

Theorem 3. Let for p € (1/2, 1), the function MULTX, Y) be p-computed by a randomized OBDD
P.Then

size(P) > 2%/ logn)

The above theorems state that multiplication is in fact hard for randomized OBDDs. The first theorem
is “weaker” than the second one. However the proof of the first theorem is shorter and more direct. It is
based on a proof of a lower bound for the polynomial projection function (subfunction) [5]. The proof
of the Theorem 3 itself is based on a lower bound for another polynomial projectibtbfl [6,9]
using randomized binary search communication game. Proofs of the theorems are presented in the next
section.

F. Ablayev, M. Karpinski / Information and Computation 186 (2003) 78—89 81
3. Randomized OBDDsfor testing multiplication

In this section we present a proof of Theorem 1. d.et) be some function ir0 (n) such that/(n) >
4n.

Lemmal. Lete(n) < 4n/d(n). Then DMULT can be computed by a randomized OBDD with one-sided
e(n)-error of size

O(nd(n)°log* d(n)).

Proof. The following randomized (fingerprinting) algorithm tests the multiplication. Uniformly at
random select a prime numbgrfrom the setQ) = {p1, ..., pam)} Of the firstd(n) primes. Then
deterministically compute = X mod p, b = Y mod p, multiply ab, then compute = Z mod p, and
verify whetherab = c. If ab = ¢ thenacceptelsereject Chinese reminder theorem provides the cor-
rectness of such a computation and the fingerprint arguments of [3] provide a correct result for testing
XY = Z mod p by randomized OBDDs with high probability. All these manipulations can be done by
a polynomial size randomized OBDP constructed below.

Phase 1. (Randomized).randomly selects a prime numhefrom the seQQ) ={p1, p2. - - -, Pam)}
of the firstd (n) prime numbers.

P uses = [logd(n)] random bits for selecting a prime numberP reads random bits in the order
&1,...,&. We viewé = &1...& as a binary representation of an integerselectsith prime number
pi € Qd(n) iff E=i mOdd(l’l).

Phase 2. (DeterministicAlong its computation pat® computes: = X mod p, by reading consec-
utive bits fromX. P storesa in an internal node (state). TheR,computes = Y mod p and stores the
productab. At last P countsc = Z mod p and verify whetheud = c. If ab = ¢ then itacceptselse it
rejects

So, if XY = Z, then P with probability 1 outputs the correct answerXt # Z, then it can happen
thatXY = Z (mod p) for somep € Qu(»). In these caseB makes an error.

ForXY # Z we havel XY — Z| < 22" < p1--- po,, Wherepy, . .., p», are the first 2 prime num-
bers. This means that in the case whéh # Z, the probabilitys(n) of the error of P on the input
X, Y, Z is less than or equal toi4d (n) (less than or equal tan2d (n) if ¢ is a power of 2).

Forp € Qu) denote bys, a deterministic subprogram &f that carries out the deterministic part of
computations of thphase 2with the primep.

The size ofP is bounded by

2+l 14 Z size(Sp).
PEQdn)

S, is a deterministic OBDD that realizes the phase 2 of the algorithm alsgveeads variables in
the orderX, Y, Z and therefore has the lengthh.4For the realization of the procedure described in
the phase 2it is sufficient to store in the internal nodes (in the internal stateS,pffour numbers:

X mod p, Y mod p, XY mod p, andZ mod p. Theith prime is of order @ logi). Therefore we have

size(S,) = O(np*) = O(n(d(n) logd(n))*). O

Our Lemma entails now Theorem 1.

82 F. Ablayev, M. Karpinski / Information and Computation 186 (2003) 78-89
4. Lower bounds

For proving lower bounds we use Yao’s standard randomized communication complexity model
[19,20] (see also [11,12]) for Boolean functions.

We recall basic definitions of a one-way communication complexity model. Consider a Boolean func-
tiong : {0, 1}* — {0, 1}. Letw = (L, R) be a patrtition of a set of variables ginto two parts. The first
argument,L, of g is known to the first playef, and the second argumem, is known to the second
playerlI. Playerl starts computation on its part of an input. Playéron obtaining a message (binary
string) from I and its part of an input produces a result. The number of bits in the message is the
communication complexity of a specific communication protocol. The communication complexity of
the functiong is the communication complexity of the best protocol gor

Lete € (0,1/2), p =1/2+ ¢. A randomized communication protoc® p-computes a functiog
for a partitionst of inputs if for every inputo, y) of g it holds thatPr(® (o, y) = g(o, ¥)) > p. Note
that a notion of gp-computation corresponds to a computation Wirror foré = 1 — p, cf., e.g. [12].
Denote byPC7 (g) a randomized one-way-communication complexity of according to the partition
7 of inputs.

The following lemma is proved in [2]. It gives a connection between a size of a OBDD and its one-way
communication complexity.

Lemma2 (cf. [2]). Lete € (0,1/2), andp = 1/2 4 ¢. Let a randomized OBDIP p-computeg. Let
7 = (L, R) be a partition of inputs between players wittand R defined according to an orderingof
inputs of P. That is P can read variables fronk only after reading variables fromh and cannot read
variables fromL after starting reading variables frorR. Then

size(P) > 2P -1

Denote byC M™ a communication matrix for Boolean functignfor a partitionst of inputs ofg. In
this paper we consider only functions with the property that all rows of their communication matrixes
are different.

Choose a sef C R such that for an arbitrary two settingso’ of variables fromL there exists a set-
ting y of variables fromZ such tha (o, y) # g(o’, y). The set is called the control set for the matrix
CM™. Denote byrs(CM™) the minimum size of a control set for the matt®™ andnrow(CM™) the
number of different rows of the matrixyM™ .

For p =1/2+ ¢, define a probabilistic communication characterigtte? (¢) of g (see [1]) as
follows:

b
| ts(CM™) _H(p).
ognrow(CM™)
where H(p) = —plogp — (1 — p)log(1 — p). The following theorem [1] states that the randomized
one-way communication complexity cannot be too “small” for a function with a “ladgga setand a
“small” control set

pecy (h) =

Theorem 4 (cf. [1]). Lete € [0,1/2], andp = 1/2+ ¢. Letw = (L, R) be a partition of a set of inputs
of g. Then

PC(g) > DC™(g)(1— pecyy(g)) — 1,

F. Ablayev, M. Karpinski / Information and Computation 186 (2003) 78-89 83

whereDC” (g) is the deterministic one-way communication complexity ffr a partition sz of inputs

4.1. Proof of Theorem 2

Our proof proceeds as follows:
(i) we construct a polynomial projectiofft of MULT, and then
(i) we prove thatf* is hard for a randomized-ordered OBDD.

For an ordering of the variables o, (k, 7), there are two subsefs and R of equal sizd > n/2
such that:
(1) P,(k, v) reads all variables from before starting reading variables fraknand
(2) LcXandRCcYorL CYandR C X.

W.I.g. assume in the rest of the proof thatc X andR C Y. Thus,L = {x;;,...,x;} andR =
Vs o Vi

We will be interested now only in the inpugse {0, 1}%* such that: for the variables, all bits ino
except for a one bit oR are 0. Call such a® acontrol set. Variables froni. can take arbitrary values
from {0, 1}. For convenience also fix the remaining variables fr&iyl. to be 0. Call such ah adata
set.

For an integem, 1 < m < 2n, denote bym] a set of pair of bits of the data and control sets that are
transmitted to the:th bit of the produciX Y. Formally

[m] = {(x;,yj)) €L xR :i+ j=m).
Since|L x R| = I? > n?/4 there exists an integérsuch that
k]| =t > [?/(2n) = n/8. W

Now fix this integerk. Denote byLy C L (R C R) a subset oL (R) that consists of all variables
(v;) that “take part” in the sdt].

Consider a projectionf* : Ly x Ry — {0, 1} of MULT, for which all variables frontY U X)\ (L U
Ry) are fixed to 0. The communication matiéx™ of f* for a partitiont = (Ly, Ry) of inputs has
the following propertyCM7™ is 2 x t Boolean matrix and all rows af M™ are different. From that we
have thatpce? (f*) = H(p) andDC™ (f*) = logz. From the above we get that

size(Pp(k, 7)) > 2!A-H(p)

Using (1) and the inequality above we get the lower bound of the Theorem.
4.2. Proof of Theorem 3

The proof consists of 3 steps:
(i) we construct a polynomial projecticfU M of MULT (see [6,9]) forSU M a Boolean function that
computes the most significant bit of the sum of two integers,
(ii) using a randomized OBDIP for MULT (which turnes out to be a randomized OBDD iy M
with proper value assignments to the variables) construct a randomized one-way communication
protocol for computing the functioiV M, and

84 F. Ablayev, M. Karpinski / Information and Computation 186 (2003) 78-89

(i) finally, we prove a lower bound of the theorem, using the facts

e thatthe randomized one-way communication complexity gives a lower bound for the randomized

OBDD size and
e thatSU M is hard for randomized one-way communication computation.
For simplification of the technical details of the proof we assumerthstan even number. Letbe

an ordering of variables of a randomized OBDD Denote byX1, | X1| = n/2, (X2, |X2| = n/2) the
first half (the remaining part) of the sét of variables tested (in the ordej by P. Denote byU and
W the two subsets oKy and X2, respectively, such that: either all indices of the variables ftomare
smaller than the indices of the variables fré¥ or vice versa, all indices of the variables frdinare
smaller than the indices of the variables frém The following lemma shows that we can choose such
setsU, W to be large enough.

Lemma3. There exist set& and W such that
n/A<|Ul=|W|<n/2

Proof. Denote byn, andM1 the minimum and the maximum value of the indices of the variables from
X1. Denote bymo and M» the minimum and the maximum value of the indices of variables fkmif
My < mporMy; < mpthensetlU = X;, W = Xo, and we are done.

Now consider the remaining casg < M» andm» < M4. The following algorithm construc® and
W as needed.

Begin{procedureA}

Step 1PutZ; = {x,,} andZs = {xp,}.

Stepi(2<i <n/2). ForR C X denote byl (R) a set of indexes of variables from Letx,, € X1
and xy; € X». Call the pair of variablesx,,, x);) a (Z1, Z2)-good pair ifm = min{i € I1(X1\Z1)},
M =maxi € [(X2\Z2)} andm < M.

if there exists &Z1, Z»)-good pairthen addx,, to Z; and addx,, to Z» else stop.A.

End{procedureA}

PutZ] = X1\Z1 andZ, = X»\Z>. We clearly haveZ,| = |Z| and|Z}| = | Z}|. From the descrip-
tion of the procedure it follows that all indices of the variables froum; are smaller than the indices
of the variables fromZ, and all indices of the variables froi, are smaller than the indices of the
variables fromZ;. Leta = |Z4].

Ifa >n/4thenputU = Z3 andW = Zy elseputU = Zj andW = Z,. O

Now fix the setd/ andW satisfying Lemma 3. Without loss of generality we assume that all indices
of the variables irV are smaller than the indices of the variable$¥in

Lemmad4. There exist an integet, 1 <k <n,andsetsL CU, RC W suchthatL|=|R|=1>
n/16and(L, R) = {(x,-,xj) :x; € L, Xj € R, j =14k}

Proof. LetV =U x W. For an integek € {1, ..., n} define a sefk] = {(x;,x;) e V : j =i +k}.
Clearly we have thaV = U;_,[k] and [k] N [k'] = @ for k # k. Since|V| > n?/16 for somek
{1,...,n}, we have thai[k]| > n/16. O

F. Ablayev, M. Karpinski / Information and Computation 186 (2003) 78-89 85

Now fix the setsl. = {x;,_,,...,x;,} andR = {xj_,, ..., xj,} satisfying Lemma 4. View sequences
L andR as binary representation of numbers. Define now the Boolean funStidvi (L, R) as follows.
SUM(o,y) =1iff o +y > 2. Thatis, forc = o;_1,...00andy = y_1, ..., %0
SUM(01-1, ...00, Vi-1, .., y0) = 1iff Y\-b(0i +)2 > 2.

For a given Boolean functiotf (X, Y), a subseZ C X UY, and an assignment: (X UY)\Z —
{0, 1}, denote byf|, (X, Y) a subfunction off (X, Y) with the variables fron{X U Y)\ Z fixed accord-
ing to p.

The next lemma states a fact used also earlier in [9].

Lemmab5. There exists an assignmemnof variables fromX U Y)\(LUR) (p : (X UY)\(LUR) —

{0, 1}) such that(1) SUM(L, R) = MULT|,(X, Y), (2) for a partition = (L, R), a communication
matrix CM™ for SUM has the following structuréfor a suitable ordering of rows and columnsall

the elements on and above the second diagonabaand all the elements below the second diagonal
arel.

Proof. Denote byJ a set of indexes oR. Letmm = min{i € J} andM = maxi € J}. Define nowp as
follows: forx; € X\(L UR)

L)1 G ENDN\m < j < M),
pxj) = 0 otherwise

fory; ey

1 ifj=n—-1—M,

p(yj) =131 ifj=n—-1—(M—k),

0 otherwise

From the definition ofp it follows that SUM (L, R) = MULT|,(X, Y). The rows and columns of
CM™ are indexed by the integets € [0,2' — 1] and y € [0, 2/ — 1]. The (o, y) entry of CM™ is
SUM (o, y). We fix the ordering of rows and columns 6fM™ according to the increasing order of
their indexes. From this we have that all entrie<’af” on and above the diagonak j = 2/ — 1 are
equal to 0 and all entries below the diagonal are equal td1.

We assume in the remaining part of the proof that the variables €iom X)\ (L U R) have been
fixed as needed. SB is turned to a randomized OBDD thatcomputesSU M (L, R).

Below, usingP, we construct a randomized one-way communication protddol arbitrary Boolean
function g. Then we apply this communication protocol for a particular “pointer” functign(defined
below) with a high one-way randomized communication complexity.

Let g(L, Z) be an arbitrary Boolean function over a fixed ebf variables and a “new" séf =
{z1..., zx} of variables, thatisZ N (X UY) = @.

Lemma6. For g € (1/2,1) there exists a randomized one-way communication protdcdbr ¢-
computing functiorz (L, Z) such that

C(®) <a(logbl)(logsize(P)),
wherea, b are positive constants

86 F. Ablayev, M. Karpinski / Information and Computation 186 (2003) 78-89

Proof. We describe a randomized one-way communication protéciar g-computingg as follows.
Leto =01, ..., 07 be an input sequence of playeandw = w1, ..., wy—an input sequence of player
I11. Letr = alog(bl). We define constants, b in a proper way later. Playelsand use branching
programP for their computations as follows. runs branching prograrmf on its part of inputg times
and sends nodesvy, . .., v, which were reached b® during the computations to the playker. Player
11 uses the branching program and the communication matri M™ of SUM (L, R). The goal of
the player/I is to determine the input string of the player! with probability no less thag (more
precisely the playefI determines a string’ such that probability of the eveat = o is no less than
q). Then, the player I having its part of an input, outputs the correct regutt, ») with probability
no less thary. Let By := {0, 1}. In each step > 1, I1 reduces a seB;_, and in the last stepof the
procedure/ I gets a seB; = {o’}. Player/I after gettingus, ..., v;, determines’ by a randomized
binary search procedure as follows.

Step 1. Take a “middle” sequencg?! of the possible valuations of the subgebf the variables of
SUM(L, R). Thatis, a sequenge' determines the middle column of the communication matmi4™ .

Run P ony! ¢ times starting from nodesy, . .., v;, and take the majority resulk; € {accept,
reject}. Using A1, select a seB1 of potential inputs of player (the set of sequences that determine
the upp(lar half of rows o M™ or the set of sequences that determine the lower half of rows\F).
|B1| =2 /2.

Step 2. If A1 = accept then select a “middle” input sequeng@ betweeny! and1 = (1,...,1)
else—betweef = (0, ..., 0) andy?.

Run P on yz t times starting from nodesy, .. ., v, and take the majority resulto € {0, 1}. Using
Ay, select a seB, C Bj of potential inputs of playef. |B2| = |B1|/2.

After [steps the procedure stops by selecting aBgehat consists of the unique input sequente
Player/ I outputs the resul§(¢’, w). Clearly, we have

C(®) < rlogsize(P).

The following counting arguments show that proto®gl-computes.

For a stringy? € {0, 1)/ that determines a column of the mat€i¥/™ we denote byPr(y’) a proba-
bility of getting the correct result; in the step, 1 < i < [, by the binary search procedure above. Then
the probabilityPr (o’ = o) of correctly determining an input of playéris

Pr(c’ =0o)=Pr(yY)... Pr(y)).

The probability 1— Pr(y’) of getting errorA; is no more tharil/c(p))’ for some constant(p) > 1
depending on the probability of correct computation of. By choosing a constaatin a proper way
we get

1-Pr(y) <1/()).
From the above it follows that
Pr(c' =0)> 1A -1/0bD).

Using the fact that functioil — 1/x)*/? is monotonically increasing tdl/e)1/? for x — oo we get
for properly selected constaht> 1 and forl large enough

Pr(c'=0) >q. O

F. Ablayev, M. Karpinski / Information and Computation 186 (2003) 78—89 87

Below we apply the communication protosblfrom our Lemma 6 for computing a certain “pointer”
function with a high one-way randomized communication complexity. pret {0, 1} — {1, ..., n},
we will call such a functiorpr a pointer. A pointer Boolean functiory,; : {0, 1}" — {0, 1} is defined
as fp: (o) = oj, wherej = pt (o). The following pointer functiorg ,, was firstly considered in [16]. A
pointer pz is defined as followsj = w(}_;_; io;) wherew(s) is determined as follows. For an integer
n let p[n] be the smallest prime number greater than or equal tdhen, for every integers, let j
be the unique integer satisfying= s mod p[n] and 1< j < p[n]. Then,w(s) = j, if 1 < j < n, and
w(s) = 1 otherwise.

In its communication complexity variant, a pointer functigp (L, Z) is defined as follows: for a
valuationss = o1...,0; ando’ = 0741, ..., 0, of variablesg ,; (o, 6') = o for j = pt (o, o’).

We formulate now our last lemma.

Lemma7. Forarbitrary ¢ € (1/2,1), and arbitraryé > 0, and for every large enoughwe have
PCy(g) 2 (U —o)(A—(1+)H(q)),

whereH (q) = —glogg — (1 — ¢g) log(1 — ¢) is the Shannon entropy

See [2] for a proof of the above Lemma.

Finally from Lemmas 6, and 7, and using the fact hat6 </ < n/2, we get the lower bound for
thesize(P) stated in our theorem.

5. Generalization and concluding remarks

Note that our proof technique of the previous section has used the following essential fact. The set of
variables of a progran® can be partitioned (according to the orderingf P) into two partsL and R
(of approximately equal size) such that for any computation pathtbie following is true. If a variable
from R is tested, then no variable froi can be tested in the rest of this path. This means that the
statement of Theorem 3 remains also true for other natural models of branching programs we define
below.

We define dalanced partitiorof a setX as any partition of a sef into subsets(; andX» satisfying
[X1] = ©(X2]).

Definition 1. We call a branching programf a 7-balanced-weak-ordered branching program if it re-
spects a balanced partition of its variablesX into two partsX1 and X, such that if an edge leads
from anx;-node to anx;-node wherex; € X; andx; € X,,, then the condition < m has to be ful-
filled.

Call a branching progran® a balanced-weak-ordered if it is-balanced-weak-ordered for some
partitions of the set of variables af into two sets

Our Theorem 3 can be generalized as follows.

88 F. Ablayev, M. Karpinski / Information and Computation 186 (2003) 78-89

Theorem 5. Letforp € (1/2, 1) the function MULTX, Y) be p-computed by a randomized balanced-
weak-ordered branching prograi®. Then

size(P) > 2%n/1ogn)

Open problemsThere remains an interesting open problem on the lower bounds for the integer mul-

tiplication on randomized branching programs with (1) the limited number of inputs readings and (2)

without any condition on the ordering of variables. We conjecture that the corresponding lower bounds
are also exponential.

Acknowledgments

We would like to thank Anna Gal, Stephen Ponzio, Sasha Razborov, Thomas Thierauf, and Andy Yao
for helpful discussion on the subject of the paper.

References

[1] F. Ablayev, Lower bounds for one-way probabilistic communication complexity, in: Proceedings of the ICALP'93,
Lecture Notes in Computer Science, vol. 700, Springer, Berlin, 1993, pp. 241-252.

[2] F. Ablayev, Randomization and nondeterminism are incomparable for ordered read-once branching programs, in:
Proceedings of the ICALP’97, Lecture Notes in Computer Science, vol. 1256, Springer, Berlin, 1997, pp. 195-
202.

[3] F. Ablayev, M. Karpinski, On the power of randomized ordered branching programs, Research Report 85181-CS, Univer-
sity of Bonn, 1997.

[4] A. Borodin, A. Razborov, R. Smolensky, On lower bounds for régnes branching programs, Comput. Complex. 3

(1993) 1-18.
[5] R. Bryant, Graph-based algorithms for boolean function manipulation, IEEE Trans. Comput. C-35 (8) (1986) 677—
691.

[6] R. Bryant, On the complexity of VLSI implementations and graph representations of Boolean functions with applications
to integer multiplication, IEEE Trans. Comput. 40 (2) (1991) 205-213.
[7] R. Bryant, Symbolic boolean manipulation with ordered binary decision diagrams, ACM Comput. Surv. 24 (3) (1992)
293-318.
[8] R. Buss, The graph of multiplication is equivalent to counting, Inf. Process. Lett. 41 (1992) 199-201.
[9] J. Gergov, Time-space tradeoffs for integer multiplication on various types of input oblivious sequential machines, Inf.
Process. Lett. 51 (1994) 265-269.
[10] S. Jukna, The graph of integer multiplication is hard for réatnes networks, TR 95-10 Mathematik/Informatik Uni-
versity of Trier, 1995.
[11] J. Hromkovic, Communication Complexity and Parallel Computing, EATCS Series, Springer, Berlin, 1997.
[12] E. Kushilevitz, N. Nisan, Communication Complexity, Cambridge University Press, 1997.
[13] S. Ponzio, A lower bound for integer multiplication with read-once branching programs, in: Proceedings of the 27-th
STOC, 1995, pp. 130-139.
[14] S. Ponzio, Restricted branching programs and hardware verification, Technical Report, MIT/LCS-TR-633, MIT,
1995.
[15] A. Razborov, Lower bounds for deterministic and nondeterministic branching programs, in: Proceedings of the FCT'91,
Lecture Notes in Computer Science, vol. 529, Springer, Berlin, 1991, pp. 47-60.
[16] P. Savicky, S. Zak, A large lower bound for 1-branching programs, Electronic Colloquium on Computational Complexity,
Revision 01 of TR96-036 (1996). Available From http://www.eccc.uni-trier.de/ecccl/.

F. Ablayev, M. Karpinski / Information and Computation 186 (2003) 78-89 89

[17] 1. Wegener, Efficient data structure for Boolean functions, Discrete Math. 136 (1994) 347-372.

[18] I. Wegener, Branching programs and binary decision diagrams. Theory and applications, SIAM Monographs on Discrete
Mathematics and Applications, 2000.

[19] A.C. Yao, Some complexity questions related to distributive computing, in: Proceedings of the 11th Annual ACM Sym-
posium on the Theory of Computing 1979, pp. 209-213.

[20] A.C. Yao, Lower bounds by probabilistic arguments, in: Proceedings of the 27th Annual IEEE Symposium on Foundations
of Computer Science, 1983, pp. 420-428.

Further reading

[1] F. Ablayev, M. Karpinski, On the power of randomized branching programs, in: Proceedings of the ICALP’96, Lecture
Notes in Computer Science, vol. 1099, Springer, Berlin, 1996, pp. 348-356.

