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Abstract

We prove an exponential lower bound 2�(n/ logn) on the size of anyrandomizedordered read-once branching
program computinginteger multiplication. Our proof depends on proving a new lower bound on Yao’s random-
ized one-way communication complexity of certain Boolean functions. It generalizes to some other models of
randomized branching programs. In contrast, we prove thattesting integer multiplication, contrary even to a non-
deterministic situation, can be computed byrandomizedordered read-once branching program in polynomial size.
It is also known that computing the latter problem with deterministic read-once branching programs is as hard as
factoring integers.
© 2003 Elsevier Science (USA). All rights reserved.
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1. Preliminaries

Oblivious(or ordered) read-once branching programs become an important tool in the field of dig-
ital design and verification (see, for example, [7,17]). They are also known under the name “OBDDs”
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(ordered binary decision diagrams). There are some important functions which are computationallyhard
for the OBDDs. One of such functions is the integer multiplication [6]. The other function is testing mul-
tiplication for which there is an exponential lower bound 2�(n1/4) known even for the nondeterministic
OBDDs [10]. An interesting open problem remained whether randomization can help in the computation
of these functions by the OBDDs. In this paper we show, for the first time, that the method of [3] yields
a polynomial size (O(n6 log4 n)) bound for the latter function on randomized OBDDs. Interestingly, it
is known that computing that function by the deterministic read-once branching programs is as hard as
the integer factoring [13,17]. Further, we prove an exponential lower bound 2�(n/ logn) on the size of any
randomized OBDD computing theinteger multiplication.

During the last decade there were several attempts to find appropriate generalizations of a OBDD
model for hardware verification, strong enough to compute efficiently integer multiplication. But again,
the results showed that the integer multiplication remained hard also for these models [9,13].

In [3], a randomized model of a branching program was introduced. The usefulness of that model
was highlighted by the fact that there are many interesting functions which are hard for deterministic
OBDDs but are easy for randomized OBDDs. The first such a function was discovered in [3].
Among these functions is also aclique-only functionwhich is hard even for more general model
of nondeterministic syntactic read-k-times branching programs [4] (see also [18] for more ex-
amples).

It was proved in [2] that the randomized and nondeterministic models of OBDD are incompara-
ble. There was still a hope (note that the multiplication is hard for nondeterministic OBDDs [9]) that
randomized OBDDs can compute the integer multiplication in polynomial size. Our results show that
randomized OBDDs can test integer multiplication in polynomial size but the integer multiplication
itself requires exponential size.

Up to now it was not clear what is harder to multiply or to test the multiplication (see [14] for more
information). It is known thatDMULT (testing multiplication) is hard for thesyntactic nondeterministic
read-k-timesbranching programs [10]. Note also thatDMULT function isAC0 equivalent toMULT [8].
Our result answers thus to the problem raised in [17] about succinct representations of the functions
DMULT andMULT.

2. Basic definitions and results

We recall now some basic definitions (cf. [15,18]).
A deterministicbranching programP for computing a Boolean functiong : {0, 1}n → {0, 1} is a

directed acyclic multi-graph with a distinguished source nodes and a distinguished sink nodet . The
outdegree of each nonsink node is exactly 2 and the two outgoing edges are labeled byxi = 0 and
xi = 1 for the variablexi associated with this node. We call such a node anxi-node. The label “xi = δ”
indicates that only the inputs satisfyingxi = δ may follow that edge in the computation. The branching
programP computes a functiong in an obvious way: for eachσ ∈ {0, 1}n we letf (σ ) = 1 iff there is a
directeds–t path starting in the sources and leading to the (accepting) nodet such that all labelsxi = σi

along this path are consistent withσ = σ1σ2 · · · σn.
We define arandomizedbranching program [3] as a branching program having in addition specially

designatedrandom(“coin-toss”) inputs. The values of these random inputs are chosen from a uniform
distribution, and an output of a randomized branching program become a random variable.
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We say that a randomized branching program(a, b)-computes a Boolean functiong if it outputs 1
with probability at mosta for input σ such thatg(σ ) = 0 and outputs 1 with probability at leastb for
inputsσ such thatg(σ ) = 1. For 1/2 < p � 1 we write shortly “p-computes” instead of “(1 − p, p)-
computes.” A randomized branching program computes a functiong with a one-sidedε-error if g is
(ε, 1)-computed. We define the size ofP , size(P ) as the number of itsinternal nodes (we refer to it
sometimes as the complexity ofP ).

A read-once branching program is a branching program in which every variable is tested at most
once in every path. Aτ -ordered read-once branching program is a read-once branching program which
respects an orderingτ of the variables, i.e., if an edge leads from anxi-node to anxj -node, the condition
τ(i) < τ(j) has to be fulfilled. An OBDD (alternatively, ordered read-once branching program) is a
τ -ordered read-once branching program respecting some orderingτ of variables.

In the rest of this section we present main results of the paper. We start with defining a Boolean deci-
sion function:the testing integer multiplication function(or alternatively,decision problem of recognizing
the graph of multiplication) DMULT as follows.DMULT : {0, 1}4n → {0, 1} andDMULT(X, Y, Z) = 1
iff XY = Z. HereX, Y , andZ are binary representations of integer numbers,|X| = |Y | = n, |Z| = 2n.

Theorem 1. Function DMULT can be computed by a randomized OBDD with a one-sidedε(n)-error
of size

O

(
n6

ε5(n)
log4 n

ε(n)

)
.

We define now aninteger multiplication function MULTas follows. The functionMULTk : {0, 1}2n →
{0, 1} defines thekth bit, 0� k � 2n − 1 in the product of twon-bit integers. That is,MULTk(X, Y ) =
zk, whereX = xn−1 · · · x0, Y = yn−1 · · · y0, andZ = z2n−1 · · · z0. Now denote byMULT the function
MULTn which computes themiddlebit in the productxy. It is known that the middle bit is the “hardest”
bit (see, for example [13]).

Forp ∈ (1/2, 1), k ∈ {0, . . . , 2n − 1}, and a permutationτ of {1, . . . , 2n} let Pp(k, τ ) be a random-
ized OBDD with an orderingτ thatp-computesMULTk.

Theorem 2. Givenp ∈ (1/2, 1). For everyτ there exists ak such that

size(Pp(k, τ )) � 2n(1−H(p))/8,

whereH(p) = −p logp − (1 − p) log(1 − p) is the Shannon entropy.

Theorem 3. Let, for p ∈ (1/2, 1), the function MULT(X, Y ) bep-computed by a randomized OBDD
P. Then

size(P ) � 2�(n/ logn).

The above theorems state that multiplication is in fact hard for randomized OBDDs. The first theorem
is “weaker” than the second one. However the proof of the first theorem is shorter and more direct. It is
based on a proof of a lower bound for the polynomial projection function (subfunction) [5]. The proof
of the Theorem 3 itself is based on a lower bound for another polynomial projection ofMULT [6,9]
using randomized binary search communication game. Proofs of the theorems are presented in the next
section.
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3. Randomized OBDDs for testing multiplication

In this section we present a proof of Theorem 1. Letd(n) be some function inO(n) such thatd(n) >

4n.

Lemma 1. Letε(n) < 4n/d(n). Then DMULT can be computed by a randomized OBDD with one-sided
ε(n)-error of size

O(nd(n)5 log4 d(n)).

Proof. The following randomized (fingerprinting) algorithm tests the multiplication. Uniformly at
random select a prime numberp from the setQd(n) = {p1, . . . , pd(n)} of the firstd(n) primes. Then
deterministically computea = X modp, b = Y modp, multiply ab, then computec = Z modp, and
verify whetherab = c. If ab = c thenacceptelsereject. Chinese reminder theorem provides the cor-
rectness of such a computation and the fingerprint arguments of [3] provide a correct result for testing
XY = Z modp by randomized OBDDs with high probability. All these manipulations can be done by
a polynomial size randomized OBDDP constructed below.

Phase 1. (Randomized).P randomly selects a prime numberp from the setQd(n) ={p1, p2, . . . , pd(n)}
of the firstd(n) prime numbers.

P usest = � logd(n)� random bits for selecting a prime numberp. P reads random bits in the order
ξ1, . . . , ξt . We viewξ = ξ1 . . . ξt as a binary representation of an integer.P selectsith prime number
pi ∈ Qd(n) iff ξ = i modd(n).

Phase 2. (Deterministic).Along its computation pathP computesa = X modp, by reading consec-
utive bits fromX. P storesa in an internal node (state). Then,P computesb = Y modp and stores the
productab. At lastP countsc = Z modp and verify whetherab = c. If ab = c then itacceptselse it
rejects.

So, if XY = Z, thenP with probability 1 outputs the correct answer. IfXY �= Z, then it can happen
thatXY = Z (mod p) for somep ∈ Qd(n). In these casesP makes an error.

For XY �= Z we have|XY − Z| � 22n < p1 · · ·p2n, wherep1, . . . , p2n are the first 2n prime num-
bers. This means that in the case whenXY �= Z, the probabilityε(n) of the error ofP on the input
X, Y, Z is less than or equal to 4n/d(n) (less than or equal to 2n/d(n) if t is a power of 2).

Forp ∈ Qd(n) denote bySp a deterministic subprogram ofP that carries out the deterministic part of
computations of thephase 2with the primep.

The size ofP is bounded by

2t+1 − 1 +
∑

p∈Qd(n)

size(Sp).

Sp is a deterministic OBDD that realizes the phase 2 of the algorithm above.Sp reads variables in
the orderX, Y, Z and therefore has the length 4n. For the realization of the procedure described in
the phase 2it is sufficient to store in the internal nodes (in the internal states ofSp) four numbers:
X modp, Y modp, XY modp, andZ modp. Theith prime is of order O(i log i). Therefore we have

size(Sp) = O(np4) = O(n(d(n) logd(n))4). �

Our Lemma entails now Theorem 1.
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4. Lower bounds

For proving lower bounds we use Yao’s standard randomized communication complexity model
[19,20] (see also [11,12]) for Boolean functions.

We recall basic definitions of a one-way communication complexity model. Consider a Boolean func-
tion g : {0, 1}n → {0, 1}. Letπ = (L, R) be a partition of a set of variables ofg into two parts. The first
argument,L, of g is known to the first playerI , and the second argument,R, is known to the second
playerII . PlayerI starts computation on its part of an input. PlayerII on obtaining a message (binary
string) from I and its part of an input produces a result. The number of bits in the message is the
communication complexity of a specific communication protocol. The communication complexity of
the functiong is the communication complexity of the best protocol forg.

Let ε ∈ (0, 1/2), p = 1/2 + ε. A randomized communication protocol� p-computes a functiong
for a partitionπ of inputs if for every input(σ, γ ) of g it holds thatPr(�(σ, γ ) = g(σ, γ )) � p. Note
that a notion of ap-computation corresponds to a computation withδ-error forδ = 1 − p, cf., e.g. [12].
Denote byPCπ

p (g) a randomized one-wayp-communication complexity ofg according to the partition
π of inputs.

The following lemma is proved in [2]. It gives a connection between a size of a OBDD and its one-way
communication complexity.

Lemma 2 (cf. [2]). Let ε ∈ (0, 1/2), andp = 1/2 + ε. Let a randomized OBDDP p-computeg. Let
π = (L, R) be a partition of inputs between players withL andR defined according to an orderingτ of
inputs ofP. That is, P can read variables fromR only after reading variables fromL and cannot read
variables fromL after starting reading variables fromR. Then

size(P ) � 2PCπ
p (g)−1.

Denote byCMπ a communication matrix for Boolean functiong for a partitionπ of inputs ofg. In
this paper we consider only functions with the property that all rows of their communication matrixes
are different.

Choose a setZ ⊆ R such that for an arbitrary two settingsσ, σ ′ of variables fromL there exists a set-
ting γ of variables fromZ such thatg(σ, γ ) �= g(σ ′, γ ). The setZ is called the control set for the matrix
CMπ . Denote byts(CMπ) the minimum size of a control set for the matrixCMπ andnrow(CMπ) the
number of different rows of the matrixCMπ .

For p = 1/2 + ε, define a probabilistic communication characteristicpccπ
p (g) of g (see [1]) as

follows:

pccπ
p (h) = ts(CMπ)

lognrow(CMπ)
H(p),

whereH(p) = −p logp − (1 − p) log(1 − p). The following theorem [1] states that the randomized
one-way communication complexity cannot be too “small” for a function with a “large”data setand a
“small” control set.

Theorem 4 (cf. [1]). Letε ∈ [0, 1/2], andp = 1/2 + ε. Letπ = (L, R) be a partition of a set of inputs
of g. Then

PCπ
p (g) � DCπ(g)(1 − pccπ

p (g)) − 1,
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whereDCπ(g) is the deterministic one-way communication complexity ofg for a partitionπ of inputs.

4.1. Proof of Theorem 2

Our proof proceeds as follows:
(i) we construct a polynomial projectionf k of MULTk and then

(ii) we prove thatf k is hard for a randomizedτ -ordered OBDD.
For an orderingτ of the variables ofPp(k, τ ), there are two subsetsL andR of equal sizel � n/2

such that:
(1) Pp(k, τ ) reads all variables fromL before starting reading variables fromR and
(2) L ⊂ X andR ⊂ Y or L ⊂ Y andR ⊂ X.

W.l.g. assume in the rest of the proof thatL ⊂ X and R ⊂ Y . Thus,L = {xi1, . . . , xil } and R =
{yj1, . . . , yjl

}.
We will be interested now only in the inputsσ ∈ {0, 1}2n such that: for the variablesY , all bits inσ

except for a one bit ofR are 0. Call such anR a control set. Variables fromL can take arbitrary values
from {0, 1}. For convenience also fix the remaining variables fromX\L to be 0. Call such anL a data
set.

For an integerm, 1 � m � 2n, denote by[m] a set of pair of bits of the data and control sets that are
transmitted to themth bit of the productXY . Formally

[m] = {(xi, yj ) ∈ L × R : i + j = m}.
Since|L × R| = l2 � n2/4 there exists an integerk such that

|[k]| = t � l2/(2n) = n/8. (1)

Now fix this integerk. Denote byLk ⊂ L (Rk ⊂ R) a subset ofL (R) that consists of all variablesxi

(yj ) that “take part” in the set[k].
Consider a projectionf k : Lk × Rk → {0, 1} of MULTk, for which all variables from(Y ∪ X)\(Lk ∪

Rk) are fixed to 0. The communication matrixCMπ of f k for a partitionπ = (Lk, Rk) of inputs has
the following property:CMπ is 2t × t Boolean matrix and all rows ofCMπ are different. From that we
have thatpccπ

p (f k) = H(p) andDCπ(f k) = log t . From the above we get that

size(Pp(k, τ )) � 2t (1−H(p)).

Using (1) and the inequality above we get the lower bound of the Theorem.

4.2. Proof of Theorem 3

The proof consists of 3 steps:
(i) we construct a polynomial projectionSUM of MULT (see [6,9]) forSUM a Boolean function that

computes the most significant bit of the sum of two integers,
(ii) using a randomized OBDDP for MULT (which turnes out to be a randomized OBDD forSUM

with proper value assignments to the variables) construct a randomized one-way communication
protocol for computing the functionSUM, and
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(iii) finally, we prove a lower bound of the theorem, using the facts
• that the randomized one-way communication complexity gives a lower bound for the randomized

OBDD size and
• thatSUM is hard for randomized one-way communication computation.

For simplification of the technical details of the proof we assume thatn is an even number. Letτ be
an ordering of variables of a randomized OBDDP . Denote byX1, |X1| = n/2, (X2, |X2| = n/2) the
first half (the remaining part) of the setX of variables tested (in the orderτ ) by P . Denote byU and
W the two subsets ofX1 andX2, respectively, such that: either all indices of the variables fromU are
smaller than the indices of the variables fromW , or vice versa, all indices of the variables fromW are
smaller than the indices of the variables fromU . The following lemma shows that we can choose such
setsU, W to be large enough.

Lemma 3. There exist setsU andW such that

n/4 � |U | = |W | � n/2.

Proof. Denote bym1 andM1 the minimum and the maximum value of the indices of the variables from
X1. Denote bym2 andM2 the minimum and the maximum value of the indices of variables fromX2. If
M1 < m2 or M2 < m1 then setU = X1, W = X2, and we are done.

Now consider the remaining casem1 < M2 andm2 < M1. The following algorithm constructsU and
W as needed.

Begin{procedureA}
Step 1: PutZ1 = {xm1} andZ2 = {xM2}.
Step i: (2 � i < n/2). ForR ⊆ X denote byI (R) a set of indexes of variables fromR. Let xm ∈ X1

and xM ∈ X2. Call the pair of variables(xm, xM) a (Z1, Z2)-good pair if m = min{i ∈ I (X1\Z1)},
M = max{i ∈ I (X2\Z2)} andm < M.

if there exists a(Z1, Z2)-good pairthen addxm to Z1 and addxM to Z2 else stopA.
End{procedureA}
PutZ′

1 = X1\Z1 andZ′
2 = X2\Z2. We clearly have|Z1| = |Z2| and|Z′

1| = |Z′
2|. From the descrip-

tion of the procedureA it follows that all indices of the variables fromZ1 are smaller than the indices
of the variables fromZ2 and all indices of the variables fromZ′

2 are smaller than the indices of the
variables fromZ′

1. Let a = |Z1|.
If a � n/4 then putU = Z1 andW = Z2 else putU = Z′

1 andW = Z′
2. �

Now fix the setsU andW satisfying Lemma 3. Without loss of generality we assume that all indices
of the variables inU are smaller than the indices of the variables inW .

Lemma 4. There exist an integerk, 1 � k � n, and setsL ⊆ U, R ⊆ W such that|L| = |R| = l �
n/16and(L, R) = {(xi, xj ) : xi ∈ L, xj ∈ R, j = i + k}.
Proof. Let V = U × W . For an integerk ∈ {1, . . . , n} define a set[k] = {(xi, xj ) ∈ V : j = i + k}.
Clearly we have thatV = ∪n

k=1[k] and [k] ∩ [k′] = ∅ for k /= k′. Since |V | � n2/16 for somek ∈
{1, . . . , n}, we have that|[k]| � n/16. �
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Now fix the setsL = {xil−1, . . . , xi0} andR = {xjl−1, . . . , xj0} satisfying Lemma 4. View sequences
L andR as binary representation of numbers. Define now the Boolean functionSUM(L, R) as follows.
SUM(σ, γ ) = 1 iff σ + γ � 2l . That is, forσ = σl−1, . . . σ0 andγ = γl−1, . . . , γ0

SUM(σl−1, . . . σ0, γl−1, . . . , γ0) = 1 iff
∑l−1

i=0(σi + γi)2i � 2l .
For a given Boolean functionf (X, Y ), a subsetZ ⊆ X ∪ Y , and an assignmentρ : (X ∪ Y )\Z →

{0, 1}, denote byf |ρ(X, Y ) a subfunction off (X, Y ) with the variables from(X ∪ Y )\Z fixed accord-
ing toρ.

The next lemma states a fact used also earlier in [9].

Lemma 5. There exists an assignmentρ of variables from(X ∪ Y )\(L ∪ R) (ρ : (X ∪ Y )\(L ∪ R) →
{0, 1}) such that(1) SUM(L, R) = MULT|ρ(X, Y ), (2) for a partition π = (L, R), a communication
matrix CMπ for SUM has the following structure(for a suitable ordering of rows and columns) : all
the elements on and above the second diagonal are0, and all the elements below the second diagonal
are1.

Proof. Denote byJ a set of indexes ofR. Letm = min{i ∈ J } andM = max{i ∈ J }. Define nowρ as
follows: for xj ∈ X\(L ∪ R)

ρ(xj ) :=
{

1 if(j �∈ J )
∧

(m < j < M),

0 otherwise,

for yj ∈ Y

ρ(yj ) :=



1 if j = n − 1 − M,

1 if j = n − 1 − (M − k),

0 otherwise.

From the definition ofρ it follows that SUM(L, R) = MULT|ρ(X, Y ). The rows and columns of
CMπ are indexed by the integersσ ∈ [0, 2l − 1] and γ ∈ [0, 2l − 1]. The (σ, γ ) entry of CMπ is
SUM(σ, γ ). We fix the ordering of rows and columns ofCMπ according to the increasing order of
their indexes. From this we have that all entries ofCMπ on and above the diagonali + j = 2l − 1 are
equal to 0 and all entries below the diagonal are equal to 1.�

We assume in the remaining part of the proof that the variables from(Y ∪ X)\(L ∪ R) have been
fixed as needed. SoP is turned to a randomized OBDD thatp-computesSUM(L, R).

Below, usingP , we construct a randomized one-way communication protocol� for arbitrary Boolean
functiong. Then we apply this communication protocol for a particular “pointer” functiongpt (defined
below) with a high one-way randomized communication complexity.

Let g(L, Z) be an arbitrary Boolean function over a fixed setL of variables and a “new" setZ =
{z1 . . . , zk} of variables, that is,Z ∩ (X ∪ Y ) = ∅.

Lemma 6. For q ∈ (1/2, 1) there exists a randomized one-way communication protocol� for q-
computing functiong(L, Z) such that

C(�) � a(logb l)(logsize(P )),

wherea, b are positive constants.
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Proof. We describe a randomized one-way communication protocol� for q-computingg as follows.
Let σ = σ1, . . . , σl be an input sequence of playerI andω = ω1, . . . , ωk—an input sequence of player
II . Let t = a log(bl). We define constantsa, b in a proper way later. PlayersI andII use branching
programP for their computations as follows.I runs branching programP on its part of inputst times
and sendst nodesv1, . . . , vt which were reached byP during the computations to the playerII . Player
II uses the branching programP and the communication matrixCMπ of SUM(L, R). The goal of
the playerII is to determine the input stringσ of the playerI with probability no less thanq (more
precisely the playerII determines a stringσ ′ such that probability of the eventσ ′ = σ is no less than
q). Then, the playerII having its part of an input, outputs the correct resultg(σ, ω) with probability
no less thanq. Let B0 := {0, 1}l. In each stepi � 1, II reduces a setBi−1 and in the last stepl of the
procedure,II gets a setBl = {σ ′}. PlayerII after gettingv1, . . . , vt , determinesσ ′ by a randomized
binary search procedure as follows.

Step 1. Take a “middle” sequenceγ 1 of the possible valuations of the subsetR of the variables of
SUM(L, R). That is, a sequenceγ 1 determines the middle column of the communication matrixCMπ .

Run P onγ 1 t times starting from nodesv1, . . . , vt , and take the majority result�1 ∈ {accept,

reject}. Using�1, select a setB1 of potential inputs of playerI (the set of sequences that determine
the upper half of rows ofCMπ or the set of sequences that determine the lower half of rows ofCMπ ).
|B1| = 2l/2.

Step 2. If �1 = accept then select a “middle” input sequenceγ 2 betweenγ 1 and1 = (1, . . . , 1)

else—between0 = (0, . . . , 0) andγ 1.
RunP on γ 2 t times starting from nodesv1, . . . , vt and take the majority result�2 ∈ {0, 1}. Using

�2, select a setB2 ⊂ B1 of potential inputs of playerI . |B2| = |B1|/2.
After l steps the procedure stops by selecting a setBl that consists of the unique input sequenceσ ′.

PlayerII outputs the resultg(σ ′, ω). Clearly, we have

C(�) � t logsize(P ).

The following counting arguments show that protocol�q-computesg.
For a stringγ i ∈ {0, 1}l that determines a column of the matrixCMπ we denote byPr(γ i) a proba-

bility of getting the correct result�i in the stepi, 1 � i � l, by the binary search procedure above. Then
the probabilityPr(σ ′ = σ) of correctly determining an input of playerI is

Pr(σ ′ = σ) = Pr(γ 1) . . . P r(γ l).

The probability 1− Pr(γ i) of getting error�i is no more than(1/c(p))t for some constantc(p) > 1
depending on the probabilityp of correct computation ofP . By choosing a constanta in a proper way
we get

1 − Pr(γ ) � 1/(b l).

From the above it follows that

Pr(σ ′ = σ) � (1 − 1/(b l))l.

Using the fact that function(1 − 1/x)x/b is monotonically increasing to(1/e)1/b for x → ∞ we get
for properly selected constantb > 1 and forl large enough

Pr(σ ′ = σ) � q. �
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Below we apply the communication protocol� from our Lemma 6 for computing a certain “pointer”
function with a high one-way randomized communication complexity. Letpt : {0, 1}n → {1, . . . , n},
we will call such a functionpt a pointer. A pointer Boolean functionfpt : {0, 1}n → {0, 1} is defined
asfpt (σ ) = σj , wherej = pt(σ ). The following pointer functiongpt was firstly considered in [16]. A
pointerpt is defined as follows:j = ω(

∑n
i=1 iσi) whereω(s) is determined as follows. For an integer

n let p[n] be the smallest prime number greater than or equal ton. Then, for every integers, let j

be the unique integer satisfyingj = s modp[n] and 1� j � p[n]. Then,ω(s) = j , if 1 � j � n, and
ω(s) = 1 otherwise.

In its communication complexity variant, a pointer functiongpt (L, Z) is defined as follows: for a
valuationsσ = σ1 . . . , σl andσ ′ = σl+1, . . . , σn of variablesgpt (σ, σ ′) = σj for j = pt(σ, σ ′).

We formulate now our last lemma.

Lemma 7. For arbitrary q ∈ (1/2, 1), and arbitraryδ > 0, and for everyl large enough, we have

PCq(g) � (l − o(l))(1 − (1 + δ)H(q)),

whereH(q) = −q logq − (1 − q) log(1 − q) is the Shannon entropy.

See [2] for a proof of the above Lemma.
Finally from Lemmas 6, and 7, and using the fact thatn/16 � l � n/2, we get the lower bound for

thesize(P ) stated in our theorem.

5. Generalization and concluding remarks

Note that our proof technique of the previous section has used the following essential fact. The set of
variables of a programP can be partitioned (according to the orderingτ of P ) into two partsL andR

(of approximately equal size) such that for any computation path ofP the following is true. If a variable
from R is tested, then no variable fromL can be tested in the rest of this path. This means that the
statement of Theorem 3 remains also true for other natural models of branching programs we define
below.

We define abalanced partitionof a setX as any partition of a setX into subsetsX1 andX2 satisfying
|X1| = �(|X2|).

Definition 1. We call a branching programP a π-balanced-weak-ordered branching program if it re-
spects a balanced partitionπ of its variablesX into two partsX1 andX2 such that if an edge leads
from anxi-node to anxj -node, wherexi ∈ Xt andxj ∈ Xm, then the conditiont � m has to be ful-
filled.

Call a branching programP a balanced-weak-ordered if it isπ-balanced-weak-ordered for some
partitionπ of the set of variables ofP into two sets.

Our Theorem 3 can be generalized as follows.
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Theorem 5. Let forp ∈ (1/2, 1) the function MULT(X, Y ) bep-computed by a randomized balanced-
weak-ordered branching programP. Then

size(P ) � 2�(n/ logn).

Open problems. There remains an interesting open problem on the lower bounds for the integer mul-
tiplication on randomized branching programs with (1) the limited number of inputs readings and (2)
without any condition on the ordering of variables. We conjecture that the corresponding lower bounds
are also exponential.
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