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Abstract—TIt is shown that, contrary to a claim of Térn and Zilinskas, it is possible to efficiently
optimize functions on n dimensions by projecting them into a single dimension using a space-filling
curve. © 1999 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

Suppose one is confronted with the problem of maximizing a function f : [0,1]¢ — R. Given
a space-filling curve g : R — [0,1]¢, one may “project” one’s problem into one dimension by
asking for the maximum of f(g(z)). The function f o g maps [0,1] into R, and may thus be
maximized by a suitable one-dimensional optimization routine. If x is a maximizer of f o g, g(z)
is a maximizer of f.

As reported in [1,2], this procedure has been implemented in two, three, and four dimensions
with some success. But Térn and Zilinskas [3], in their survey of global optimization methods,
express doubts as to the general effectiveness of space-filling curve techniques. Their objection
is that even if f is convex, f o g will be horribly ill-behaved—it will have local optima in every
subinterval of [0,1].

The aim of this note is to show that the objection of T6érn and Zilinskas is not necessarily
relevant. From the fact that f o g has many more local optima than f, it does not follow that
f o g is more difficult to optimize than f. Of course, for some optimization methods—e.g., those
involving local search—f o g will be vastly more troublesome than f. But for methods which are
robust with respect to multiple local extrema and fuzzy data, this should not be the case.

Nemirovsky and Yudin [4] have described an optimal method for the “black box” optimization
of a Lipschitz continuous function. Here I show that, for appropriate g, another optimal method
is to apply the method described by Nemirovsky and Yudin to f o g in [0,1], and “project” the
answer back into [0,1]%.

2. SUBDIVIDING SPACE-FILLING CURVES

In general, a space-filling curve may be defined as a continuous function g which maps some
subset of R into R?, the range of which contains some d-dimensional sphere. Here, in particular,
we will be concerned with space-filling curves that map [0, 1] onto [0, 1]¢.
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Space-filling curves come in all shapes and sizes. But the ones that will interest us here have
a special property: they are what I call subdividing space-filling curves.

DEFINITION 1. A continuous map g : [0,1] — [0,1]¢ is subdividing if for k = 1,2,3,..., 0 <
i<k,
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A good example is the Hilbert curve—not only is it subdividing, but Fisher [5] has given an
extremely rapid computer algorithm for generating it and its inverse.

LEMMA 1. Let g be a subdividing space-filling curve with range [0,1]¢. Then, for any positive
integer k, and any integer 0 < i < 2%, we have
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PROOF. Part (1) is clear from the fact that g is subdividing. All the numbers in (i/29*,(i+1)/29F)
are mapped into a hypercube of side 1/2*, the diameter of which is v/2/2*. As for part (2), it
suffices to recall that g(i/2% +1/29%1) is the center of this hypercube, from which all points in
the hypercube are at a distance of less than 1/2*.

3. OPTIMAL OPTIMIZATION OF LIPSCHITZ FUNCTIONS

One method of approximating the maximum of f : [0,1]% — R is to subdivide [0,1]" into
equally sized hypercubes, evaluate f at the center of each hypercube, and take the maximum
of these values as one’s approximation. If f is Lipschitz with constant L, then from N = 24
evaluations of f, this method yields an error bounded by v2 L N —1/4 where L is the Lipschitz
constant of f.

Using the sophisticated machinery of information-based complexity theory, Nemirovsky and
Yudin [4] have shown that if the only fact known about f is that it is Lipschitz, then this
simple method is “optimal”. For a precise definition of optimality as it is used here, see [4,6].
Roughly, the idea is as follows. Where f : [0,1]¢ — R and A is some (deterministic) optimization
algorithm, let A, (f) denote the approximation to the maximum of f which A supplies when
allowed n evaluations of f. Let €4,(f) = ||An(f) — yyl|, where y; is the true maximum of f.
Then, where C is some class of functions from [0,1]¢ to R, A is said to be optimal over C if for
every other algorithm B, there is some constant kg so that

lim sup ep n{(f) > kp lim sup es n(f)
N—o feC N—oo feC

Here the class C is the class of Lipschitz functions, and it is intuitively tempting to conjecture
that kp can be set equal to 1 for all algorithms B.
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However, Theorem 1 shows that if g : [0, 1] — [0,1]¢ is subdividing, and one approximates the
maximum of f o g by subdividing [0,1] into N = 2% equally sized subintervals, evaluating f at
the center of each one, and taking the maximum of these values, then one’s error will obey
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This establishes the following theorem.

THEOREM 1. If the only fact known about f : [0,1]¢ — R is that it is Lipschitz, then an
optimal strategy for maximizing f is to maximize f o g for some subdividing space-filling curve
g:[0,1] — [0,1]4.

Note that this optimality property refers to the number of evaluations of f required.

In practice, it takes some extra work to evaluate f o g instead of just f. But this extra work
does not represent “optimization complexity”, only “overhead” that is independent of f, and it
becomes negligible as the difficulty of evaluating f increases.
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