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A b s t r a c t - - I t  is shown that, contrary to a claim of TSrn and Zilinskas, it is possible to efficiently 
optimize functions on n dimensions by projecting them into a single dimension using a space-filling 
curve. (~) 1999 Elsevier Science Ltd. All rights reserved. 

1. I N T R O D U C T I O N  

Suppose one is confronted with the problem of maximizing a function f : [0, 1] d ) R. Given 

a space-filling curve g : R ~ [0, 1] a, one may "project" one's problem into one dimension by 
asking for the max imum of f(g(x)). The function f o g maps [0, 1] into R, and may thus be 
maximized by a suitable one-dimensional optimization routine. If  x is a maximizer of f o g, g(x) 
is a maximizer of f .  

As reported in [1,2], this procedure has been implemented in two, three, and four dimensions 
with some success. But  T5rn and Zilinskas [3], in their survey of global optimization methods,  
express doubts  as to the general effectiveness of space-filling curve techniques. Their  objection 
is tha t  even if f is convex, f o g will be horribly i l l -behaved--i t  will have local op t ima in ,every 
subinterval of [0, 1]. 

The  aim of this note is to show tha t  the objection of T5rn and Zilinskas is not necessarily 

relevant. From the fact tha t  f o g has many  more local opt ima than  f ,  it does not follow tha t  
f o g is more difficult to optimize than f .  Of  course, for some optimization methods---e.g., those  

involving local s e a r c h - - f  o g will be vastly more troublesome than  f .  But  for methods which are 
robust  with respect to multiple local extrema and fuzzy data, this should not be the case. 

Nemirovsky and Yudin [4] have described an optimal  method for the "black box" optimization 
of a Lipschitz continuous function. Here I show that ,  for appropriate  g, another  opt imal  method 
is to apply the method described by Nemirovsky and Yudin to f o g in [0, 1], and "project" the  
answer back into [0, 1] d. 

2. S U B D I V I D I N G  S P A C E - F I L L I N G  C U R V E S  

In general, a space-filling curve may be defined as a continuous function g which maps some 
subset  of R into R d, the range of which contains some d-dimensional sphere. Here, in particular,  
we will be concerned with space-filling curves tha t  map [0, 1] onto [0, 1] d. 
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Space-filling curves come in all shapes and sizes. But the ones that  will interest us here have 
a special property: they are what I call subdividing space-filling curves. 

DEFINITION 1. A continuous map g : [0, 1] , [0, 1] d is subdividing ff  for k = 1, 2, 3 , . . . ,  0 < 
i < k ,  

([ (1) J k  ' is a d-dimensional hypercube, 

(2) ([ i i+l ]~ 2'~-Ul ([ i i i j+ l  ]~ 
g 2 k, -_ 

(3) the cen te ro fg  271k, 2d k ] ]  i sg  ~ + ~  . 

A good example is the Hilbert curve---not only is it subdividing, but Fisher [5] has given an 
extremely rapid computer algorithm for generating it and its inverse. 

LEMMA 1. Let g be a subdividing space-filling curve with range [0, 1] d. Then, for any positive 
integer k, and any integer 0 < i < 2 k, we have 

(1) sup IIg(x)- (y)ll < 
X,ye[1/2dk,(i+l)/2dk I -- ~ - ,  

(2) 

PROOF. Part (1) is clear from the fact that  g is subdividing. All the numbers in (i/2 dk, (i + 1)/2 dk) 
are mapped into a hypercube of side 1/2 k, the diameter of which is v ~ / 2  k. As for part (2), it 
suffices to recall that  g(i /2 dk +1/2  dk+l) is the center of this hypercube, from which all points in 
the hypercube are at a distance of less than 1/2 k. 

3. O P T I M A L  O P T I M I Z A T I O N  O F  L I P S C H I T Z  F U N C T I O N S  

One method of approximating the maximum of f : [0, 1] d --* R is to subdivide [0, 1] n into 
equally sized hypercubes, evaluate f at the center of each hypercube, and take the maximum 
of these values as one's approximation. If f is Lipschitz with constant L, then from N = 2 dk 
evaluations of f ,  this method yields an error bounded by v ~  L N -1/d, where L is the Lipschitz 
constant of f .  

Using the sophisticated machinery of information-based complexity theory, Nemirovsky and 
Yudin [4] have shown that  if the only fact known about f is that  it is Lipschitz, then this 
simple method is "optimal". For a precise definition of optimality as it is used here, see [4,6]. 
Roughly, the idea is as follows. Where f : [0, 1] d --~ R and A is some (deterministic) optimization 
algorithm, let A n ( f )  denote the approximation to the maximum of f which A supplies when 
allowed n evaluations of f .  Let eA,n(f) = l iAr( f )  - Y/I], where yf  is the true maximum of f .  
Then, where C is some class of functions from [0, 1] d to R, A is said to be optimal over C if for 
every other algorithm B, there is some constant kB so that  

lim s u p  ~B,N(f) > kB lim sup £A,N(f)" 
N---*oo l E G  - -  N---*oo f E C  

Here the class C is the class of Lipschitz functions, and it is intuitively tempting to conjecture 
that  kB can be set equal to 1 for all algorithms B. 
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However, Theorem 1 shows tha t  if g : [0, 1] -~ [0, 1] d is subdividing, and one approximates  the 

max imum of f o g by subdividing [0, 1] into N = 2 dk equally sized subintervals, evaluating f at 

the center of each one, and taking the maximum of these values, then one's error will obey 

sup o g ( x ) -  f og  ~ + 
x,~e[i/~ dk,(i+l)12d~] 

<_ v ~  2-~L sup - g ~ 
x,y~[i/2 ak,(i+ l)/2 ak] 

< ~ L N -1/e. 

This establishes the following theorem. 

THEOREM 1. I f  the only fact known about f : [0~ 1] d --~ R is that it is Lipschitz, then an 

optimal s t ra tegy for maximizing f is to maximize f o g for some subdividing space-filling curve 
g :  [0, 1] --, [0, 1] d. 

Note tha t  this opt imali ty  property refers to the number of evaluations of f required. 

In practice, it takes some extra  work to evaluate f o g instead of just f .  But  this extra  work 
does not represent "optimization complexity", only "overhead" tha t  is independent of f ,  and it 

becomes negligible as the difficulty of evaluating f increases. 
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