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SUMMARY

VEGFA signaling is critical for endothelial and hema-
topoietic stem cell (HSC) specification. However,
blood defects resulting from perturbation of the
VEGFA pathway are always accompanied by
impaired vascular/arterial development. Because
HSCs derive from arterial cells, it is unclear whether
VEGFA directly contributes to HSC specification.
This is an important question for our understanding
of how HSCs are formed and for developing their
production in vitro. Through knockdown of the regu-
lator ETO2 in embryogenesis, we report a specific
decrease in expression of medium/long Vegfa iso-
forms in somites. This leads to absence of Notch1
expression and failure of HSC specification in the
dorsal aorta (DA), independently of vessel formation
and arterial specification. Vegfa hypomorphs and
isoform-specific (medium/long) morphants not only
recapitulate this phenotype but also demonstrate
that VEGFA short isoform is sufficient for DA de-
velopment. Therefore, sequential, isoform-specific
VEGFA signaling successively induces the endothe-
lial, arterial, and HSC programs in the DA.

INTRODUCTION

Defining the molecular mechanisms underlying stem cell speci-

fication is of interest from a developmental point of view and clin-

ically relevant in regenerative medicine. In vertebrates, hemato-

poietic stem cells (HSCs) are generated from the endothelium of

the ventral wall of the dorsal aorta (DA) in an evolutionarily

conserved process (Dzierzak and Speck, 2008). Studies in Xen-

opus and zebrafish embryos have greatly contributed to the

characterization of the earliest cellular, signaling, and transcrip-

tional events that drive hematopoietic development (Ciau-Uitz

et al., 2010a). In Xenopus, HSC production initiates with the

development of adult hemangioblasts in the dorsal lateral plate

(DLP) mesoderm. Progenitor cells then migrate to the midline

of the embryo, where they form the DA, the arterial program is
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specified, and a subset of these endothelial cells is programmed

toward a hematopoietic fate to form the hemogenic endothe-

lium; hematopoietic cells (including HSCs) then bud out into

circulation (Ciau-Uitz et al., 2010a).

During this process, multiple regulatory pathways work in

concert to effect cell movement, tissue formation, and lineage

specification. VEGFA is a signaling molecule with critical func-

tions in embryonic vasculogenesis and angiogenesis (Carmeliet

et al., 1996; Ferrara et al., 1996). It is required for the biology of

endothelial cells as well as for arterial specification and, in that

respect, is involved in multiple processes leading to HSC forma-

tion. VEGFA directs migration of the DA precursors toward the

midline (Cleaver and Krieg, 1998). It is also required to trigger

NOTCH signaling and the onset of the arterial program in endo-

thelial cells (Hirashima, 2009; Lawson et al., 2002) and, more

specifically, in the cells of the presumptive DA (Ciau-Uitz et al.,

2010b; Gering and Patient, 2005), a process closely associated

with the initiation of the HSC program in the hemogenic endothe-

lium of the DA. Consequently, defects in the generation of HSCs

are also observed on perturbation of VEGFA signaling (Ciau-Uitz

et al., 2010b; Gering and Patient, 2005; Liang et al., 2001), when

VEGFA receptor FLK1 is ablated (Shalaby et al., 1997) or when

the NOTCH pathway is inhibited (Gering and Patient, 2005).

So far, VEGFA has always been associated with HSC specifica-

tion in the context of perturbed vasculogenesis or arterial

specification; the complexity of VEGFA signaling has therefore

made it difficult to address whether it has a direct role in HSC

specification.

A number of transcription factors (TFs) play critical roles in

association with signaling events in blood lineage specification

and differentiation. ETO2, a member of the highly conserved

ETO family of transcriptional corepressors (ETO/MTG8, ETO2/

MTG16, and MTGR1; Davis et al., 2003), was originally identified

through its involvement in a translocation breakpoint associated

with acutemyeloid leukemia (Gamou et al., 1998). It regulates the

function of the hematopoietic TFs SCL and GATA1 during

erythroid and megakaryocytic development (Goardon et al.,

2006; Hamlett et al., 2008; Meier et al., 2006; Schuh et al.,

2005). In addition, in a murine knockout, it is required for expan-

sion of adult HSCs andmultipotent progenitors in stress hemato-

poiesis conditions, as well as for normal fate of erythro-myeloid

precursors (Chyla et al., 2008). ETO2 also controls NOTCH-

dependent fate decisions in blood cells (Engel et al., 2010).
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We have now characterized the function of ETO2 during

HSC development in Xenopus embryos and linked it to major

signaling pathways. We demonstrate that it is required at the

onset of definitive HSC programming in a non-cell-autonomous

manner. This function is mediated through the regulation of

VEGFA expression in somitic tissue, prior to formation of the

DA and specification of HSCs, at the time DA precursors

migrate toward the midline. Through a combination of pheno-

typic rescue of ETO2-depleted embryos, generation of VEGFA

hypomorphs, and isoform-specific knockdown of VEGFA, we

have uncovered a specific function of VEGFA medium and/or

long isoforms in HSC specification, independent of VEGFA

requirement in vasculogenesis and arterial specification. This

activity is essential for Notch1 expression in the hemogenic

endothelium and for the onset of the hematopoietic transcrip-

tional program. Separately, we show that, prior to HSC specifi-

cation, VEGFA short isoform is sufficient for endothelialization

and arterialization of the DA. By uncoupling the different activi-

ties of VEGFA during endothelial and hematopoietic develop-

ment, our model reveals an ETO2/VEGFA/NOTCH1 regulatory

cascade that initiates in the somites and directly controls HSC

specification.

RESULTS

ETO2 Knockdown Blocks Specification of Definitive
Hematopoiesis in Xenopus

To study ETO2 function in HSC development, we exploited the

anatomical and experimental advantages of the Xenopusmodel,

in particular the access to HSC precursors at an early stage

(Ciau-Uitz et al., 2010a). In Xenopus laevis, genes are present

in two ‘‘pseudoallele’’ forms. We designed two antisense mor-

pholinos (MOs) that knockdown Eto2 expression from both

alleles: Eto2-MO was directed against the translation initiation

ATG, and Eto2-MO2 was directed against the 50 UTR (Figures

S1A and S1B available online).

Hematopoiesis was examined at various stages of develop-

ment in Eto2morphant embryos. In Xenopus, primitive erythroid

cells are generated in the ventral blood islands (VBI), a site anal-

ogous to themurine yolk sac. The VBI start to form at stage 22 on

the ventral side of the embryo and continue to develop through

stage 30 (Kau and Turpen, 1983). Expression of the primitive

erythroid marker alpha T4 globin at stages 22 and 30 was unaf-

fected in Eto2 morphants (Figure 1A). Ablation of Eto2 expres-

sion therefore did not perturb the initiation or differentiation of

the primitive erythroid lineage.

A second wave of hematopoiesis during embryogenesis

gives rise to the definitive (adult) blood lineage emanating from

HSCs. In Xenopus, specification of the endothelium of the ventral

wall of the DA toward the adult hematopoietic lineage can be

assessed by stage 39 of development by the expression of

hematopoietic markers (Figure 1B; Ciau-Uitz et al., 2010a). In

contrast, in Eto2 morphants (Eto2-MO and Eto2-MO2) there

was a complete absence of the key hemogenic endothelium

and HSC TF, Runx1, as well as the other HSC markers SpiB

(Pu.1 homolog), Gfi1, and Scl in the DA (Figures 1B, 1C, and

S1C). Although expression of hematopoietic markers was not

detected in the DA, the vessel had formed, was endothelialized

and lumenized (Figure 1C, Tie2 sections).
Developm
Therefore, ablation of ETO2 expression during Xenopus em-

bryogenesis leads to a specific block in the definitive HSC

program in the DA.

ETO2 Is Not Required for Specification of the Arterial
Program in the DA or the Adult Hemangioblast
To further characterize the defects in HSC specification, we

analyzed Eto2 morphants at earlier stages of development,

before specification of the hematopoietic fate in the endothelium

of the DA.

One critical regulator of HSC specification in the hemogenic

endothelium is NOTCH1 (Kumano et al., 2003). In Xenopus, its

expression is first detected in the DA at stage 34, preceding

that of blood genes, such as Runx1, that initiates at stage 35 in

the ventral wall of the DA (A.C.-U. and R.P., unpublished data).

In Eto2 morphants (Eto2-MO and Eto2-MO2), Notch1 expres-

sion was absent within the DA at stages 35, 36, and 39 (Fig-

ure 2A). Therefore, Notch1 expression is not specified, and

the aberrant programming of the HSC population is already

apparent at stage 35 in Eto2 morphants.

Before the onset of the HSC program in the DA, the vessel is

specified as an artery. We examined expression of the arterial

markers EphrinB2, Delta-like 4 (Dll4), Notch4, and Cx37 in the

DA of Eto2 morphants from stages 32 to 39. Expression was

unaffected in the presumptive DA at stage 32 (EphrinB2, Dll4,

and Notch4; Figure 2B) and was maintained at later stages of

development in the DA (Dll4, Notch4, and Cx37; Figures 2B

and S2A, stages 34/39), suggesting that ETO2 is required neither

for the initiation nor the maintenance of the arterial program.

Interestingly, the early hematopoietic target of NOTCH, Gata2

(Robert-Moreno et al., 2005), was detected in the midline in

ETO2-depleted embryos at stage 32, but its expression was

only present in approximately two-thirds of the morphants

analyzed at stages 34 (Eto2-MO2) and 35 (Eto2-MO) and was

absent at stage 39 (Figure 2C, red arrowheads).

Hematopoiesis and vascular development are closely linked.

To further document vessel development in Eto2 morphants,

we examined expression of several endothelial markers. We

show normal expression of VE-cadh and Ami (stage 37), CD31,

AA4, Tie2, and Fli1 (stage 34) in Eto2 morphants, confirming

formation of the DA as an endothelium and showing normal trunk

vasculature (Figures 3A and S2B, red arrowhead and yellow

arrow, respectively). AA4, Tie2, Ami, and Fli1 are also expressed

in the posterior cardinal vein (PCV, Figures 3A and S2B, black

arrow), providing additional support for a largely normal vascula-

ture in Eto2 morphants. Two interesting observations emerged

from our analysis of the vasculature. First, AA4 staining in un-

cleared embryos at stage 34 revealed that intersomitic vessel

(ISV) sprouting from the PCV was greatly impaired in Eto2 mor-

phants (Figure S2C), suggesting a specific function of ETO2 in

this process. Second, Flk1 expression, normally repressed by

NOTCH1 signaling (Taylor et al., 2002), persisted in the DA of

the morphants at stage 39 (Figure 3B), consistent with the

absence of Notch1.

The DA and its derivatives, including the HSCs, derive from

adult hemangioblasts located in the DLP in early embryogenesis

(Ciau-Uitz et al., 2010a; Walmsley et al., 2002). To monitor spec-

ification of these cells, we examined expression of the hemato-

poietic and endothelial markers, Scl, Flk1, Flt1, and Flt4, at stage
ental Cell 24, 144–158, January 28, 2013 ª2013 Elsevier Inc. 145



Figure 1. ETO2 Is Necessary for the Onset of

Definitive Hematopoiesis

(A) Expression analysis showing no difference in

expression of primitive erythroid gene alpha T4

globin at stages 22 and 30 in WT and Eto2 mor-

phant embryos. Blue arrowheads, VBI.

(B and C) ETO2 morphants show absence of

expression of Runx1, Gfi1, SpiB, and Scl in the DA

(red arrows) at stage 39. (B) Whole-mount in situ

hybridization, WMISH. White arrowheads indicate

the notochord. The black arrow (Scl panel, WT

embryo) indicates the posterior cardinal vein

(PCV) containing Scl-positive primitive erythro-

cytes. Staining is absent in the ETO2 morphants

because circulation is delayed. (C) In situ hybrid-

ization on section (ISHS) for SpiB and the endo-

thelial marker Tie2; note that the DA has formed and

is lumenized in Eto2 morphants. NT, neural tube.

Numbers in the bottom of the panels denote the

number of embryos as shown in the panel out of the

total examined. Whole mounts are shown with

anterior to the left and dorsal to the top. Sections

are in transverse orientation with dorsal to the top.

See also Figures S1 and S4.
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26. All markers were normally expressed in Eto2 morphant

DLP (Figures 3C and S2D, green arrowheads). ETO2 is therefore

not required for the specification of the DA/HSC precursors in

the DLP.

In summary, ETO2 is not required for programming the earliest

DA precursors and is dispensable for vessel formation and spec-

ification as endothelia. Moreover, it is not necessary for the

establishment or the maintenance of the arterial program in the

DA. The first molecular defect detected in Eto2 morphants is

the loss of Notch1 expression at stage 35, concomitant with
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a decrease in expression of Gata2. ETO2

is therefore required at the onset of the

HSC program for development of the

hemogenic endothelium (Figure 3D).

A Non-Cell-Autonomous Role for
ETO2 in HSC Specification
To link Eto2 expression to the phenotype

observed in Eto2 morphants, we exam-

ined its pattern of expression during

hematopoietic development. We only

present expression of one of the two pseu-

doalleles (A), as the expression patterns of

both are identical.

In early development, Eto2 expres-

sion is detected in primitive blood in

the VBI and in the somites (Figure 4A,

stages 22 and 26, blue and yellow arrow-

heads, respectively). As Eto2 morphants

exhibit no gross defects with respect to

primitive blood development (see Scl

and globin expression, Figures 1A and

3C), ETO2 is not critically required for

specification of this lineage. In these

early stages, Eto2 expression is not
seen in the DLP (Figure 4A, stage 26, orange arrowheads). As

development proceeds, its expression decreases in the somites

and is no longer detected in this tissue by stage 39 (Figure 4A,

yellow arrowheads). Importantly, Eto2 could not be detected

in the presumptive DA (stage 34), in the DA itself after it has

lumenized (stage 39), or when definitive hematopoietic cells,

including HSCs, are found associated with the ventral wall of

the DA (stage 43) (Figure 4B, red arrowheads). Eto2 is also de-

tected in the neural tube throughout development (Figures 4A

and 4B, white arrowheads). Absence of Eto2 in the DA was



Figure 2. ETO2 Is Specifically Required for the Establishment of the Hematopoietic Program in the DA

(A) Notch1 is absent in the DA of Eto2-MO and Eto2-MO2 morphants (stages 35/36/39, WMISH, and stage 39 bottom, ISHS; red arrowheads, DA; orange

arrowheads, notochord).

(B and C) Expression analysis of arterial-affiliated genes EphrinB2, Delta-like4 (Dll4), and Notch4 (B), as well asGata2 (C) in the presumptive DA (stage 32) and in

the DA (stages 34–39) in Eto2 morphants, red arrowheads. White and orange arrowheads: neural tube and notochord, respectively.

Numbers in the bottom of the panels denote the number of embryos as shown in the panel out of the total examined.Wholemounts are shown with anterior to the

left and dorsal to the top. Sections are in transverse orientation with dorsal to the top. See also Figures S2A and S4.
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Figure 3. The Major Axial Vessels Are Normal and Adult Hemangioblasts Are Specified in ETO2 Morphants

(A) The endothelial markers CD31, AA4, and Tie2 are expressed normally in the axial vessels of Eto2morphants (Eto2-MO and Eto2-MO2), revealing the DA (red

arrowhead), the PCV (black arrow), and the trunk vasculature (yellow arrow).

(B) Abnormal expression of Flk1 in Eto2 morphant DA at stage 39 (red arrowhead), as a consequence of the absence of Notch1. Blue arrowhead: notochord.

(C) Specification of adult hemangioblasts is unaffected in ETO2-deficient embryos.Scl is expressed normally at stages 26 in the DLP, primitive erythroid cells, and

neurons in Eto2 morphants (Eto2-MO and Eto2-MO2, green, blue, and orange arrowheads, respectively). Flk1 is also expressed normally in the DLP and trunk

endothelium of Eto2 morphants (green and blue arrowheads, respectively).

Numbers in the bottom right of the panels denote the number of embryos as shown in the panel out of the total examined. Whole mounts are shown with anterior

to the left and dorsal to the top. Sections are in transverse orientation with dorsal to the top.

(D) Schematic diagram depicting the succession of events leading toHSC specification and the requirement for ETO2. The earliest defect inEto2morphants is the

loss of Notch1 expression. Molecular markers analyzed in this study are indicated for each stage of development shown.

See also Figures S2B–S2D and S4.
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Figure 4. Eto2 Is Expressed in Precursors of Primitive but Not Definitive Blood

(A) Eto2 expression (WMISH) from stage 22 to stage 39. Eto2 is found in somitic tissues (yellow arrowheads), the developing VBI (dark blue arrowheads, up to

stage 34), and, from stage 30, the neural tube (white arrowheads). At stage 26, no expression was detected in the DLP, delineated by Lmo2 expression (orange

arrowhead). Light blue arrowhead, notochord.

(B) Eto2 expression (ISHS) was not seen in the DA (red arrowheads, stages 34–43).

Whole mounts are shown with anterior to the left and dorsal to the top. Sections are in transverse orientation with dorsal to the top. See also Figures S3

and S4.
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confirmed by laser capture microdissection followed by RT-

qPCR (Figure S3A).

Expression ofEto-related transcripts was examined in parallel;

Eto, Mtgr1, and two transcripts highly similar to Mtgr1 (Mtgr1-

like1 and Mtgr1-like2) showed no overlap with expression of

Eto2 and no expression in hematopoietic tissues at the stages

of development that were examined (except for a faint staining

for Mtgr1-like2 at stage 43 in DA, Figures S3B and S3C). Impor-

tantly, the MOs used in this study are not predicted to target the

Eto-related transcripts (Figure S1A).

In summary, Eto2 expression is not detected in HSC/progen-

itor cells, in the DA, or their precursors at any stage of develop-

ment. Moreover, Eto2 pattern of expression in zebrafish is similar

to that described in Xenopus (Figures S4A–S4C); in addition, and

extending previous data (Meier et al., 2006), depletion of Eto2 in

zebrafish reveals a phenotype similar to the one described in

Xenopus and in agreement with a function for ETO2 in HSC

specification (Figures S4D and S4E). In conclusion, loss of the

HSC program upon knockdown of ETO2 is likely to occur

through a non-cell-autonomous mechanism.
Developm
ETO2 Regulates Vegfa Expression in the Somites
The developing somites are in close physical proximity to the

DLP, the migration path of the DA/HSC progenitors, and the

hypochord, site of DA formation. Eto2 expression initiates very

early during somitic development (stage 22), is at its highest at

stages 26/27 and then gradually decreases (Figure 4A). Because

no Eto2 expression was detected in the DA/HSC or their precur-

sors, we hypothesized that somitic expression of ETO2 might be

required for HSC formation.

In order to understand how ETO2 might regulate the HSC

program from the somites, we assessed gene expression in

the somites of stage 27 Eto2 morphants. We monitored expres-

sion of genes involved in signaling pathways (Shh, Notch1, and

Nrp1) or coding for TFs (the NOTCH target gene Hesr1 as well

as Hif1a, Arnt), necessary for the correct development of the

somites and known regulators of endothelial cell and/or HSC

development at this early developmental stage (Diez et al.,

2007). None of these genes were affected (Figure S5).

Some of our phenotypic observations suggested that VEGFA,

closely involved in processes associated with HSC formation,
ental Cell 24, 144–158, January 28, 2013 ª2013 Elsevier Inc. 149
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might function downstream of ETO2. Indeed, intersomitic vessel

sprouting from the PCV, a process regulated by VEGFA signaling

from the somites (Kälin et al., 2007), is perturbed in Eto2

morphants (Figures S2C). We therefore examined Vegfa expres-

sion in stage 27 embryos. Vegfa is strongly expressed in the

somites and the hypochord ofWT embryos (Figure 5A, left panel,

red and yellow arrowheads, respectively). In Eto2 morphants,

partial downregulation of Vegfa was specifically observed in

the somites, whereas expression was unchanged within the hy-

pochord (Figure 5A, right panels). The partial nature of the down-

regulation was confirmed by a staining time course; a decrease

in the intensity of expression in the somites of Eto2 morphants

was particularly striking at 8 and 11 hr of staining (Figure 5B).

VEGFA exists in three main isoforms generated by alternative

splicing (in Xenopus, short VEGFA122, medium VEGFA170, and

long VEGFA190) that differ in their physical and biological proper-

ties (Figure 5C). The short isoform lacks the extracellular matrix

(ECM)-binding domains (heparin and neuropilin binding sites)

and is the most diffusible form of the protein. The long isoform

is tethered to the ECM by the full complement of domains that

mediate strong interaction with heparin. The medium isoform

only contains part of the heparin-interaction sequences, and

only 50%–70% of VEGFA170 binds to the cell/ECM (Robinson

and Stringer, 2001). The isoforms are differentially expressed in

somites and the hypochord of Xenopus embryos; VEGFA122 is

the predominant isoform in the hypochord, whereas all three

isoforms are found in somitic tissue (Cleaver and Krieg, 1998).

Real-time PCR analysis was carried out to determine the levels

of the different Vegfa isoforms in somite/hypochord regions of

stage 27 WT and Eto2 morphant embryos. Levels of Vegfa190
and, more so, Vegfa170 were decreased in Eto2 morphants, in

contrast to Vegfa122, which remained largely unaffected (Fig-

ure 5D). The specific downregulation of the two larger Vegfa iso-

forms is in agreement with the visual observation (by ISHS) that

downregulation of Vegfa in the Eto2 morphants is limited to

somitic tissue. Whether Vegfa122 is also downregulated in the

somites is difficult to judge, as the hypochord region had to be

included in the PCR analysis. A detectable decrease in the level

of this isoform within the somites may therefore have been

masked by its continued expression within the hypochord in

Eto2 morphants.

ETO2 expression therefore is required to establish correct

levels of Vegfa170 and Vegfa190 in the somites at stage 27,

when precursors of the DA and HSCs are starting to migrate

toward the midline.

TheEto2Morphant Phenotype Is Rescued byExogenous
Expression of Vegfa170 Isoform
Next, we asked whether downregulation of Vegfa could be

responsible for the loss of the HSC program in the Eto2 mor-

phants by performing rescue experiments.

Eto2-MO was coinjected with various concentrations of

messenger RNAs (mRNAs) encoding the different VEGFA iso-

forms. The embryos were harvested at stage 39 and examined

for expression of the HSCmarker, Runx1, to assess the hemato-

poietic program. No rescue was observed with 2 or 3 ng Vegfa

mRNA (short, medium, and long; data not shown). In contrast,

9/22 embryos coinjected with Eto2-MO and 4ng Vegfa170
mRNA exhibited Runx1 expression in the DA, six of them
150 Developmental Cell 24, 144–158, January 28, 2013 ª2013 Elsevi
showing strong rescue; 4/21 embryos also showed rescue of

Gfi1 expression (Figure 5E). Importantly, 4 ng Vegfa122 mRNA

did not rescue Runx1 expression (Figure 5E). At that con-

centration, Vegfa190 was toxic, and its effects could not be

examined. As a control for Vegfa activity, ectopic expression of

Dll4 (a sensor of VEGFA levels [Coultas et al., 2010]) was

observed in the vitelline vessels of all embryos coinjected with

Vegfa isoforms (data not shown). In conclusion, restoration of

high levels of Vegfa170, but not Vegfa122, was sufficient to re-

establish the HSC program.

Vegfa Hypomorphs Present Similarities with the Eto2

Morphants
To confirm the importance of VEFGA in HSC specification, we

tried to phenocopy the Eto2-morphant phenotype by partially

downregulating Vegfa. To achieve this, we injected a Vegfa MO

that targets all isoforms (Kälin et al., 2007). Full knockdown of

VEGFA with this MO ablates the correct specification of the

definitive blood precursors in the DLP, prevents their migration

to the midline and, consequently, precludes DA formation

(Ciau-Uitz et al., 2010b). A phenotype similar to that observed

in ETO2-depleted embryos was achieved by injecting half the

amount of Vegfa MO (Vegf-MO, 12.5 ng per embryo instead of

25 ng for full knockdown). This ablated the HSC program in the

DA, without compromising DA formation. Indeed, Vegfa hypo-

morphs expressed neither the HSC gene, Runx1, nor the early

hematopoietic markers Gata2 and Notch1 in the DA (Figure 6A).

DA formation was unaffected (AA4 and Ami, stages 34/37;

Figures 6A and S6A); note the defect in ISV sprouting (Fig-

ure S6A, AA4, uncleared embryos), as observed in Eto2

morphants (Figure S2C). In contrast to the Eto2 morphants,

expression of the arterial markers Dll4 and Cx37 was weak

when compared to wild-type controls (Figure 6A and S6A,

stages 34/35). Finally, the DLP continues to express Scl, Flk1,

and Flt4 in the Vegfa hypomorphs (Figures S6A), as seen for

the Eto2 morphants (Figures 3C and S2D) and contrary to Vegfa

full knockdown embryos (Ciau-Uitz et al., 2010b) (Figure 6E).

Therefore, there are clear parallels between the phenotypes

observed in Eto2 morphants and Vegfa hypomorph embryos:

absence of expression of HSC markers, specification of the

arterial program, and normal endothelialization. Expression of

arterial genes in Vegfa hypomorphs was however decreased,

suggesting the existence of a critical threshold in the levels of

VEGFA isoforms (or at least one of them) to fully support arterial

development.

Isoform-Specific Knockdown of Vegfa170 and Vegfa190

Fully Phenocopies the Eto2 Morphant Phenotype in
the DA
To firmly establish the functions of VEGFA individual isoforms

in endothelial, arterial, and HSC specification, we designed

isoform-specific MOs. We isolated X. laevis Vegfa genomic

sequences from raw sequence data kindly provided by Richard

Harland (University of California, Berkley) and characterized

the exon-intron boundaries (Figure 6B). We identified eight

exons, as previously described (1 to 8a, Figures 5C and 6B)

(Nowak et al., 2008; Xu et al., 2011) and focused on the exon/

intron boundaries involved in alternative splicing (exons 6 and

7, Figure 6B). Because of theway the short andmedium isoforms
er Inc.



Figure 5. ETO2 Regulates HSC Development through VEGFA170

(A) Vegfa expression is downregulated (top right panel) or absent (bottom right panel) in the somites of stage 27 Eto2morphants (red arrowheads) but maintained

in the hypochord (yellow arrowheads), as revealed by ISHS (transverse sections with dorsal to the top).

(B) WMISH staining time course reveals downregulation of Vegfa in Eto2 morphant somites; the staining is markedly lighter in morphant embryos at 8 and 11 hr

after addition of the staining substrate (anterior to the left, dorsal to the top).

(C) Alternative splicing generates VEGFA isoforms with different biological properties. In X. laevis, there are three known VEGFA isoforms (VEGF122, VEGFA170,

and VEGFA190). FLK1, FLT1: binding domains for receptors. The C-terminal domain of isoforms VEGFA170 and VEGFA190 is responsible for association with the

extracellular matrix (ECM) and the cell membrane. VEGF122 is the diffusible isoform (Cleaver and Krieg, 1998).

(D) Levels of isoform-specific VEGFA transcripts in WT and Eto2morphant somite-hypochord regions at stage 27 (n = 5) quantitated by qPCR. Error bars denote

SEM. *p < 0.05.

(E) Exogenous Vegfa170 expression rescues the HSC program in Eto2 morphants. Embryos were coinjected with Eto2-MO only or Eto2-MO and 4 ng of mRNAs

encoding Vegfa122 or Vegfa170 isoforms. Rescue of Runx1 and Gfi1 expression in DA (WMISH, red arrowheads) was observed only with Vegfa170 mRNA. Pos,

positive; neg, negative. Whole mounts are shown with anterior to the left; dorsal at the top.

See also Figure S5.
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Figure 6. Hypomorphic and Isoform-Specific Knockdowns of Vegfa Phenocopy the Eto2 Morphant Phenotype

(A) Hypomorphic VEGFA phenotype. The HSCprogramwas abrogated at stage 39 (loss ofRunx1 expression), and the early HSCmarkersNotch1 andGata2were

absent at stages 34/35 in VEGFA hypomorphs. DA formation (as revealed by the endothelial marker AA4, at stage 34) is unaffected in VEGFA hypomorphs.

Decreased expression of arterial marker Dll4 is observed in the DA of Vegfa hypomorphs at stage 34.

(B) Top: structure of Xenopus laevis Vegfa gene. Open boxes, exons; thin lines, introns; not to scale. Red lines show the position of the control MO (MOc) and the

MOs targeting the intron6/exon7 (MOi6e7) and exon7/intron7 (MOe7i7) splice junctions. Depicted below are the splicing events giving rise to the three known

Vegfa isoforms.

(C) Vegfa short, medium, and long mRNA isoforms were detected by PCR frommaterial isolated from stage 27 wild-type (WT) embryos or embryos injected with

increasing concentrations of MOi6e7 or control MOc (20, 30, and 40 ng). The ethidium-bromide-stained gel shows knockdown of expression of medium and long

mRNA isoforms and increased production of the short isoform in MOi6e7 morphants. Asterisk: the band may represent one of the minor Vegfa isoforms as

detected in human and mouse, although this has not been confirmed by sequencing.

(legend continued on next page)
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are produced, it was not possible to design MOs that would

specifically target either of them. Blocking the intron5/exon6

acceptor splice site is predicted to only interfere with production

of the long isoform; however, the sequences were not suitable

for MO design. We therefore intended to specifically target the

medium and long, anchored isoforms. To do this, we designed

two MOs targeting splice junctions involved in production

of both medium and long isoforms (junction intron6/exon7:

Vegfa-MOi6e7, and junction exon7/intron7: Vegfa-MOe7i7,

Figure 6B). Both MOs produced similar data; we only present

those obtained with Vegfa-MOi6e7. To confirm correct targeting,

increasing concentrations of Vegfa-MOi6e7 were injected into

embryos and expression of Vegfa mRNA isoforms detected by

PCR at stage 27 (with primers recognizing all isoforms, Vegfa

FL, Supplemental Experimental Procedures). PCR products

were analyzed by electrophoresis (Figure 6C) and sequencing

(data not showm), confirming the identity of the isoforms. The

long mRNA isoform was absent in Vegfa-MOi6e7 morphants.

Formation of the medium mRNA isoform was absent at MO

concentrations >20 ng and not detectable by sequencing.

Productionof theshort isoform increasedwith increasingconcen-

trations of the MO. Injection of a control MO directed at a splice

junction not involved in isoform production (MOc) did not affect

production of Vegfa short, medium, and long mRNAs. We

reasoned thatVegfa-MOi6e7would allow the distinction between

VEGFA functions mediated by the short, diffusible isoform and

those mediated by the medium and long, anchored isoforms.

We injected Vegfa-MOi6e7 and monitored endothelialization,

arterialization, and hematopoiesis in developing morphants.

Strikingly, knockdown of Vegfa medium and long mRNA fully

recapitulated the Eto2 morphant phenotype in hematopoietic

development; expression of Vegfa122 was sufficient to specify

the endothelial and arterial programmes of the DA but failed

to support HSC specification, thereby confirming the specific

requirement of long/medium isoforms in this process. Indeed,

the Vegfa-MOi6e7 morphants showed no detectable expression

of HSC-affiliated genes (Runx1, Gfi1, stage 39, Figures 6D and

S6B) and early hematopoietic markers (Notch1, Gata2, stages

39/37, Figures 6D and S6B), but we observed normal expression

of genes associated with the endothelial (AA4, Flk1, CD31,

stages 34/37, Figures 6D and S6B) and arterial (Dll4, Cx37,

Notch4, stages 34/39, Figures 6D and S6B) programs of the

DA, as well as with adult hemangioblasts in the DLP (Scl, Flk1,

stage 26, Figure S6B). Note the absence of ISV sprouting, as

for Eto2 morphants and Vegfa hypomorphs (AA4, Figure S6B).

We also noticed limited development of PCV and the trunk

vasculature in the morphants (Figures 6D and S6B, black and

yellow arrows, respectively), suggesting that low/intermediate

levels of medium and/or long Vegfa isoforms are likely to be

required for this process.
(D) Vegfa medium and long isoform morphant phenotype (Vegfa-MOi6e7). As fo

formation is unaffected, as revealed by AA4 expression at stage 34. In contrast

Red arrowheads, DA; light blue arrowheads, notochord; dark blue arrowheads,

vasculature. Numbers at the bottom of the panels indicate the number of embryos

shown with anterior to the left and dorsal to the top.

(E) Schematic diagram detailing the phenotypes of ETO2 morphants, VEGFA hyp

Molecular markers analyzed in this study are indicated for each stage of develop

See also Figure S6.

Developm
In conclusion, by partially perturbing the VEGFA pathway, indi-

rectly through downregulation of ETO2 in somitic tissue and

directly through VEGFA knockdown approaches, our study

reveals an isoform-specific function of VEGFA at the onset of

the HSC program, independent from its functions in formation

and specification of the DA and mediated by the medium and/

or long isoforms. It also highlights that VEGFA122 activity is

sufficient to support processes prior to HSC specification, i.e.,

hemangioblast specification, DA precursor migration, vessel

formation, and arterialization of the DA.

No Cross-Regulation between ETO2, ETV6, and
Hedgehog
Studies of signaling pathways and TFs acting upstream of HSC

specification have highlighted regulatory cascades between

the TF ETV6 and VEGFA in Xenopus (Ciau-Uitz et al., 2010b)

and between Hedgehog (HH) signaling pathway and VEGFA in

zebrafish but not in mouse (Coultas et al., 2010; Gering and

Patient, 2005; Lawson et al., 2002). We set out to define possible

epistatic relationships between these regulatory pathways and

ETO2 in the somites of stage 26 Xenopus embryos.

In Eto2 morphants, Etv6 somitic expression was not affected

(Figure 7A, orange arrowheads). To examine the HH pathway,

we analyzed expression of Ptc1, an HH receptor that serves as

a readout for HH activity (Perron et al., 2003); its strong somitic

expression was not perturbed in Eto2 morphants (Figure 7A).

Similarly, Etv6 knockdown affected neither Eto2 somitic expres-

sion nor HH signaling (Eto2 and Ptc1, Figure 7B). Cyclopamine-

mediated inhibition of HH signaling (Perron et al., 2003) showed

that, although Ptc1 expression is completely dependent on HH,

Eto2 and Etv6 are regulated independently of the HH pathway as

their somitic expression in cyclopamine-treated embryos was

similar to that in wild-type embryos (Figure 7C). Unlike what

has been described in zebrafish (Gering and Patient, 2005; Law-

son et al., 2002), but similar to observations in the mouse (Coul-

tas et al., 2010), VEGFA does not lie downstream of HH, as

expression of Vegfa in the somites and Dll4 (as a readout for

VEGFA activity) in the DA was not affected in cyclopamine-

treated embryos (Figure 7C). We conclude that there is no

epistatic relationship between ETO2, ETV6, and the HH pathway

or VEGFA and HH at this stage of development in Xenopus.

Therefore, ETO2 and ETV6 play distinct, essential, and unique

roles in the regulation of Vegfa and the programming of HSCs.

DISCUSSION

Three sites of VEGFA production related to hematopoiesis have

been described in developing Xenopus embryos: DLP meso-

derm, somites, and hypochord. The first two regions express

all three VEGFA isoforms, whereas the hypochord predominantly
r Vegfa hypomorphs (A), expression of Runx1, Notch1, and Gata2 is lost. DA

to Vegfa hypomorphs, expression of the arterial marker Dll4 appears normal.

neural tube; black arrows, posterior cardinal veins (PCV); yellow arrows, trunk

with the given phenotype out of the total number examined. Whole mounts are

omorphs, and VEGFA morphants with respect to the definitive HSC program.

ment shown.
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Figure 7. No Epistasis between ETO2, ETV6, and Hedgehog Signaling

(A–C) Expression analysis by WMISH of Etv6, Eto2, Ptc1, Vegfa, and Dll4 in Eto2 (A) and Etv6 (B) morphants as well as in embryos treated with cyclopamine (C).

Efficiency of Eto2 and Etv6 morpholinos is controlled by Runx1 staining at stage 39, and that of cyclopamine is controlled by Ptc1 staining. Red arrowheads,

DA; orange arrowheads, Etv6 staining in the somites; blue arrowheads, notochord; yellow arrowheads, neural tube; white arrowheads, DLP. Numbers at the

(legend continued on next page)
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expresses the short isoform (Cleaver and Krieg, 1998). Full

depletion of VEGFA prevents hemangioblast specification, DA

precursor migration, and DA formation (Ciau-Uitz et al., 2010b).

Interestingly, depletion of the TF ETV6 in early embryogenesis

specifically inhibits VEGFA expression from the DLP and

somites. This affects correct programming of the adult heman-

gioblasts, arterial specification, and, consequently, HSC for-

mation, through both paracrine and autocrine mechanisms

(Ciau-Uitz et al., 2010b). It does not prevent migration of the

DA precursors to the midline and vessel formation (Ciau-Uitz

et al., 2010b), these events being supported by expression of

the short, diffusible VEGFA isoform in the hypochord (Cleaver

and Krieg, 1998) (Figure 7D).

Our current study provides insight into VEGFA functions.

Through downregulation and isoform-specific knockdown of

VEGFA, we have uncovered an extrinsic role for VEGFA in estab-

lishing the HSC program that is independent of hemangioblasts

specification, vessel formation, and arterial development. We

have also further dissected the requirements for VEGFA in DA

development, prior to HSC specification. Our study has therefore

uncoupled the requirement for VEGFA signaling in establishing

the endothelial, arterial, and HSC programs in DA precursors

(Figure 7D).

Although a role for VEGFA122 in the hypochord for the

migration and coalescence of the DA progenitors has been sug-

gested (Cleaver and Krieg, 1998), contribution of the other

VEGFA isoforms toward specification of the DA/HSC program

was unknown. Through the combined analyses of ETO2 mor-

phant embryos, Vegfa hypomorphs, and Vegfa isoform-specific

morphants, we have unveiled a specific requirement for VEGFA

medium and/or long isoform and assigned additional specific

functions to the short isoform (Figure 7D). First, signaling from

VEGFA170 in the somites instructs the HSC program of the DA/

HSC progenitors as they migrate toward the midline in a para-

crine manner. Whether this function is specific to VEGFA170 or

shared by both VEGFA170 and VEGFA190 could not be addressed

because of toxicity issues experienced with exogenous Vegfa190
mRNA. This signaling is critically required at later stages for

development of the hemogenic endothelium in the newly formed

DA. Second, VEGFA122 not only directs migration of the DA

precursors (Cleaver and Krieg, 1998) but is also sufficient for

hemangioblasts specification, lumenization, and arterialization.

Separately, our findings suggest additional functions for the

two anchored VEGFA isoforms in vasculogenesis, such as in

the development of the PCV and the trunk vasculature; this,

however, remains to be fully investigated.

A dose-dependent regulation by VEGFA was initially revealed

in haploinsufficient, embryonic lethal Vegfa mouse models dis-

playing blood vessel defects (Carmeliet et al., 1996; Ferrara
bottom of the panels indicate the number of embryos with the given phenotype ou

and dorsal to the top.

(D) Uncoupling the requirement for VEGFA isoforms during HSC development in X

the succession of events leading to HSC formation. Stages 20–23: ETV6 regulate

programming of the adult hemangioblasts in the DLP (green arrows). Stages 24–2

and hematopoietic (Scl) markers and Vegfa in an autocrine manner. The hypocho

midline (green arrows). Stages 27–30: ETO2 regulates production of VegfA lon

hematopoietic program of the DA precursors as they migrate along the somites (re

Cells in the hemogenic endothelium express NOTCH1; this will trigger expressio

Developm
et al., 1996). Using the embryonic stem cell differentiationmodel,

Lanner et al. (2007) reported that VEGFA regulates endothelial

development and arterial specification in a graded manner,

with high levels being absolutely required to induce the arterial

program. Extending these observations, we now show that

partial downregulation of VEGFA (in Vegfa hypomorphs) disturbs

the arterial but not the endothelial program of the DA. As

VEGFA170 and VEFGA190 are not required for this process (see

Vegfa isoform-specific morphants), this strongly suggests the

existence of a threshold of VEGFA122 short signaling to fully

support the arterial program.

The fact that the VEGFA122 short isoform does not rescue the

HSC defects in the ETO2 morphants suggests the necessity of

contacts between somitic cells/ECM and DA precursors. The

differential functional importance of the medium/long and short

VEGFA isoforms is consistent with previous findings. First, it

was recently shown that matrix-bound medium isoform differen-

tially activates FLK1 receptor when compared to soluble VEGFA

isoform (through recruitment of different receptor partners and

differential phosphorylation), therefore triggering different intra-

cellular responses (Chen et al., 2010). Second, Zhang et al.

(2008) highlight the differential effects of short and medium

VEGFA isoforms on MEK/ERK and Src pathways. Third, mouse

VEGFA medium isoform specifically interacts with the corecep-

tor NRP1, triggering formation of a specific ternary complex

(VEGFA/NRP1/FLK1) that modulates subsequent bioactivity in

endothelial cells (Soker et al., 2002). Therefore, we propose

that binding of VEGFA170 (and/or VEGFA190) to its receptors

on the DA precursors elicits a downstream response different

from that triggered by the soluble (VEGFA122) isoform. In-

vestigating the intracellular molecular cascade triggered by

VEGFA170/VEGFA190 will help understand how the HSC program

is initiated.

In contrast to HSC specification, development of the endo-

thelial and arterial programs does not seem to require direct

contacts between DA precursors and VEGFA-producing cells

but exposure to soluble VEGFA122. Our study provides a platform

to investigate the specificmechanisms engaged by VEGFA short

isoform in these processes and to fully assess the functional

differences between the different VEGFA isoforms.

VEGFA is known to function upstream of the NOTCH path-

way in arterial and HSC development. However, the mecha-

nisms by which VEGFA regulates this pathway are not clear.

Demonstration of the functional importance of NOTCH often

results from studies using inhibitors of the intracellular canonical

pathway that is shared by all NOTCH receptors. It is therefore

difficult to assess which NOTCH is functionally important in

a specific cellular pathway. As detailed below, our data suggest

that different isoforms of VEGFA are successively required
t of the total number examined.Wholemounts are shownwith anterior to the left

enopus. Schematic diagram depicting the requirements for VEGFA isoforms in

s production of VegfA in the somites, VegfA short isoform is critical for correct

6: the adult hemangioblasts (or DA precursors) express both endothelial (Flk1)

rd secretes VegfA short isoform that guides migration of hemangioblasts to the

g/medium isoforms (VegfA M/L) in the somites. These isoforms instruct the

d arrowheads). Stages 36–41: the DA has formed and is specified as an artery.

n of the HSC transcriptional program. n, notochord.
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upstream of two distinct NOTCH receptors (NOTCH1 and

NOTCH4, the only two receptors expressed in the DA [A.C.-U.,

and R.P., unpublished data]) and clarify their role in HSC

programming.

(1) The first molecular defect observed in the DA of Eto2

mutant embryos is the absence of expression of Notch1.

We propose that high levels of medium and/or long

somitic VEGFA are necessary for the initiation of Notch1

expression in the DA and therefore provide evidence for

a mechanistic link between VEGFA and NOTCH1 in

HSC specification. Moreover, as in the mouse, NOTCH1

appears to be the ‘‘hematopoietic’’ NOTCH in Xenopus.

(2) Together with the previously established function of

VEGFA in arterial specification (Ciau-Uitz et al., 2010b;

Gering and Patient, 2005; Lawson et al., 2002), our data

demonstrate that high levels of VEGFA122 in the somites

and/or in the DLP are sufficient to trigger the arterial

program. We propose that this may be initiated through

NOTCH4 signaling. Indeed, in wild-type embryos, Notch4

is first detected at stage 31 and Notch1 at stage 34, after

the onset of the arterial program (A.C.-U. and R.P.,

unpublished data). Moreover, both Notch4 and Dll4 (the

arterial-specific NOTCH ligand [Duarte et al., 2004]) are

expressed in the DA of Eto2-morphant embryos from

stages 32 to 39.

(3) Gata2, the early hematopoietic target of the NOTCH

pathway (Robert-Moreno et al., 2005), is expressed

at stage 32 in the DA of ETO2-depleted embryos, but,

in contrast to the arterial markers, its expression is

gradually downregulated thereafter and absent by stage

39. It is also absent in the VEGFA hypomorphs and iso-

form-specific morphants. Extending previous observa-

tions (Robert-Moreno et al., 2005), our data therefore

suggest that Gata2 expression is initiated by NOTCH4,

and, unlike the arterial genes, requires NOTCH1 for its

maintenance.

In conclusion, distinct isoforms of VEGFA sequentially activate

the arterial and blood programs. NOTCH4 appears critical for

specification of the arterial program and initiation of Gata2

expression. NOTCH1 appears critical for maintaining Gata2

expression and triggering HSC specification, very likely by initi-

ating Runx1 expression (Burns et al., 2005; Gering and Patient,

2005). A distinct, non-cell-autonomous requirement for the

NOTCH ligands deltaC and deltaD in the establishment of defin-

itive hematopoiesis was recently described in somites in zebra-

fish (Clements et al., 2011), highlighting increasing evidence for

the role of the somites in HSC specification and stressing the

complexity of NOTCH inputs in this process.

Our study demonstrates that ETO2 functions in a non-cell-

autonomous manner in the somites during Xenopus develop-

ment and controls one of the major pathways required for HSC

production, illustrating the multifunctionality of TFs. Indeed, in

mammals, ETO2 has cell autonomous functions in adult mouse

HSCs. Therefore, our study provides an example of a TF employ-

ing different mechanisms of action in distinct cellular settings

and stages of development. The TF ETV6 is another example

of this, as we recently demonstrated (Ciau-Uitz et al., 2010b).
156 Developmental Cell 24, 144–158, January 28, 2013 ª2013 Elsevi
Mechanistically, ETO2, like other members of the ETO protein

family, acts as a corepressor (Schuh et al., 2005 and references

therein) and is therefore unlikely to directly control Vegfa tran-

scription. We propose that ETO2 may repress a repressor of

Vegfa in the somites. Alternatively, ETO2 could control Vegfa

levels in an isoform-specific manner in the somites through regu-

lation of a splicing regulator.

In conclusion, our study has uncovered a critical, non-cell-

autonomous role for ETO2 in establishing the adult hematopoi-

etic system in developing Xenopus embryos. This function is

mediated by the nondiffusible isoform(s) of VEGFA that is

required for Notch1 expression in HSC precursors. These

findings further our mechanistic understanding of how

major signaling pathways control key stages of blood develop-

ment and, by doing so, may help design protocols for in vitro

production of HSCs with regenerative and therapeutic

purposes.
EXPERIMENTAL PROCEDURES

Morpholino Design

Eto2 ATG MO (Eto2-MO, 50-ATCAGCCGGTGAGTCTGGCATTGTA-30) and

Eto2 50UTR MO (Eto2-MO2 50-CAATGGTCCCAGCAGAAGTAGATC-30)
were designed. Vegfa MOs have been previously described (Kälin et al.,

2007). The VEGFA isoform-specific MO was designed to target the intron6/

exon7 splice junction (Vegfa-MOi6e7 50-GACTGCAAAAAGCAAAATGAT

GACA-30); the control MO targets the exon6/intron7 junction (MOc 50-ATTG
GATTTGAGCAAGCATAAGCGC-30). All MOs were obtained from Gene Tools

(Corvallis, OR, USA). Titrations of the MOs were carried out to determine the

optimal concentration for knockdown of gene expression without detrimental

effects to general embryonic development. We initially tested 40/50/80 ng of

Eto2-MO. Embryos injected with 80 ng were morphologically abnormal from

stage 39 onward. Embryos were thereafter injected with 48/50 ng of Eto2-

MO with no obvious abnormalities. Regarding Eto2-MO2, there were no

obvious abnormalities, and the hematopoietic defects were observed at

25/40/50 ng of MO; embryos were routinely injected with 25/30 ng. Finally,

embryos were routinely injected with 12.5 ng of Vegf-MO and 25 ng of

Vegfa-MOi6e7.

X. laevis Embryos

Xenopus embryos were obtained and cultured as previously described (Smith

and Slack, 1983; Walmsley et al., 1994) and staged according to Nieuwkoop

and Faber (1967). Embryos were injected at the two-cell stage as previously

described (Walmsley et al., 1994). For the somite-hypochord dissections,

tissues were dissected out from stage 27 WT and Eto2-MO embryos. mRNA

was extracted from somite-hypochord regions or whole embryos with Trizol

(Invitrogen, Carlsbad, CA, USA); complementary DNA synthesis was carried

out with Superscript III (Invitrogen).

Synthesis of mRNA for Injection

The Gateway cloning system (Invitrogen) was used to obtain an ETO2:GFP

fusion construct, where green fluorescent protein (GFP) was fused to

a 225 bp fragment of the Eto2 50 sequences containing the initiation codon.

The expression constructs containing Vegfa sequences were a kind gift of

Prof. Paul Krieg, University of Arizona. mRNAs were prepared using the

Ambion mMESSAGE machine kit (Austin, TX, USA). Embryos were injected

with 2, 3, or 4 ng of RNA.

In Situ Hybridization

Whole-mount in situ hybridization (WMISH) and in situ hybridization on

sections (ISHS) were performed as previously described (Ciau-Uitz et al.,

2000; Walmsley et al., 1994). For probe synthesis details, see the Supple-

mental Experimental Procedures. The Xenopus Eto probe was a kind gift

from Dr. Koyano-Nakagawa, University of Minnesota.
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