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Abstract

In this paper we use a continuation argument to prove the existence of global attractors for a class
of periodic Kolmogorov systems.
0 2003 Published by Elsevier Science (USA).

1. Introduction

In this paper we consider the following periodic Kolmogorov system
Xl =xifilt xiy .. xn), 1<i<n, (1.1)

wheref = (f1,..., fu) :R x R’ is a continuous function such that:

(Hy) fis T-periodicins. Thatis, f(t + T,x) = f(t, x).
(H2) The partial denvatlvegf’ are defined and continuousltx R .
(H3) There exist positive constarttg, ..., cn,m, such that

c,—(t )+Zc,

where J; :={j € {1,...,n}: j #i}. As usual,R, denotes the nonnegative cone
{x e R": x > 0}.

(t X)| <

-m, x>0 teR, 1<i<n, 1.2
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Example. Assume tha% is constant for all, j. In [3] we find necessary and sulfficient
conditions for whichf satisfies the assumption (1.2).

In Theorem 1.5 of [2], it was proved that if (1.1) has a positive solutiomhich is
defined and bounded o, co) for somery = 1p(v) € R, then the system has a global
attractor. In this paper we shall show that the existence of asigcimplied by (H)—(Hs)
when (1.1) is a cooperative system or a Lotka—\Volterra system. More precisely, we shall
prove the following two results.

Theorem 1.1. In addition to(1.2) suppose that
dfi

0x;

>0 ifi#].

Then, each positive solution ¢1.1) is defined on(zg, +o0), for somerg € R. Moreover,
(1.1)has aT-periodic solutionU such that

x(t)—-U(@)— 0 ast— +o0
for any positive solution of the system.

Theorem 1.2. The conclusions of Theorelrl remain true if (1.2) holds andf; (¢, x) has
the form

filt,x)=ai(t) = Y _bij(t)x;

j=1
for some continuoug-periodic functionsz;, b;; : R — R.

In Theorem 3.1 of [3] it was “shown” that the existencevpfor Lotka—\Volterra systems
is a consequence of assumptiong }HHs3), however the proof of this result contains a
mistake in the second line of p. 256.
The proof of our main result (Theorem 2.4 below) will be based on a continuation result
applied to the following one-parameter family of ordinary differential equations:
xi=xi[L=N ) +Afit,x)], 1<i<n, A€[0,1],
gl

where f*(x) :=c¢; [1+x1+ -+ x5 — (n 4+ Dx;].

2. Theresults

The following proposition can be obtained as a consequence of the main result in [1],
but here we give a direct and very simple proof.

Proposition 2.1. Let A(¢) = (a;;(¢)) be a continuoug -periodicn x n matrix and suppose
that there exist positive constants . . ., ¢, such that

L‘,'a[,'(t)+26‘j|a,'j(t)|<0, teR, 1<i<n.
Jjedi
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If @ () denotes the fundamental matrix of the system
x'=A()x (2.1)

with @ (0) = Identity, then the spectral radius @f(T') is less than one.

Proof. Letw = (w1, ..., w,) be a solution of (2.1) and define

n

r(t):ZCj|wj(t)|.

j=1

Asin Theorem 1.1 of [2], there exists a countable subset R such that is differentiable
onR\N and

n

F(6)y="Y " cjsign(w; ) w](t) = cjsign(w;(6)) Y aji®ywi(t) ift¢N,
Jj=1 j=1

i=1

where sigrix) denotes the sign of the number reaFrom this,

r(t) = chajj‘wj(t)| + Z[ Z cj sign(wj(t))aj,-(t)}w,-(t)
j=1

i=1t jeJ;
n n
< ciaii (0| wi (1) +Z[Zc,;|a,-,~(t)|}|w,~(t)|.
i=1 i=1l jeJ;
Definem; := —sup(c;a;; (t) + Zjeji cjlaji®l]: t e R}, m :=min{my,...,m,} andc =

max{c1, ..., cn}. Then,
n n
P <= milwi )] <—m Y |wi (@) < —meHr (@),
i=1 i=1

and hencey(T) < exp(—mc~1T)r(0). That is, if we define a nornjj - | in R* by
Ixlle = cilxi| + -+ + cnlxn|, we obtain||@(T)x|. < exp(—mc 1T)||x||. and the proof
is complete. O

Corollary 2.2. Assumg(1.2) holds and thatU = (Us, ..., U,) is a positiveT -periodic
solution of (1.1). Thenx/(U(0)) — I is invertible, wherer denotes the Poincaré map of
(1.1)and! is the identity map.

Proof. By the definition ofr, we haver’ (U (0)) = & (T), where® (¢) is the fundamental
matrix of the system

afi
af (1. U®)y; (2.2)

J

yi = fi(t. U®)yi + Ui(1) Z
j=1

with @ (0) = I. By the change of variables = y; / U;, system (2.2) becomes
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J

;N O
. ; o (UMD 0z (2.3)

which satisfies the assumptions in Proposition 2.1.

Let ¥ (¢) be the fundamental matrix of (2.3) with (0) = I. By Proposition 2.1, the
spectral radius o¥ (T) is less than one and the proof follows easily sida@) and¥ (T)
are similar linear maps. O

The proof of our main result requires the following consequence of the Implicit Function
Theorem.

Lemma 2.3. Let H : D — R”" be a continuously differentiable function defined in an open
subsetD of [0, 1] x R" and suppose that

() H~1(0) is a compact set.
(i) H~1(0)N ({0} x R") is a single set.
(i) The partial derivative H,(x,x) is invertible for each(ix,x) € H~1(0). Then
H~10) N ({1} x R") is a single set.

Proof. For eachi € [0, 1], let us writeP, = H~1(0) N ({»} x R") and note that, by the
Implicit Function Theorem, there existse (0, 1] such thatpP, # ¢ for anya € [0, w).

Claim 1. There exists € (0, 1] such thatP, is a single set for all € [0,¢). To
show this, assume on the contrary the existence of two sequéfiges’)), (A, y¥))
in H~1(0) such that,; — 0 andx* # y*. Using our assumptions (i) and (ii), it is easy to
show thate¥ — x* andy* — x*, where{(0, x*)} = Po.

Let w be a limit point of the sequeng@* = ||x* — y*||~1(x* — yk)). Then,

0= [H (3, x*) = H (s, y*)] |5 = ¥ 7
1
- (/Hx(kk, (1—s)yk +sxk)ds) (w*) > H, (0, x")w,
0

which contradicts our assumption (iii) and proves the claim.

Let ¢ be given by the above claim. Using (iii), it is easy to show tRats a nonempty
set. In fact,

Claim 2. P, is a single set. To show this assume by contradiction the existence of
(¢,x") € P;; i =0, 1; such thak® + x1. By (iii) and the Implicit Function Theorem, there
exist continuous functiong; : [8, ¢] — R”, for somes € (0, ¢), such thaty; (¢) = x' and
H(, ¥i(A)) =0in[8, e]. This contradicts Claim 1 and the proof of Claim 2 is complete.

The proof follows now from Claims 1, 2 and a well-known continuation argument.

Theorem 2.4. In addition to(1.2) suppose that

T
/ﬁ(r,O)dt>O Vi (2.4)
0
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and that
afi

ax]'

>0 ifi#]. (2.5)
Then(1.1)has a positivel -periodic solution.

Proof. Note first that condition (1.2) becomes

icj% <—m

=1

Givenx = (x1,...,x,) € R", we defineS(x) = x1 + --- + x, and
[ = 1+8®) —(m+Dx], 1<i<n

Obviously, f* := (ff, ..., f,7) satisfies assumptions (1.2) and (2.5). In fact,
~ Ay

Note also thatf*(x*) = 0, wherex* = (x], ..., x,;) andx/ = 1 for alli.
For eachh € [0, 1], let us definef* = (f]. ..., 1) Rx R%, — R" by f(t,x) =
(L= f7(x) + Afi(t, x), whereR’, , := {x e R": x > 0}, and note that

n 8f)“
§ cj g L (t,x) < —m:=—min{l,m}, 1<i<n. (2.6)
” CoX;

j=1

Let, : D) — R” be the Poincaré map of the system
X =xi fHx, L x), 1<i<n. (2.7)

It is well known thatD, is a (possibly empty) open subset®f and by the continuous
dependence in the parameters,;= {(A,x) € [0,1] x R": x € D,} is an open subset
of [0,1] x R* andH: D — R"; H(A,x) := m,(x) — x; is a continuously differentiable
function. Note thatD is nonempty sincg0, x*) € D. Notice also that by (2.6) and
Corollary 2.2, the partial derivative, (1, x) is invertible for all(x, x) € H~1(0). Thus,H
satisfies assumption (iii) of Lemma 2.3.

On the other handd (0, x*) = 0 and by Corollary 1.7 of [2]H ~1(0) N ({0} x R") =
{(0,x*)}. Finally, let ((A«, x¥)) be a sequence i ~1(0) and letu* = (u%, ..., u¥) be the
positive T -periodic solution of the equation

xj=xi[(1= ) )+ M fit, x)], 1<i<n,

determined by the conditiai (0) = x*.
Claim. The sequencé:*) is uniformly bounded. That is, there exisés > 0 such that
lu* ()| < M for all t € R andk € N. To show this let us define

W)=Y c;In(k®) and ¢p(t.x)=> c;fi¥(t.x).

=1 =1
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Itis easy to show that
Pk
0x;

and hence there exists a const&nt- 0 such that
Gk (t, x) < Pr(1,0) —mS(x) < K —mS(x).

On the other handW (1) = ¢ (t, u* (1)) < K — mS(u* (1)) < K — md =Wy (1), where
d:=maXci,...,c,} and thusWi(r) <dK/m Vt € R; k € N, sinceW,, is T-periodic for
all k. That s, there exists a constavit> 0 such that

(t,x) < —m Vi k,t,x,

ukt-ub ) <M VieR, keN. (2.8)
By (2.6) and (2.5),

af n
f‘l < _ﬂ < 07
8x,- Ci

and by (2.4),

T
/ff(t,O)dt>0 vrel[0,1], 1<i <n.
0

From this and Theorems 2.3 and 2.7 of [4], the logistic equatioa xfl.)‘(t, xe;) has a
positive T-periodic solutionU; (¢, A) which is jointly continuous in(z, 1) € R x [0, 1].
(Here and hencefortley, ..., e, denotes the canonical vector basisiRif.) In particular,
there exists a constaat> 0 such that; (¢, 1) > a Vi, 1, A.

On the other handX) (r) > u* (1) f*(1,u* (1)e;) and hencad (1) > U;(1, ) > «
Vi, k, t. See proof of Proposition 2.1 of [4]. From this and (2:8)1)“ < M5 and
the proof of the claim is complete.

By the above claim and (2.7) we conclude that the sequence of derivatife$ is
uniformly bounded, and by Ascoli’s theorem we can suppose, without loss of generality
that (u¥) converges uniformly to &-periodic continuous function= (v1, ..., v,) :R —
R". On the other hand, we can also assume thgt converges to a point € [0, 1] and
now it is easy to show thatis a solution of the system

x{:x,'fl.“(t,x), 1<i<n.

Note also thav; (1) > a Vi e R; 1 <i < n.
Finally, x* = 1*(0) — v(0) and henceH ~1(0) is a compact subset §, 1] x R". The
proof follows now from Lemma 2.3. O

Proof of Theorem 1.1. Letus fixp > 0inR” such thatp + f(¢,0) > O forallr € R, and
defineg(¢, x) = p+ f (¢, x). By Theorem 2.4 above and Theorem 1.5 of [2], it follows that
each positive solution of the system

x/=xigi(t,x), 1<i<n, (2.9)

is defined and bounded on a terminal intervaRof
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Let u be a solution of (1.1) such that(0) > 0 and letv be the solution of (2.9)
determined by the initial condition(0) = u(0). Sinceg(z, x) > f(z, x), it follows from
Kamke’s theorem thai(r) < v(¢) for all > 0 in the domain of:. From thisu is defined
and bounded on a terminal intervalldiand the proof follows from Theorem 1.5 of [2].0

Proof of Theorem 1.2. Since
cibi () + Y cjlbji] <—m, 1R, 1<i<n,
JjeJi
there existg > 0 such that
cibii (1) + ch'[fi-i- bji]]<-m/2, teR, 1<i<n.
JeJi
Definepi; = bii, Bij(t) = —|b;j(1)] — &, and
n
gi(t,x)=ai() =Y Bij(x;, 1<i<n,
j=1

theng satisfies the assumptions in Theorem 1.1 #iGd x) < g(¢, x). The proof follows
now as in Theorem 1.1.0
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