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Abstract

In this paper we use a continuation argument to prove the existence of global attractors for
of periodic Kolmogorov systems.
 2003 Published by Elsevier Science (USA).

1. Introduction

In this paper we consider the following periodic Kolmogorov system

x ′
i = xifi(t, xi, . . . , xn), 1 � i � n, (1.1)

wheref = (f1, . . . , fn) :R × R
n+ is a continuous function such that:

(H1) f is T -periodic int . That is,f (t + T ,x) = f (t, x).
(H2) The partial derivatives∂fi

∂xj
are defined and continuous inR × R

n+.
(H3) There exist positive constantsc1, . . . , cn,m, such that

ci
∂fi

∂xi
(t, x)+

∑
j∈Ji

cj

∣∣∣∣∂fj∂xi
(t, x)

∣∣∣∣� −m, x > 0, t ∈ R, 1 � i � n, (1.2)

whereJi := {j ∈ {1, . . . , n}: j 
= i}. As usual,Rn+ denotes the nonnegative co
{x ∈ R

n: x � 0}.
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in [1],
Example. Assume that∂fi
∂xj

is constant for alli, j . In [3] we find necessary and sufficie
conditions for whichf satisfies the assumption (1.2).

In Theorem 1.5 of [2], it was proved that if (1.1) has a positive solutionv which is
defined and bounded on(t0,∞) for somet0 = t0(v) ∈ R, then the system has a glob
attractor. In this paper we shall show that the existence of a suchv is implied by (H1)–(H3)
when (1.1) is a cooperative system or a Lotka–Volterra system. More precisely, we
prove the following two results.

Theorem 1.1. In addition to(1.2)suppose that

∂fi

∂xj
> 0 if i 
= j.

Then, each positive solution of(1.1) is defined on(t0,+∞), for somet0 ∈ R. Moreover,
(1.1)has aT -periodic solutionU such that

x(t)− U(t) → 0 ast → +∞
for any positive solution of the system.

Theorem 1.2. The conclusions of Theorem1.1 remain true if (1.2)holds andfi(t, x) has
the form

fi(t, x)= ai(t) −
n∑

j=1

bij (t)xj

for some continuousT -periodic functionsai, bij :R → R.

In Theorem 3.1 of [3] it was “shown” that the existence ofv, for Lotka–Volterra system
is a consequence of assumptions (H1)–(H3), however the proof of this result contains
mistake in the second line of p. 256.

The proof of our main result (Theorem 2.4 below) will be based on a continuation
applied to the following one-parameter family of ordinary differential equations:

x ′
i = xi

[
(1− λ)f ∗

i (x)+ λfi(t, x)
]
, 1 � i � n, λ ∈ [0,1],

wheref ∗
i (x) := c−1

i [1+ x1 + · · · + xn − (n+ 1)xi].

2. The results

The following proposition can be obtained as a consequence of the main result
but here we give a direct and very simple proof.

Proposition 2.1. LetA(t) = (aij (t)) be a continuousT -periodicn×n matrix and suppose
that there exist positive constantsc1, . . . , cn such that

ciaii (t)+
∑

cj
∣∣aij (t)∣∣< 0, t ∈ R, 1� i � n.
j∈Ji
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If Φ(t) denotes the fundamental matrix of the system

x ′ = A(t)x (2.1)

with Φ(0) = Identity, then the spectral radius ofΦ(T ) is less than one.

Proof. Let w = (w1, . . . ,wn) be a solution of (2.1) and define

r(t) =
n∑

j=1

cj
∣∣wj(t)

∣∣.
As in Theorem 1.1 of [2], there exists a countable subsetN of R such thatr is differentiable
on R\N and

r ′(t) =
n∑

j=1

cj sign
(
wj(t)

)
w′

j (t) =
n∑

j=1

cj sign
(
wj (t)

) n∑
i=1

aji(t)wi(t) if t /∈ N,

where sign(x) denotes the sign of the number realx. From this,

r ′(t) =
n∑

j=1

cjajj
∣∣wj (t)

∣∣+ n∑
i=1

[∑
j∈Ji

cj sign
(
wj(t)

)
aji(t)

]
wi(t)

�
n∑

i=1

ciaii(t)
∣∣wi(t)

∣∣+ n∑
i=1

[∑
j∈Ji

cj
∣∣aji(t)∣∣

]∣∣wi(t)
∣∣.

Definemi := −sup{ciaii(t) +∑
j∈Ji cj |aji(t)|: t ∈ R}, m := min{m1, . . . ,mn} andc =

max{c1, . . . , cn}. Then,

r ′(t) � −
n∑

i=1

mi

∣∣wi(t)
∣∣� −m

n∑
i=1

∣∣wi(t)
∣∣� −mc−1r(t),

and hence,r(T ) � exp(−mc−1T )r(0). That is, if we define a norm‖ · ‖c in R
n by

‖x‖c = ci |xi | + · · · + cn|xn|, we obtain‖Φ(T )x‖c � exp(−mc−1T )‖x‖c and the proof
is complete. ✷
Corollary 2.2. Assume(1.2) holds and thatU = (U1, . . . ,Un) is a positiveT -periodic
solution of (1.1). Thenπ ′(U(0)) − I is invertible, whereπ denotes the Poincaré map
(1.1)andI is the identity map.

Proof. By the definition ofπ , we haveπ ′(U(0)) = Φ(T ), whereΦ(t) is the fundamenta
matrix of the system

y ′
i = fi

(
t,U(t)

)
yi +Ui(t)

n∑
j=1

∂fi

∂xj

(
t,U(t)

)
yj (2.2)

with Φ(0) = I . By the change of variableszi = yi/Ui , system (2.2) becomes
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z′
i =

n∑
j=1

∂fi

∂xj

(
t,U(t)

)
Uj(t)zj (2.3)

which satisfies the assumptions in Proposition 2.1.
Let Ψ (t) be the fundamental matrix of (2.3) withΨ (0) = I . By Proposition 2.1, the

spectral radius ofΨ (T ) is less than one and the proof follows easily sinceΦ(T ) andΨ (T )

are similar linear maps.✷
The proof of our main result requires the following consequence of the Implicit Fun

Theorem.

Lemma 2.3. LetH :D → R
n be a continuously differentiable function defined in an o

subsetD of [0,1] × R
n and suppose that:

(i) H−1(0) is a compact set.
(ii) H−1(0)∩ ({0} × R

n) is a single set.
(iii) The partial derivativeHx(λ, x) is invertible for each(λ, x) ∈ H−1(0). Then

H−1(0)∩ ({1} × R
n) is a single set.

Proof. For eachλ ∈ [0,1], let us writePλ = H−1(0) ∩ ({λ} × R
n) and note that, by th

Implicit Function Theorem, there existsµ ∈ (0,1] such thatPλ 
= ∅ for anyλ ∈ [0,µ).
Claim 1. There existsε ∈ (0,1] such thatPλ is a single set for allλ ∈ [0, ε). To

show this, assume on the contrary the existence of two sequences((λk, x
k)), ((λk, y

k))

in H−1(0) such thatλk → 0 andxk 
= yk. Using our assumptions (i) and (ii), it is easy
show thatxk → x∗ andyk → x∗, where{(0, x∗)} = P0.

Let w be a limit point of the sequence(wk = ‖xk − yk‖−1(xk − yk)). Then,

0= [
H
(
λk, x

k
)−H

(
λk, y

k
)]∥∥xk − yk

∥∥−1

=
( 1∫

0

Hx

(
λk, (1− s)yk + sxk

)
ds

)
(wk) → Hx(0, x

∗)w,

which contradicts our assumption (iii) and proves the claim.
Let ε be given by the above claim. Using (iii), it is easy to show thatPε is a nonempty

set. In fact,
Claim 2. Pε is a single set. To show this assume by contradiction the existen

(ε, xi) ∈ Pε; i = 0,1; such thatx0 
= x1. By (iii) and the Implicit Function Theorem, ther
exist continuous functionsψi : [δ, ε] → R

n, for someδ ∈ (0, ε), such thatψi(ε) = xi and
H(λ,ψi(λ)) = 0 in [δ, ε]. This contradicts Claim 1 and the proof of Claim 2 is comple

The proof follows now from Claims 1, 2 and a well-known continuation argument.✷
Theorem 2.4. In addition to(1.2)suppose that

T∫
fi(t,0) dt > 0 ∀i (2.4)
0
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and that

∂fi

∂xj
> 0 if i 
= j. (2.5)

Then(1.1)has a positiveT -periodic solution.

Proof. Note first that condition (1.2) becomes
n∑

j=1

cj
∂fj

∂xi
� −m.

Givenx = (x1, . . . , xn) ∈ R
n, we defineS(x) = x1 + · · · + xn and

f ∗
i (x) = c−1

i

[
1+ S(x)− (n + 1)xi

]
, 1� i � n.

Obviously,f ∗ := (f ∗
1 , . . . , f ∗

n ) satisfies assumptions (1.2) and (2.5). In fact,

n∑
j=1

cj
∂f ∗

j

∂xi
≡ −1 ∀i.

Note also thatf ∗(x∗) = 0, wherex∗ = (x∗
1, . . . , x

∗
n) andx∗

i = 1 for all i.
For eachλ ∈ [0,1], let us definef λ = (f λ

1 , . . . , f λ
n ) :R × R

n++ → R
n by f λ

i (t, x) =
(1− λ)f ∗

i (x)+ λfi(t, x), whereR
n++ := {x ∈ R

n: x > 0}, and note that

n∑
j=1

cj
∂f λ

j

∂xi
(t, x)� −�m := −min{1,m}, 1 � i � n. (2.6)

Let πλ :Dλ → R
n be the Poincaré map of the system

x ′
i = xif

λ
i (t, x1, . . . , xn), 1� i � n. (2.7)

It is well known thatDλ is a (possibly empty) open subset ofR
n and by the continuou

dependence in the parameters,D := {(λ, x) ∈ [0,1] × R
n: x ∈ Dλ} is an open subse

of [0,1] × R
n andH :D → R

n; H(λ,x) := πλ(x) − x; is a continuously differentiabl
function. Note thatD is nonempty since(0, x∗) ∈ D. Notice also that by (2.6) an
Corollary 2.2, the partial derivativeHx(λ, x) is invertible for all(λ, x) ∈ H−1(0). Thus,H
satisfies assumption (iii) of Lemma 2.3.

On the other hand,H(0, x∗) = 0 and by Corollary 1.7 of [2],H−1(0) ∩ ({0} × R
n) =

{(0, x∗)}. Finally, let ((λk, x
k)) be a sequence inH−1(0) and letuk = (uk

1, . . . , u
k
n) be the

positiveT -periodic solution of the equation

x ′
i = xi

[
(1− λk)f

∗
i (x)+ λkfi(t, x)

]
, 1 � i � n,

determined by the conditionuk(0) = xk.
Claim. The sequence(uk) is uniformly bounded. That is, there existsM > 0 such that

‖uk(t)‖ � M for all t ∈ R andk ∈ N. To show this let us define

Wk(t) =
n∑

cj ln
(
uk
j (t)

)
and φk(t, x)=

n∑
cj f

λk

j (t, x).
j=1 j=1
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It is easy to show that

∂φk

∂xi
(t, x)� −�m ∀i, k, t, x,

and hence there exists a constantK > 0 such that

φk(t, x)� φk(t,0)− �mS(x) � K − �mS(x).

On the other hand,W ′
k(t) = φk(t, u

k(t)) � K − �mS(uk(t)) � K − �md−1Wk(t), where
d := max{c1, . . . , cn} and thus,Wk(t) � dK/�m ∀t ∈ R; k ∈ N, sinceWk is T -periodic for
all k. That is, there exists a constantM > 0 such that

uk
1(t)

c1 · · ·uk
n(t)

cn � M ∀t ∈ R, k ∈ N. (2.8)

By (2.6) and (2.5),

∂f λ
i

∂xi
� − �m

ci
< 0,

and by (2.4),

T∫
0

f λ
i (t,0) dt > 0 ∀λ ∈ [0,1], 1 � i � n.

From this and Theorems 2.3 and 2.7 of [4], the logistic equationx ′ = xf λ
i (t, xei) has a

positiveT -periodic solutionUi(t, λ) which is jointly continuous in(t, λ) ∈ R × [0,1].
(Here and henceforth,e1, . . . , en denotes the canonical vector basis ofR

n.) In particular,
there exists a constantα > 0 such thatUi(t, λ) > α ∀i, t, λ.

On the other hand,(uk
i )

′(t) > uk
i (t)f

λk

i (t, uk
i (t)ei ) and henceuk

i (t) > Ui(t, λk) > α

∀i, k, t . See proof of Proposition 2.1 of [4]. From this and (2.8),uk
i (t)

ci � Mαci−S(c) and
the proof of the claim is complete.

By the above claim and (2.7) we conclude that the sequence of derivatives((uk)′) is
uniformly bounded, and by Ascoli’s theorem we can suppose, without loss of gene
that(uk) converges uniformly to aT -periodic continuous functionv = (v1, . . . , vn) :R →
R

n. On the other hand, we can also assume that(λk) converges to a pointµ ∈ [0,1] and
now it is easy to show thatv is a solution of the system

x ′
i = xif

µ
i (t, x), 1� i � n.

Note also thatvi(t) � α ∀t ∈ R; 1 � i � n.
Finally,xk = uk(0) → v(0) and hence,H−1(0) is a compact subset of[0,1] × R

n. The
proof follows now from Lemma 2.3. ✷
Proof of Theorem 1.1. Let us fixp > 0 in R

n such thatp + f (t,0) > 0 for all t ∈ R, and
defineg(t, x) = p+f (t, x). By Theorem 2.4 above and Theorem 1.5 of [2], it follows t
each positive solution of the system

x ′
i = xigi(t, x), 1 � i � n, (2.9)

is defined and bounded on a terminal interval ofR.
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Let u be a solution of (1.1) such thatu(0) > 0 and letv be the solution of (2.9
determined by the initial conditionv(0) = u(0). Sinceg(t, x) > f (t, x), it follows from
Kamke’s theorem thatu(t) � v(t) for all t � 0 in the domain ofu. From thisu is defined
and bounded on a terminal interval ofR and the proof follows from Theorem 1.5 of [2].✷
Proof of Theorem 1.2. Since

cibii (t)+
∑
j∈Ji

cj
∣∣bji(t)∣∣� −m, t ∈ R, 1 � i � n,

there existsε > 0 such that

cibii (t)+
∑
j∈Ji

cj
[
ε + ∣∣bji(t)∣∣]� −m/2, t ∈ R, 1 � i � n.

Defineβii = bii , βij (t) = −|bij (t)| − ε, and

gi(t, x)= ai(t) −
n∑

j=1

βij (t)xj , 1 � i � n,

theng satisfies the assumptions in Theorem 1.1 andf (t, x) � g(t, x). The proof follows
now as in Theorem 1.1.✷
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