

WWW.MATHEMATICSWEB.ORG POWERED BY SCIENCE DIRECT.

Journal of MATHEMATICAL ANALYSIS AND **APPLICATIONS**

J. Math. Anal. Appl. 279 (2003) 365-371

www.elsevier.com/locate/jmaa

Existence of global attractors for a class of periodic Kolmogorov systems $\stackrel{\text{\tiny{thetermat}}}{\longrightarrow}$

Antonio Tineo

Universidad de los Andes, Departamento de Matematicas, Facultad de Ciencias, Medida 5101, Venezuela Received 17 January 2001

Submitted by C.E. Wayne

Abstract

In this paper we use a continuation argument to prove the existence of global attractors for a class of periodic Kolmogorov systems.

© 2003 Published by Elsevier Science (USA).

1. Introduction

In this paper we consider the following periodic Kolmogorov system

$$x'_i = x_i f_i(t, x_i, \dots, x_n), \quad 1 \le i \le n, \tag{1.1}$$

where $f = (f_1, ..., f_n) : \mathbb{R} \times \mathbb{R}^n_+$ is a continuous function such that:

- (H₁) *f* is *T*-periodic in *t*. That is, f(t + T, x) = f(t, x). (H₂) The partial derivatives $\frac{\partial f_i}{\partial x_j}$ are defined and continuous in $\mathbb{R} \times \mathbb{R}^n_+$.
- (H₃) There exist positive constants c_1, \ldots, c_n, m , such that

$$c_i \frac{\partial f_i}{\partial x_i}(t, x) + \sum_{j \in J_i} c_j \left| \frac{\partial f_j}{\partial x_i}(t, x) \right| \leq -m, \quad x > 0, \ t \in \mathbb{R}, \ 1 \leq i \leq n,$$
(1.2)

where $J_i := \{j \in \{1, ..., n\}: j \neq i\}$. As usual, \mathbb{R}^n_+ denotes the nonnegative cone $\{x \in \mathbb{R}^n \colon x \ge 0\}.$

This paper was sponsored by the Spanish MEG, DGFPC, SAB1995-0675. E-mail address: atineo@ula.ve.

⁰⁰²²⁻²⁴⁷X/03/\$ - see front matter © 2003 Published by Elsevier Science (USA). doi:10.1016/S0022-247X(02)00332-3

Example. Assume that $\frac{\partial f_i}{\partial x_j}$ is constant for all *i*, *j*. In [3] we find necessary and sufficient conditions for which *f* satisfies the assumption (1.2).

In Theorem 1.5 of [2], it was proved that if (1.1) has a positive solution v which is defined and bounded on (t_0, ∞) for some $t_0 = t_0(v) \in \mathbb{R}$, then the system has a global attractor. In this paper we shall show that the existence of a such v is implied by (H₁)–(H₃) when (1.1) is a cooperative system or a Lotka–Volterra system. More precisely, we shall prove the following two results.

Theorem 1.1. In addition to (1.2) suppose that

$$\frac{\partial f_i}{\partial x_j} > 0 \quad \text{if } i \neq j.$$

Then, each positive solution of (1.1) is defined on $(t_0, +\infty)$, for some $t_0 \in \mathbb{R}$. Moreover, (1.1) has a *T*-periodic solution *U* such that

$$x(t) - U(t) \rightarrow 0 \quad as \ t \rightarrow +\infty$$

for any positive solution of the system.

Theorem 1.2. The conclusions of Theorem 1.1 remain true if (1.2) holds and $f_i(t, x)$ has the form

$$f_i(t, x) = a_i(t) - \sum_{j=1}^n b_{ij}(t)x_j$$

for some continuous T-periodic functions $a_i, b_{ij} : \mathbb{R} \to \mathbb{R}$.

In Theorem 3.1 of [3] it was "shown" that the existence of v, for Lotka–Volterra systems is a consequence of assumptions (H₁)–(H₃), however the proof of this result contains a mistake in the second line of p. 256.

The proof of our main result (Theorem 2.4 below) will be based on a continuation result applied to the following one-parameter family of ordinary differential equations:

$$x'_i = x_i \Big[(1-\lambda) f_i^*(x) + \lambda f_i(t,x) \Big], \quad 1 \le i \le n, \ \lambda \in [0,1],$$

where $f_i^*(x) := c_i^{-1} [1 + x_1 + \dots + x_n - (n+1)x_i].$

2. The results

The following proposition can be obtained as a consequence of the main result in [1], but here we give a direct and very simple proof.

Proposition 2.1. Let $A(t) = (a_{ij}(t))$ be a continuous *T*-periodic $n \times n$ matrix and suppose that there exist positive constants c_1, \ldots, c_n such that

$$c_i a_{ii}(t) + \sum_{j \in J_i} c_j |a_{ij}(t)| < 0, \quad t \in \mathbb{R}, \ 1 \leq i \leq n.$$

366

If $\Phi(t)$ denotes the fundamental matrix of the system

$$x' = A(t)x \tag{2.1}$$

with $\Phi(0) = Identity$, then the spectral radius of $\Phi(T)$ is less than one.

Proof. Let $w = (w_1, \ldots, w_n)$ be a solution of (2.1) and define

$$r(t) = \sum_{j=1}^{n} c_j |w_j(t)|.$$

As in Theorem 1.1 of [2], there exists a countable subset *N* of \mathbb{R} such that *r* is differentiable on $\mathbb{R} \setminus N$ and

$$r'(t) = \sum_{j=1}^{n} c_j \operatorname{sign}(w_j(t)) w'_j(t) = \sum_{j=1}^{n} c_j \operatorname{sign}(w_j(t)) \sum_{i=1}^{n} a_{ji}(t) w_i(t) \quad \text{if } t \notin N,$$

where sign(x) denotes the sign of the number real x. From this,

$$r'(t) = \sum_{j=1}^{n} c_j a_{jj} |w_j(t)| + \sum_{i=1}^{n} \left[\sum_{j \in J_i} c_j \operatorname{sign}(w_j(t)) a_{ji}(t) \right] w_i(t)$$

$$\leqslant \sum_{i=1}^{n} c_i a_{ii}(t) |w_i(t)| + \sum_{i=1}^{n} \left[\sum_{j \in J_i} c_j |a_{ji}(t)| \right] |w_i(t)|.$$

Define $m_i := -\sup\{c_i a_{ii}(t) + \sum_{j \in J_i} c_j | a_{ji}(t) | : t \in \mathbb{R}\}, m := \min\{m_1, \dots, m_n\}$ and $c = \max\{c_1, \dots, c_n\}$. Then,

$$r'(t) \leq -\sum_{i=1}^{n} m_i |w_i(t)| \leq -m \sum_{i=1}^{n} |w_i(t)| \leq -mc^{-1}r(t),$$

and hence, $r(T) \leq \exp(-mc^{-1}T)r(0)$. That is, if we define a norm $\|\cdot\|_c$ in \mathbb{R}^n by $\|x\|_c = c_i |x_i| + \cdots + c_n |x_n|$, we obtain $\|\Phi(T)x\|_c \leq \exp(-mc^{-1}T)\|x\|_c$ and the proof is complete. \Box

Corollary 2.2. Assume (1.2) holds and that $U = (U_1, ..., U_n)$ is a positive *T*-periodic solution of (1.1). Then $\pi'(U(0)) - I$ is invertible, where π denotes the Poincaré map of (1.1) and *I* is the identity map.

Proof. By the definition of π , we have $\pi'(U(0)) = \Phi(T)$, where $\Phi(t)$ is the fundamental matrix of the system

$$y'_{i} = f_{i}(t, U(t))y_{i} + U_{i}(t)\sum_{j=1}^{n} \frac{\partial f_{i}}{\partial x_{j}}(t, U(t))y_{j}$$

$$(2.2)$$

with $\Phi(0) = I$. By the change of variables $z_i = y_i/U_i$, system (2.2) becomes

A. Tineo / J. Math. Anal. Appl. 279 (2003) 365-371

$$z'_{i} = \sum_{j=1}^{n} \frac{\partial f_{i}}{\partial x_{j}} (t, U(t)) U_{j}(t) z_{j}$$

$$(2.3)$$

which satisfies the assumptions in Proposition 2.1.

Let $\Psi(t)$ be the fundamental matrix of (2.3) with $\Psi(0) = I$. By Proposition 2.1, the spectral radius of $\Psi(T)$ is less than one and the proof follows easily since $\Phi(T)$ and $\Psi(T)$ are similar linear maps. \Box

The proof of our main result requires the following consequence of the Implicit Function Theorem.

Lemma 2.3. Let $H : D \to \mathbb{R}^n$ be a continuously differentiable function defined in an open subset D of $[0, 1] \times \mathbb{R}^n$ and suppose that:

- (i) $H^{-1}(0)$ is a compact set.
- (ii) $H^{-1}(0) \cap (\{0\} \times \mathbb{R}^n)$ is a single set.
- (iii) The partial derivative $H_x(\lambda, x)$ is invertible for each $(\lambda, x) \in H^{-1}(0)$. Then $H^{-1}(0) \cap (\{1\} \times \mathbb{R}^n)$ is a single set.

Proof. For each $\lambda \in [0, 1]$, let us write $P_{\lambda} = H^{-1}(0) \cap (\{\lambda\} \times \mathbb{R}^n)$ and note that, by the Implicit Function Theorem, there exists $\mu \in (0, 1]$ such that $P_{\lambda} \neq \emptyset$ for any $\lambda \in [0, \mu)$.

Claim 1. There exists $\varepsilon \in (0, 1]$ such that P_{λ} is a single set for all $\lambda \in [0, \varepsilon)$. To show this, assume on the contrary the existence of two sequences $((\lambda_k, x^k)), ((\lambda_k, y^k))$ in $H^{-1}(0)$ such that $\lambda_k \to 0$ and $x^k \neq y^k$. Using our assumptions (i) and (ii), it is easy to show that $x^k \to x^*$ and $y^k \to x^*$, where $\{(0, x^*)\} = P_0$.

Let w be a limit point of the sequence $(w^k = ||x^k - y^k||^{-1}(x^k - y^k))$. Then,

$$0 = \left[H(\lambda_k, x^k) - H(\lambda_k, y^k)\right] \|x^k - y^k\|^{-1}$$
$$= \left(\int_0^1 H_x(\lambda_k, (1-s)y^k + sx^k) ds\right) (w^k) \to H_x(0, x^*) w$$

which contradicts our assumption (iii) and proves the claim.

Let ε be given by the above claim. Using (iii), it is easy to show that P_{ε} is a nonempty set. In fact,

Claim 2. P_{ε} is a single set. To show this assume by contradiction the existence of $(\varepsilon, x^i) \in P_{\varepsilon}$; i = 0, 1; such that $x^0 \neq x^1$. By (iii) and the Implicit Function Theorem, there exist continuous functions $\psi_i : [\delta, \varepsilon] \to \mathbb{R}^n$, for some $\delta \in (0, \varepsilon)$, such that $\psi_i(\varepsilon) = x^i$ and $H(\lambda, \psi_i(\lambda)) = 0$ in $[\delta, \varepsilon]$. This contradicts Claim 1 and the proof of Claim 2 is complete.

The proof follows now from Claims 1, 2 and a well-known continuation argument. \Box

Theorem 2.4. In addition to (1.2) suppose that

$$\int_{0}^{1} f_i(t,0) dt > 0 \quad \forall i$$
(2.4)

368

and that

$$\frac{\partial f_i}{\partial x_j} > 0 \quad if \ i \neq j.$$

$$\tag{2.5}$$

Then (1.1) *has a positive T-periodic solution.*

Proof. Note first that condition (1.2) becomes

$$\sum_{j=1}^{n} c_j \frac{\partial f_j}{\partial x_i} \leqslant -m$$

Given $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, we define $S(x) = x_1 + \cdots + x_n$ and

$$f_i^*(x) = c_i^{-1} [1 + S(x) - (n+1)x_i], \quad 1 \le i \le n.$$

Obviously, $f^* := (f_1^*, \dots, f_n^*)$ satisfies assumptions (1.2) and (2.5). In fact,

$$\sum_{j=1}^{n} c_j \frac{\partial f_j^*}{\partial x_i} \equiv -1 \quad \forall i.$$

Note also that $f^*(x^*) = 0$, where $x^* = (x_1^*, \dots, x_n^*)$ and $x_i^* = 1$ for all *i*. For each $\lambda \in [0, 1]$, let us define $f^{\lambda} = (f_1^{\lambda}, \dots, f_n^{\lambda}) : \mathbb{R} \times \mathbb{R}_{++}^n \to \mathbb{R}^n$ by $f_i^{\lambda}(t, x) = (1 - \lambda) f_i^*(x) + \lambda f_i(t, x)$, where $\mathbb{R}_{++}^n := \{x \in \mathbb{R}^n : x > 0\}$, and note that

$$\sum_{j=1}^{n} c_j \frac{\partial f_j^{\lambda}}{\partial x_i}(t, x) \leqslant -\overline{m} := -\min\{1, m\}, \quad 1 \leqslant i \leqslant n.$$
(2.6)

Let $\pi_{\lambda}: D_{\lambda} \to \mathbb{R}^n$ be the Poincaré map of the system

$$x'_{i} = x_{i} f_{i}^{\lambda}(t, x_{1}, \dots, x_{n}), \quad 1 \leq i \leq n.$$
 (2.7)

It is well known that D_{λ} is a (possibly empty) open subset of \mathbb{R}^n and by the continuous dependence in the parameters, $D := \{(\lambda, x) \in [0, 1] \times \mathbb{R}^n : x \in D_{\lambda}\}$ is an open subset of $[0,1] \times \mathbb{R}^n$ and $H: D \to \mathbb{R}^n$; $H(\lambda, x) := \pi_{\lambda}(x) - x$; is a continuously differentiable function. Note that D is nonempty since $(0, x^*) \in D$. Notice also that by (2.6) and Corollary 2.2, the partial derivative $H_x(\lambda, x)$ is invertible for all $(\lambda, x) \in H^{-1}(0)$. Thus, H satisfies assumption (iii) of Lemma 2.3.

On the other hand, $H(0, x^*) = 0$ and by Corollary 1.7 of [2], $H^{-1}(0) \cap (\{0\} \times \mathbb{R}^n) =$ $\{(0, x^*)\}$. Finally, let $((\lambda_k, x^k))$ be a sequence in $H^{-1}(0)$ and let $u^k = (u_1^k, \dots, u_n^k)$ be the positive T-periodic solution of the equation

$$x'_i = x_i \big[(1 - \lambda_k) f_i^*(x) + \lambda_k f_i(t, x) \big], \quad 1 \le i \le n,$$

determined by the condition $u^k(0) = x^k$.

Claim. The sequence (u^k) is uniformly bounded. That is, there exists M > 0 such that $||u^k(t)|| \leq M$ for all $t \in \mathbb{R}$ and $k \in \mathbb{N}$. To show this let us define

$$W_k(t) = \sum_{j=1}^n c_j \ln(u_j^k(t))$$
 and $\phi_k(t, x) = \sum_{j=1}^n c_j f_j^{\lambda_k}(t, x).$

It is easy to show that

$$\frac{\partial \phi_k}{\partial x_i}(t,x) \leqslant -\overline{m} \quad \forall i,k,t,x$$

and hence there exists a constant K > 0 such that

 $\phi_k(t, x) \leqslant \phi_k(t, 0) - \overline{m}S(x) \leqslant K - \overline{m}S(x).$

On the other hand, $W'_k(t) = \phi_k(t, u^k(t)) \leq K - \overline{m}S(u^k(t)) \leq K - \overline{m}d^{-1}W_k(t)$, where $d := \max\{c_1, \ldots, c_n\}$ and thus, $W_k(t) \leq dK/\overline{m} \forall t \in \mathbb{R}$; $k \in \mathbb{N}$, since W_k is *T*-periodic for all *k*. That is, there exists a constant M > 0 such that

$$u_1^k(t)^{c_1} \cdots u_n^k(t)^{c_n} \leqslant M \quad \forall t \in \mathbb{R}, \ k \in \mathbb{N}.$$

$$(2.8)$$

By (2.6) and (2.5),

$$\frac{\partial f_i^{\lambda}}{\partial x_i} \leqslant -\frac{\overline{m}}{c_i} < 0,$$

and by (2.4),

$$\int_{0}^{1} f_{i}^{\lambda}(t,0) dt > 0 \quad \forall \lambda \in [0,1], \ 1 \leq i \leq n.$$

From this and Theorems 2.3 and 2.7 of [4], the logistic equation $x' = x f_i^{\lambda}(t, x e_i)$ has a positive *T*-periodic solution $U_i(t, \lambda)$ which is jointly continuous in $(t, \lambda) \in \mathbb{R} \times [0, 1]$. (Here and henceforth, e_1, \ldots, e_n denotes the canonical vector basis of \mathbb{R}^n .) In particular, there exists a constant $\alpha > 0$ such that $U_i(t, \lambda) > \alpha \forall i, t, \lambda$.

there exists a constant $\alpha > 0$ such that $U_i(t, \lambda) > \alpha \ \forall i, t, \lambda$. On the other hand, $(u_i^k)'(t) > u_i^k(t) f_i^{\lambda k}(t, u_i^k(t)e_i)$ and hence $u_i^k(t) > U_i(t, \lambda_k) > \alpha \ \forall i, k, t$. See proof of Proposition 2.1 of [4]. From this and (2.8), $u_i^k(t)^{c_i} \leq M\alpha^{c_i - S(c)}$ and the proof of the claim is complete.

By the above claim and (2.7) we conclude that the sequence of derivatives $((u^k)')$ is uniformly bounded, and by Ascoli's theorem we can suppose, without loss of generality that (u^k) converges uniformly to a *T*-periodic continuous function $v = (v_1, \ldots, v_n) : \mathbb{R} \to \mathbb{R}^n$. On the other hand, we can also assume that (λ_k) converges to a point $\mu \in [0, 1]$ and now it is easy to show that v is a solution of the system

$$x'_i = x_i f_i^{\mu}(t, x), \quad 1 \le i \le n.$$

Note also that $v_i(t) \ge \alpha \ \forall t \in \mathbb{R}$; $1 \le i \le n$.

Finally, $x^k = u^k(0) \rightarrow v(0)$ and hence, $H^{-1}(0)$ is a compact subset of $[0, 1] \times \mathbb{R}^n$. The proof follows now from Lemma 2.3. \Box

Proof of Theorem 1.1. Let us fix p > 0 in \mathbb{R}^n such that p + f(t, 0) > 0 for all $t \in \mathbb{R}$, and define g(t, x) = p + f(t, x). By Theorem 2.4 above and Theorem 1.5 of [2], it follows that each positive solution of the system

$$x'_i = x_i g_i(t, x), \quad 1 \leqslant i \leqslant n, \tag{2.9}$$

is defined and bounded on a terminal interval of \mathbb{R} .

370

371

Let *u* be a solution of (1.1) such that u(0) > 0 and let *v* be the solution of (2.9) determined by the initial condition v(0) = u(0). Since g(t, x) > f(t, x), it follows from Kamke's theorem that $u(t) \le v(t)$ for all $t \ge 0$ in the domain of *u*. From this *u* is defined and bounded on a terminal interval of \mathbb{R} and the proof follows from Theorem 1.5 of [2]. \Box

Proof of Theorem 1.2. Since

$$c_i b_{ii}(t) + \sum_{j \in J_i} c_j |b_{ji}(t)| \leq -m, \quad t \in \mathbb{R}, \ 1 \leq i \leq n,$$

there exists $\varepsilon > 0$ such that

$$c_i b_{ii}(t) + \sum_{j \in J_i} c_j \left[\varepsilon + \left| b_{ji}(t) \right| \right] \leq -m/2, \quad t \in \mathbb{R}, \ 1 \leq i \leq n.$$

Define $\beta_{ii} = b_{ii}$, $\beta_{ij}(t) = -|b_{ij}(t)| - \varepsilon$, and ^{*n*}

$$g_i(t,x) = a_i(t) - \sum_{j=1}^n \beta_{ij}(t)x_j, \quad 1 \le i \le n,$$

then g satisfies the assumptions in Theorem 1.1 and $f(t, x) \leq g(t, x)$. The proof follows now as in Theorem 1.1. \Box

Acknowledgment

I thank the referee for his valuable comments, which improve the first draft of this paper.

References

- A.C. Lazer, Characteristic exponents and diagonal dominant linear systems, J. Math. Anal. Appl. 35 (1971) 215–229.
- [2] A. Tineo, On the asymptotic behavior of some population models, J. Math. Anal. Appl. 167 (1992) 516–529.
- [3] A. Tineo, On the asymptotic behavior of some population models II, J. Math. Anal. Appl. 197 (1996) 249– 258.
- [4] A. Tineo, Iterative schemes for some population models, Nonlinear World 3 (1996) 695-708.