Background: Longer QT is associated with adverse cardiovascular outcomes, but wide QRS due to bundle branch block (BBB) or intraventricular conduction delay (IVCD) can obscure QT measurement. Our hypothesis is that adjusting the QT for QRS duration using a novel correction method is clinically relevant.

Methods: We created a large cohort of individuals with an index ECG and subsequent clinical follow-up. The primary outcome was all-cause mortality. Repolarization was assessed by QT corrected for heart rate (QTc=QT/RR^0.5); JT interval (JTC=QTc-QRS); and QTc corrected for QRS duration (QTcc=(QT-(QRS-120))/RR^0.5).

Results: The cohort consisted of 65,876 subjects with median follow-up of 4.2 years [0.54, 5.9]. There were 2,851 deaths (2.1% per year). Bivariate correlates to mortality included age, gender, HF, CAD, diabetes, renal insufficiency, hemoglobin, QRS, and all measures of repolarization (p<0.001). In the multivariable regression model, LBBB and IVCD, but not RBBB, were risk factors for mortality (p<0.01). When QTcc (LR 1.99 [1.91-2.07], p<0.001) was included in the model, LBBB and IVCD no longer correlated with mortality. Furthermore, Cox survival analysis showed significant difference between long QTcc and normal QTcc, but not LBBB (Figure A, B).

Conclusion: In this large cohort study, a novel method for QT correction that incorporates QRS duration obviates the effect of BBB or IVCD on mortality. QTcc appears to be a clinically meaningful measure of ventricular repolarization.