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Abstract

Motivated by problems in molecular biosciences wherein the evaluation of entropy of a

molecular system is important for understanding its thermodynamic properties, we consider the

efficient estimation of entropy of a multivariate normal distribution having unknown mean

vector and covariance matrix. Based on a random sample, we discuss the problem of estimating

the entropy under the quadratic loss function. The best affine equivariant estimator is obtained

and, interestingly, it also turns out to be an unbiased estimator and a generalized Bayes

estimator. It is established that the best affine equivariant estimator is admissible in the class of

estimators that depend on the determinant of the sample covariance matrix alone. The risk

improvements of the best affine equivariant estimator over the maximum likelihood estimator

(an estimator commonly used in molecular sciences) are obtained numerically and are found to

be substantial in higher dimensions, which is commonly the case for atomic coordinates in

macromolecules such as proteins. We further establish that even the best affine equivariant

estimator is inadmissible and obtain Stein-type and Brewster–Zidek-type estimators dominat-

ing it. The Brewster–Zidek-type estimator is shown to be generalized Bayes.
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1. Introduction

The atomic coordinates of molecules fluctuate randomly. The extent of these
fluctuations determines the thermodynamic properties and shapes of molecules. The
evaluation of thermodynamic properties, including entropy, is an important problem
in molecular biology, chemistry and molecular physics [7,10]. The internal entropy of
a molecule depends on the random fluctuations in its atomic coordinates and, for the
evaluation of entropy, researchers have developed probabilistic models for modelling
these fluctuations. The simplest model, known as the normal mode or harmonic

analysis, is based on the expansion of energy function. At stationary points and
when the atomic fluctuations are small, the potential energy function is reasonably
approximated by the second term of the expansion, thus resulting in a quadratic-
form dependence of the potential energy on atomic displacements and, consequently,
in a multivariate normal probability density function [4]. Karplus and Kushik [8] and
Levy et al. [11] added a fitting approach to this idea, which in their interpretation is
known as the quasi-harmonic analysis. They proposed modelling the p coordinates of
a macromolecule, which may not be strictly harmonic, by a p-variate normal
distribution. The entropy of a p-variate normal random variable X1; having
probability density function fm;SðxÞ; where mARp is the mean vector and S is the
p � p positive definite covariance matrix, is given by

HpðSÞ ¼Em;Sð�ln fm;SðX1ÞÞ

¼ p

2
½1þ lnð2pÞ	 þ ln jSj

2
: ð1:1Þ

Normal mode and quasi-harmonic analysis are widely used for the analysis of
conformational dynamics in biological macromolecules, including ligand–receptor
interactions [6], protein folding [16] and gene regulation [5]. These models are
especially appropriate for estimation of entropy at the very core of tight
macromolecular assemblies and in crystallographic studies. A common practice in
molecular sciences is to estimate HpðSÞ by its maximum likelihood estimator (mle)
HpðS=nÞ; where S=n is the sample covariance matrix based on a random sample of

size n: In the statistical literature on estimation of various functions of the covariance
matrix S; it has been observed that usual estimates based on S=n are often not
optimal and better alternatives can be found. This motivates us to search for better
alternatives to HpðS=nÞ as an estimator of HpðSÞ; which will be useful to researchers
working in molecular sciences. We, therefore, deal with the decision-theoretic
estimation of HpðSÞ:
Let X1;y;Xn be a random sample drawn from a p-variate normal distribution

Npðm;SÞ (nXp þ 1), where the mean vector mARp and the p � p positive definite

covariance matrix S are assumed to be unknown. Based on X1;y;Xn; we desire to
estimate the entropy HpðSÞ; given by (1.1), under the quadratic loss function. Note
that, under the quadratic loss function, the problem of estimating HpðSÞ is
equivalent to that of estimating ln jSj: For an estimator d of ln jSj; the corresponding
estimator of the entropy HpðSÞ is given by dE ¼ ½pf1þ lnð2pÞg þ d	=2: For
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notational simplicity, we prefer to deal with the estimation of ln jSj under the
quadratic loss function

Lðd; ln jSjÞ ¼ ðd� ln jSjÞ2: ð1:2Þ

The risk function and the bias function of an estimator d of ln jSj will be denoted
by Rðd; yÞ ¼ EyðLðd; ln jSjÞÞ and Bðd; yÞ ¼ Eyðd� ln jSjÞ; respectively, where y ¼
ðm;SÞ: Note, that the risk function and the bias function of the corresponding
estimator dE ¼ ½pf1þ lnð2pÞg þ d	=2 of the entropy HpðSÞ are given by REðdE ; yÞ ¼
Rðd; yÞ=4 and BEðdE ; yÞ ¼ Bðd; yÞ=2; respectively.
Although problems of estimating the generalized variance jSj and the generalized

precision jS�1j have received considerable attention in the past [9,13,17–19,21,22], to
the best of our knowledge, estimation of ln jSj (which is equivalent to estimation of
the entropy HpðSÞ) has not been addressed before.
Define

%X ¼
Pn

i¼1 Xi

n
; X ¼

ffiffiffi
n

p
%X and S ¼

Xn

i¼1
ðXi � %XÞðXi � %XÞt;

so that the statistic ðX ;SÞ is minimal-sufficient, XBNpð
ffiffiffi
n

p
m;SÞ; SBWpðn � 1;SÞ

and X and S are independently distributed; here Wpðn � 1;SÞ denotes the p-variate

Wishart distribution with n � 1 degrees of freedom and covariance matrix S: Since
the statistic ðX ;SÞ is minimal-sufficient, it is reasonable to consider only those
estimators which depend on observations only through ðX ;SÞ:
In Section 2, we consider affine equivariant estimators and derive the best affine

equivariant estimator. Interestingly, the best affine equivariant turns out to be
unbiased, which is a rare statistical phenomenon, and it also turns out to be a
generalized Bayes estimator. We also establish the admissibility of the best affine
equivariant estimator among estimators that depend on jSj alone. In Section 3, we
establish the inadmissibility of the best affine equivariant estimator in the class of all
estimators by deriving a Stein-type estimator dominating it. Section 4 provides a
Brewster–Zidek-type estimator dominating the best affine equivariant estimator. The
Brewster–Zidek-type estimator is shown to be generalized Bayes.

2. Affine equivariant estimators

Note that the estimation problem under study is invariant under the affine
transformations:

ðX ;SÞ-ðCX þ D;CSCtÞ; ðm;SÞ-ðCmþ D;CSCtÞ;

where C is any non-singular p � pmatrix and D is any p � 1 vector. Under this affine
transformation, ln jSj-ln jSj þ ln jCj2 and therefore it is reasonable to require that
an estimator dðX ;SÞ satisfies

dðCX þ D;CSCtÞ ¼ dðX ;SÞ þ ln jCj2; ð2:1Þ
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for all p � p non-singular real matrices C and all p � 1 vectors D: An estimator of the
form (2.1) is called an affine equivariant estimator. A standard argument shows that
any affine equivariant estimator is of the form

dcðX ;SÞ ¼ ln jSj � c; ð2:2Þ

for some real constant c:
Let c1 ¼ p ln n; so that dc1 is the mle of ln jSj:We desire to find better alternatives

to the estimator dc1 ; which is the commonly used estimator in molecular sciences. It

is well known [12, p. 100] that

jSj
jSjB

Yp

i¼1
w2n�i; ð2:3Þ

where the w2n�i; for i ¼ 1;y; p; denote independent central chi-square random
variables with n � i degrees of freedom. Thus, the risk and bias of any affine
equivariant estimator do not depend on y and therefore, for any real c; we denote
Rðdc; yÞ and Bðdc; yÞ by RðdcÞ and BðdcÞ; respectively. Let GðxÞ; x40; denote the
gamma function and let cðxÞ ¼ d

dx
ðln GðxÞÞ; x40; denote the digamma function [1].

The following theorem gives the best affine equivariant estimator of ln jSj:

Theorem 2.1. Under the quadratic loss function (1.2), the best affine equivariant

estimator of ln jSj is given by dc0ðX ;SÞ; where c0 ¼ p ln 2þ
Pp

i¼1 cðn�i
2
Þ: Moreover,

dc0ðX ;SÞ is also an unbiased estimator.

Proof. For a real constant c; the risk of the estimator dcðX ;SÞ; as defined by (2.2), is
given by

RðdcÞ ¼ Ey ln
jSj
jSj � c

� �2
;

which is minimized ( for any y) at

c � COPT ¼ Ey ln
jSj
jSj

� �
:

Using (2.3), we get

COPT ¼
Xp

i¼1
Eðln w2n�iÞ

¼ p ln 2þ
Xp

i¼1
c

n � i

2

� �

¼ c0:

Clearly dc0 is also unbiased for ln jSj: Hence the result follows. &

Remark 2.1. (i) Interestingly, the best affine equivariant estimator dc0 is also an

unbiased estimator of ln jSj; which is a rare statistical phenomenon. It follows that
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the best affine equivariant estimator dc0 is a better alternative to dc1 both in terms of

bias and risk.

(ii) Using Jensen’s inequality to the function ln w2n�i; it follows that

Eðln w2n�iÞolnðn � iÞ;

implying that

c0o
Xp

i¼1
lnðn � iÞop ln n ¼ c1:

Thus, the maximum likelihood estimator dc1 is negatively biased and, therefore, it

follows that the mle dc1 under-estimates ln jSj:

The following theorem provides the expression for the bias of the estimator dc1

and expressions for the risks of estimators dc0 and dc1 : This theorem also describes

behaviors of jBðdc1Þj and D ¼ Rðdc1Þ � Rðdc0Þ; as functions of p:

Theorem 2.2. Let c0 ¼ p ln 2þ
Pp

i¼1cðn�i
2
Þ; c1 ¼ p ln n; and for z40 let cð1ÞðzÞ ¼

d
dz
cðzÞ denote the trigamma function. Then

(i) Bðdc1Þ ¼ �½p ln n
2
�
Pp

i¼1 cðn�i
2
Þ	:

(ii) Rðdc0Þ ¼
Pp

i¼1 c
ð1Þðn�i

2
Þ:

(iii) Rðdc1Þ ¼ Rðdc0Þ þ ½p ln n
2�

Pp
i¼1 cðn�i

2 Þ	
2:

(iv) The absolute bias of the mle dc1 is an increasing function of p ð1pppn � 1Þ:
(v) The risk difference D ¼ Rðdc1Þ � Rðdc0Þ is an increasing function of

p ð1pppn � 1Þ:

Proof. The proof of assertion (i) is obvious. Assertion (ii) follows from using (2.3)

along with the fact that, for a w2n random variable Varðln w2nÞ ¼ cð1Þðn
2
Þ: The proof of

assertion (iii) is again obvious. For proving assertions (iv) and (v), we are required

to establish that D1ðpÞ ¼ p ln n
2
�
Pp

i¼1 cðn�i
2
Þ is an increasing function of

pAf1; 2;y; n � 1g: We have

D1ðp þ 1Þ � D1ðpÞ ¼ ln
n

2
� c

n � p � 1
2

� �

4 ln
n

2
� ln n � p � 1

2

4 0; 8 p ¼ 1; 2;y; n � 2;

since, for z40; cðzÞoln z (using Jensen’s inequality). Hence the result follows.
For various combinations of n and p (nXp þ 1), values of the absolute bias

jBðdc1Þj and the risk improvement RIðdc0 ; dc1Þ ¼ ðRðdc1Þ � Rðdc0ÞÞ=Rðdc1Þ � 100%
are tabulated in Table 1. It is evident from Table 1 that the best affine equivariant
estimator dc0 gives significant (up to 100%) improvements over the mle dc1 for higher

values of p: Moreover the mle dc1 is heavily biased for large values of p: This, along
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with results (iv) and (v) of Theorem 2.2, suggests that the use of the mle dc1 may give

undesirable results in higher dimensions, which are common in molecular biology
where macromolecules, such as proteins, have a very large number of atomic
coordinates. &

In the following theorem, we establish that the best affine equivariant estimator dc0

is also generalized Bayes.

Theorem 2.3. The best affine equivariant estimator dc0 is generalized Bayes with

respect to the prior on ðm;SÞ with density

Pðm;SÞ ¼ 1

jSj
pþ1
2

; S40; mARp;

where S40 means that S is positive definite.

ARTICLE IN PRESS

Table 1

Values of jBðdc1 Þj and RIðdc0 ; dc1 Þ

n p jBðdc1 Þj RIðdc0 ; dc1 Þ

10 1 0.2206 16.3598

2 0.5738 38.2119

5 2.6732 80.3434

25 1 0.0830 7.3561

2 0.2106 19.9629

5 0.8812 61.8996

10 3.1290 89.8411

50 1 0.0408 3.8331

2 0.1026 11.1022

5 0.4188 44.6436

10 1.4136 81.2315

25 8.7296 98.1347

100 1 0.0202 1.9575

2 0.0506 5.8802

5 0.2046 28.6553

10 0.6766 68.1360

25 3.8584 96.216

50 16.3916 99.4754

500 1 0.0040 0.3983

2 0.0100 1.2345

5 0.0402 7.4131

10 0.1310 29.7521

25 0.7128 83.1548

50 2.7460 97.2731

100 11.0778 99.6364
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Proof. Since, given ðm;SÞ; X and S are independently distributed as Npð
ffiffiffi
n

p
m;SÞ and

Wpðn � 1;SÞ respectively, the ( formal) posterior density of ðm;SÞ; given ðX ;SÞ; is

K1ðSÞ
1

jSj
nþpþ1
2

e�
1
2
ðX�

ffiffi
n

p
mÞtS�1ðX�

ffiffi
n

p
mÞe�

1
2
trðS�1SÞ; mARp; S40;

where trðAÞ denotes the trace of matrix A;

K1ðSÞ ¼
n

p
2jSj

n�1
2

ð2pÞ
p
22

ðn�1Þp
2 Gp

n � 1
2

� �

and Gpð�Þ denotes the p-variate gamma function.

Therefore, the posterior density of S; given ðX ;SÞ; is

jSj
n�1
2

2
ðn�1Þp
2 Gp

n � 1
2

� �
jSj

nþp
2

e�
1
2
trðS�1SÞ; S40;

which is the density of inverted Wishart distribution with n þ p degrees of freedom
and parameter matrix S (see [12], Problem 3.6). Thus, given ðX ;SÞ;

S�1BWpðn � 1;S�1Þ

) jS�1j
jS�1jB

Yp

i¼1
w2n�i; ð½12	;Theorem 3:2:15Þ;

where the w2n�i; for i ¼ 1;y; p; are independent chi-square random variables.
Since the loss function is squared error, the generalized Bayes estimator of ln jSj is

given by

dGB1ðX ;SÞ ¼ESðln jSjjðX ;SÞÞ

¼ ln jSj �
Xp

i¼1
Eðln w2n�iÞ

¼ dc0ðX ;SÞ:
Hence the result follows.
Motivated by the work of Pal [14] who, under the entropy loss, established the

admissibility of the best affine equivariant estimator of the generalized variance jSj
among estimators depending on jSj alone, we address the admissibility of the best
affine equivariant estimator, dc0 ; of ln jSj among estimators depending on jSj (or
ln jSj) alone. As pointed out by Pal [14], this problem is quite meaningful, especially
when the population mean vector m is known, as then one is forced to base his/her
estimate entirely on a Wishart matrix. The following lemma due to Brown [3] (also
see Pal [14]) will be useful in this direction. &

Lemma 2.1. Let Z be a real location parameter for the real random variable Q: Let

R0 denote the risk of the best invariant estimator Q of Z under a loss function
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L�ðd; ZÞ ¼ W �ðd� ZÞ; where W �ð�Þ is a non-negative function defined on the real line,
and let R�ðd; ZÞ denote the risk (expected loss) function of an estimator d: Assume that

R0oN and that

(i) limi-N R�ðQ þ di; ZÞ ¼ R�ðQ; ZÞ ) limi-N di ¼ 0;
(ii)

R
N

0 fsupg EZ¼0ððW �ðQÞ � W �ðQ þ gÞÞIð0;lÞðjQjÞÞgdloN; and

(iii) EZ¼0ðjQjW �ðQÞÞoN;

where IAð:Þ denotes the indicator function of a set A: Then the best invariant estimator

Q is admissible for estimating Z under the loss function L�ð�; �Þ:

Theorem 2.4. Under the loss function Lð�; �Þ (given by (1.2)), the best affine equivariant

estimator dc0 is an admissible estimator of ln jSj in the class of estimators depending on

jSj alone.

Proof. Let Q ¼ ln jSj and Z ¼ ln jSj þ c0: Then, under the loss function (1.2), dc0 is

an admissible estimator of ln jSj in the class of estimators depending on jSj alone if
and only if Q is an admissible estimator of Z in the class of estimators depending on
jSj alone. Thus, it suffices to verify conditions (i)–(iii) of Lemma 2.1.
(i) We have

RðQ þ di; ZÞ ¼ d2i þ Var ln jSjjSj

� �

¼ d2i þ Var ln
Yp

j¼1
w2n�j

 ! !

¼ d2i þ
Xp

j¼1
Varðln w2n�jÞ;

where the w2n�j ; for j ¼ 1;y; p; are independent chi-square random variables.

Thus,

lim
i-N

RðQ þ di; ZÞ ¼ RðQ; ZÞ

) lim
i-N

d2i þ
Xp

j¼1
Varðln w2n�jÞ ¼

Xp

j¼1
Varðln w2n�jÞ

) lim
i-N

di ¼ 0:

(ii) Define,

MlðgÞ ¼ EZ¼0ððQ2 � ðQ þ gÞ2ÞIð0;lÞðjQjÞÞ; gAR1; l40:

Clearly, for fixed l40;

sup
gAR1

MlðgÞ ¼
ðEZ¼0ðQIð0;lÞðjQjÞÞÞ2

EZ¼0ðIð0;lÞðjQjÞÞ ¼ ðhðlÞÞ2

gðlÞ ; say;
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where

hðlÞ ¼ EZ¼0ðQIð0;lÞðjQjÞÞ; l40;

and

gðlÞ ¼ EZ¼0ðIð0;lÞðjQjÞÞ; l40:

We are required to verify that

I ¼
Z

N

0

ðhðlÞÞ2

gðlÞ dloN:

Note that, under Z ¼ 0;

QB
Xp

i¼1
ln w2n�i � c0;

where the w2n�i; for i ¼ 1;y; p; are independent chi-square random variables. Thus

the moments of Q (under Z ¼ 0) can be expressed in terms of gamma and
polygamma functions [1, p. 260]. Thus it follows that, under Z ¼ 0; Q has finite
moments of all orders. Also, for any l40;

ðhðlÞÞ2 ¼ðEZ¼0ðQIð0;lÞðjQjÞÞÞ2

pEZ¼0ðQ2ÞEZ¼0ðIð0;lÞðjQjÞÞ

) ðhðlÞÞ2

gðlÞ pEZ¼0ðQ2ÞoN:

Moreover,

lim
l-N

hðlÞ
gðlÞ ¼ EZ¼0ðQÞ ¼ 0:

Thus, it suffices to verify that

IN ¼
Z

N

N

jhðlÞjdloN;

for large N:
We have

hðlÞ ¼EZ¼0ðQIð0;lÞðjQjÞÞ

¼ � EZ¼0ðQIðl;NÞðjQjÞÞ ðsince EZ¼0ðQÞ ¼ 0Þ:

Thus,

jhðlÞj ¼ jEZ¼0ðQIðl;NÞðjQjÞÞj

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EZ¼0ðQ2Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PZ¼0ðjQj4lÞ

q

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EZ¼0ðQ2Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EZ¼0ðQ4Þ

l4

s
:
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Therefore, for large N;

INp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EZ¼0ðQ2Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EZ¼0ðQ4Þ

q Z
N

N

1

l2
dloN:

(iii) We have

EZ¼0ðjQjWðQÞÞ ¼EZ¼0ðjQjQ2Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EZ¼0ðQ2Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EZ¼0ðQ4Þ

q
oN;

since Q has finite moments of all orders.
Now we address the problem of admissibility/inadmissibility of the best affine

equivariant estimator dc0 in the class of all estimators. We observe that the estimator

dc0 is inadmissible in the class of all estimators. In the following section, we obtain a

Stein-type estimator dominating the best affine equivariant estimator dc0 :

3. Inadmissibility of the best affine equivariant estimator and an improved

stein-type estimator

Using the idea of Stein [20], we will derive an estimator that dominates the best
affine equivariant estimator dc0 : To do so, we explore a larger class than the affine

equivariant estimators. One such class of estimators contains all estimators of the
form

dfðX ;SÞ ¼ ln jS þ XX tj � fðTÞ; ð3:1Þ

where T ¼ jSjjS þ XX tj�1 and fð:Þ is some real-valued function defined on the unit
interval ½0; 1	: Note that the choice fðtÞ � fcðtÞ ¼ c � ln t; for cAð�N;NÞ; yields
the class of affine equivariant estimators. Xiaoqian and Wankai [22] considered a
similar class of estimators for the problem of estimating the generalized precision.
Let F be a p � p non-singular matrix such that FSF t ¼ Ip; the p � p identity

matrix, and let t ¼
ffiffiffi
n

p
Fm: Let P be a p � p orthogonal matrix whose first row

is ð t1ffiffi
l

p ;y;
tpffiffi
l

p Þ; where l ¼ jjtjj2 and jj:jj denotes the usual Euclidean norm. Define
U ¼ PFX ; W ¼ PFSFtPt and m0 ¼ ð

ffiffiffi
l

p
; 0;y; 0Þt; so that UBNpðm0; IpÞ and

WBWpðn � 1; IpÞ are independently distributed. Then, the risk function of any
estimator of the form (3.1) is given by

Rðdf; yÞ ¼ Elðln jW þ UUtj � fðTÞÞ2;

where T ¼ jW jjW þ UUtj�1: It follows that the risk function of any estimator of the
form (3.1) depends on y only through l and therefore, for notational simplicity, we
denote Rðdf; yÞ by RlðdfÞ:
Following Xiaoqian and Wankai [22], let V ¼ ðVijÞ be the random lower-

triangular matrix, having positive diagonal elements, such thatW þ UUt ¼ VVt and

let Y ¼ V�1U : Then jW þ UUtj ¼
Qp

i¼1 V 2
ii and T ¼ jW jjW þ UUtj�1 ¼ 1� Y tY :
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Let K be a Poisson random variable with mean l=2: Then, from Xiaoqian and

Wankai [22], it follows that ðV 2
11;TÞ;V 2

22;y;V 2
pp are mutually independent;

V 2
iiBw2n�iþ1; i ¼ 2;y; p and that, given K ¼ k; V2

11Bw2nþ2k and TBBetaðn�p
2
; p
2
þ kÞ

(beta distribution) are independently distributed. Under the above notation, the risk
function of any estimator of the form (3.1) is given by

RlðdfÞ ¼ El

Xp

i¼1
lnV2

ii � fðTÞ
 !2

; l40:

The above representation of the risk function can also be obtained using the ideas of
Shorrock and Zidek [17]. In the following theorem, we establish the inadmissibility
of the best affine equivariant estimator dc0 by providing a Stein-type estimator

dominating it.

Theorem 3.1. Define fST ðtÞ ¼ maxfp ln 2þ
Pp

i¼1 cðn�iþ1
2

Þ; c0 � ln tg; tA½0; 1	: Then,

under the quadratic loss function (1.2), the best affine equivariant estimator dc0 is

inadmissible and is dominated by dfST
ðX ;SÞ ¼ ln jS þ XX tj � fST ðTÞ:

Proof. Consider the risk difference

Rlðdc0Þ � RlðdfST
Þ ¼El

Xp

i¼1
lnV 2

ii � c0 þ ln T

 !2
�El

Xp

i¼1
lnV 2

ii � fST ðTÞ
 !2

¼ElðD1ðT ; lÞÞ; l40;

where, for tA½0; 1	 and l40;

D1ðt; lÞ

¼ ½fST ðtÞ � c0 þ ln t	 2
Xp

i¼2
EðlnV2

ii Þ þ 2ElðlnV2
11jT ¼ tÞ � c0 þ ln t � fST ðtÞ

" #
:

¼ ½fSTðtÞ � c0 þ ln t	

� 2p ln 2þ 2
Xp

i¼2
c

n � i þ 1
2

� �
þ 2El c

n

2
þ K

� �� �
� c0 þ ln t � fST ðtÞ

" #
:

It is enough to establish that D1ðt; lÞX0; for each tA½0; 1	 and each l40; with
strict inequality on a set of positive probability for some l40: Clearly, for
ln tpc0 � p ln 2�

Pp
i¼1 cðn�iþ1

2
Þ and any l40; D1ðt; lÞ ¼ 0: Now suppose that

ln t4c0 � p ln 2�
Pp

i¼1 cðn�iþ1
2

Þ ¼ �
Pp

i¼1 fcðn�iþ1
2

Þ � cðn�i
2
Þg: Then, since cðxÞ is
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an increasing function of xAð0;NÞ [1], it follows that

D1ðt; lÞ ¼ ln t þ
Xp

i¼1
c

n � i þ 1
2

� �
� c

n � i

2

� �� �" #

� 2El c
n

2
þ K

� �� �
þ
Xp

i¼2
c

n � i þ 1
2

� �
� c

n

2

� �"

�
Xp

i¼1
c

n � i

2

� �
þ ln t

#

X ln t þ
Xp

i¼1
c

n � i þ 1
2

� �
� c

n � i

2

� �� �" #2

4 0; 8 tA½0; 1	 and 8 l40:

Since Plðln T4�
Pp

i¼1 fcðn�iþ1
2

Þ � cðn�i
2
ÞgÞ40; for each l40; the result follows.

The Stein-type estimator obtained in Theorem 3.1 is non-smooth and therefore
seems to be inadmissible. In the search of a smooth estimator dominating the best
affine equivariant estimator dc0 ; in the following section, we will derive a Brewster-

Zidek-type improvement over the estimator dc0 : &

4. Improved brewster-zidek-type estimator

In this section, following the innovative idea of Brewster and Zidek [2], we will
derive a smooth estimator that dominates the best scale equivariant estimator dc0 : To

do so, we first consider estimators of the form

d�d;rðX ;SÞ ¼
ln jSj � c0; for 0pTpr;

ln jSj � d; for roTp1;

�
ð4:1Þ

where dAð�N;NÞ and rAð0; 1Þ are real constants.
Note that, for each rAð0; 1Þ; d�c0;r ¼ dc0 : Let Ið�Þ denote the indicator function.

Then, for given rAð0; 1Þ and l40; the risk function Rlðd�d;rÞ is minimized at
d � drðlÞ; where

drðlÞ ¼
El ln

jSj
jSj

� �
IðroTp1Þ

� �
ElðIðroTp1ÞÞ : ð4:2Þ

In the following lemma, we will derive some properties of the function
drðlÞ; l40; rAð0; 1Þ:

Lemma 4.1. (i) Let d�d;rð:; :Þ be as defined in (4.1). Then, for fixed rAð0; 1Þ and

l40; Rlðd�d;rÞ is minimized at d ¼ drðlÞ; where drðlÞ is given by (4.2).
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(ii) For fixed rAð0; 1Þ; infl40 drðlÞ ¼ dðrÞ; where

dðrÞ ¼
R 1

r
t
n�p
2 �1ð1� tÞ

p
2
�1fln t þ p ln 2þ

Pp
i¼1 cðn�iþ1

2
Þg dtR 1

r
t
n�p
2

�1ð1� tÞ
p
2
�1

dt
: ð4:3Þ

(iii) dðrÞ is an increasing function of rAð0; 1Þ; and

c0odðrÞop ln 2þ
Xp

i¼1
c

n � i þ 1
2

� �
; 8 rAð0; 1Þ:

Proof. We have already observed that the assertion (i) is true. For proving the
assertion (ii), consider a fixed rAð0; 1Þ: Then, from (4.2) and under the notation of
Section 3, we have

drðlÞ ¼
El ln

jSj
jSj

� �
IðroTp1Þ

� �
ElðIðroTp1ÞÞ

¼Elðfln T þ
Pp

i¼1 lnV2
iigIðroTp1ÞÞ

ElðIðroTp1ÞÞ

¼ElðL1ðKÞÞ
ElðL2ðKÞÞ; l40;

where K is a Poisson random variable with mean l=240 and, for k ¼ 1; 2;y;

L1ðkÞ ¼ b
n � p

2
;
p

2
þ k

� �h i�1 Z 1

r

lnðtÞt
n�p
2

�1ð1� tÞ
p
2
þk�1

dt

"

þ c
n

2
þ k

� �
þ
Xp

i¼2
c

n � i þ 1
2

� �
þ p ln 2

( )Z 1

r

t
n�p
2

�1 ð1� tÞ
p
2
þk�1

dt

#
;

L2ðkÞ ¼ b
n � p

2
;
p

2
þ k

� �h i�1 Z 1

r

t
n�p
2

�1ð1� tÞ
p
2
þk�1

dt

� �
;

here bð�; �Þ denotes the beta function.
We may write

drðlÞ ¼ El½L3ðK1Þ	; l40;

where, for k ¼ 0; 1;y;L3ðkÞ ¼ L1ðkÞ=L2ðkÞ and K1 is a random variable whose

probability mass function is proportional to lkL2ðkÞ
2kk!

; k ¼ 0; 1;y: We have

L3ðkÞ ¼ L4ðkÞ þ c
n

2
þ k

� �
þ
Xp

i¼2
c

n � i þ 1
2

� �
þ p ln 2; k ¼ 0; 1;y;

where

L4ðkÞ ¼
R 1

r
lnðtÞt

n�p
2

�1ð1� tÞ
p
2
þk�1

dtR 1
r

t
n�p
2

�1ð1� tÞ
p
2
þk�1

dt
; k ¼ 0; 1;y:

ARTICLE IN PRESS
N. Misra et al. / Journal of Multivariate Analysis 92 (2005) 324–342336



Integrating the integrals in the numerator and denominator above by parts with

lnðtÞð1� tÞ
p
2
þk�1 and ð1� tÞ

p
2
þk�1 as the differentiating factor, and after some

standard adjustments, we get, for k ¼ 1; 2;y;

L4ðkÞ

¼ L4ðk � 1Þ p þ 2k � 2� 2 lnðrÞr
n�p
2 ð1� rÞ

p
2
þk�1f

R 1
r
lnðtÞt

n�p
2

�1ð1� tÞ
p
2
þk�2

dtg�1

p þ 2k � 2� 2r
n�p
2 ð1� rÞ

p
2
þk�1f

R 1
r

t
n�p
2

�1ð1� tÞ
p
2
þk�2

dtg�1

" #

� 2

n þ 2k � 24L4ðk � 1Þ � 2

n þ 2k � 2;

since Z 1

r

lnðtÞt
n�p
2 �1ð1� tÞ

p
2
þk�2

dt4lnðrÞ
Z 1

r

t
n�p
2 �1ð1� tÞ

p
2
þk�2

dt; 8 rAð0; 1Þ: ð4:4Þ

Now, using the fact that for z40; cðz þ 1Þ ¼ cðzÞ þ 1=z [1] we get, for k ¼ 1; 2;y;

L3ðkÞXL4ðk � 1Þ þ c
n

2
þ k � 1

� �
þ
Xp

i¼2
c

n � i þ 1
2

� �
þ p ln 2

¼L3ðk � 1Þ:
Thus, L3ðkÞ is an increasing function of kAf0; 1;yg: Now, let K2 be a random
variable that is degenerate at 0: Then, for each l40; the random variable K1 is
stochastically larger than the random variable K2; and therefore, for each l40;

drðlÞ ¼El½L3ðK1Þ	

XEl½L3ðK2Þ	

¼L3ð0Þ

¼ dðrÞ;
where dðrÞ; r40; is given by (4.3). Now the assertion follows by noting that, for
each rAð0; 1Þ; limlk0 drðlÞ ¼ dðrÞ:
It remains to prove the assertion (iii). The increasing behavior of the function

dðrÞ; rAð0; 1Þ; follows by direct differentiation and using (4.4) for k ¼ 1: Therefore,
for each rAð0; 1Þ;

lim
rk0

dðrÞodðrÞo lim
rm1

dðrÞ:

Using l’Hôspital’s rule, it follows that limrm1 dðrÞ ¼ p ln 2þ
Pp

i¼1 cðn�iþ1
2

Þ: Also,
note thatZ 1

0

lnðtÞt
n�p
2

�1ð1� tÞ
p
2
�1

dt ¼ d

dx
bðx; yÞ

� �
x¼n�p

2
;y¼p
2

¼ ½bðx; yÞfcðxÞ � cðx þ yÞg	
x¼n�p

2
;y¼p
2

¼ b
n � p

2
;
p

2

� �
c

n � p

2

� �
� c

n

2

� �h i
:
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Therefore,

lim
rk0

dðrÞ ¼ p ln 2þ
Xp

i¼1
c

n � i þ 1
2

� �
þ c

n � p

2

� �
� c

n

2

� �
¼ c0;

and the result follows.

Since, for each l40 and rAð0; 1Þ; Rlðd�d;rÞ is minimized at d ¼ drðlÞ and, for each
fixed rAð0; 1Þ; infl40 drðlÞ ¼ dðrÞ; using the convexity of the function Rlðd�d;rÞ (as a
function of d; for fixed l40 and rAð0; 1Þ), we conclude that, for each l40 and
rAð0; 1Þ; Rlðd�d;rÞ is a strictly decreasing function of d; for dAð�N; dðrÞÞ: Since, for
each rAð0; 1Þ; we have c0odðrÞ; the following result follows.

Theorem 4.1. Let dðrÞ; r40; be defined by (4.3). Then, for any rAð0; 1Þ; the estimator

ddðrÞ;rð�; �Þ; as defined by (4.1), dominates the best affine equivariant estimator dc0ð�; �Þ:
Further select r0; such that 0oror0o1: Since dðrÞ is an increasing function of

rAð0; 1Þ; we have c0odðrÞodðr0Þ: Now, by considering estimators of the form

d�d;r0;rðX ;SÞ ¼
ln jSj � c0; for 0pTpr;

ln jSj � dðrÞ; for roTpr0;

ln jSj � d; for r0oTp1

8><
>:

and repeating the above arguments, it can be seen that the estimator ddðrÞ;rð�; �Þ (and
therefore the best affine equivariant estimator dc0 ) is further dominated by the

estimator

d�dðr0Þ;r0;rðX ;SÞ ¼
ln jSj � c0; for 0pTpr;

ln jSj � dðrÞ; for roTpr0;

ln jSj � dðr0Þ; for r0oTp1:

8><
>:

Now, using the idea of [2], we select a finite partition of the unit interval ½0; 1	;
represented by 0 ¼ ri;0ori;1oyori;ni�1ori;ni

¼ 1; for each i ¼ 1; 2;y; and a

corresponding estimator defined by

d�i ðX ;SÞ ¼

ln jSj � c0; for ri;0pTpri;1

ln jSj � dðri;1Þ; for ri;1oTpri;2

� �
� �
� �
ln jSj � dðri;ni�1Þ; for ri;ni�1oTpri;ni

:

8>>>>>>>><
>>>>>>>>:
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Then, providing max1pjpni
jri;j � ri;j�1j-0; as i-N; the sequence of estimators

d�i ðX ;SÞ converge point wise to

dfBZ
ðX ;SÞ ¼ ln jSj � dðTÞ

¼ ln jS þ XX tj � fBZðTÞ; ð4:5Þ

where the function dðxÞ; xA½0; 1	 is given by (4.3) and fBZðtÞ ¼ dðtÞ � ln t; tA½0; 1	:

Now we have the following theorem.

Theorem 4.2. Let dðxÞ; xA½0; 1	; be defined by (4.3). Then, under the quadratic loss

function (1.2), the best affine equivariant estimator dc0 is dominated by the estimator

dfBZ
; given by (4.5).

Proof. Since, for each iAf1; 2;yg; d�i has smaller risk than that of dc0 ; the result

follows by an application of Fatou’s lemma.
In the following theorem, we establish that the Brewster-Zidek-type estimator dfBZ

is also generalized Bayes with respect to a prior similar to the one considered by [15]
for estimating the variance in multivariate normal distribution. &

Theorem 4.3. The Brewster-Zidek-type estimator dfBZ
is generalized Bayes with

respect to the prior on ðm;SÞ with density

P1ðm;SÞ ¼
1

jSj
pþ2
2

Z
N

0

z
p
2
�1

1þ z
e�

nmtS�1m
2

z dz; mARp; S40:

Proof. The ( formal) posterior density of ðm;SÞ; given ðX ;SÞ; is proportional to

1

jSj
nþpþ2
2

e�
1
2
ðX�

ffiffi
n

p
mÞtS�1ðX�

ffiffi
n

p
mÞe�

1
2
trðS�1SÞ

Z
N

0

z
p
2
�1

1þ z
e�

nmtS�1m
2

z dz

¼ 1

jSj
nþpþ2
2

Z
N

0

z
p
2
�1

1þ z
e
�1
2
trðS�1ðSþ z

1þz
XX tÞÞ

e
�nð1þzÞ

2
ðm� Xffiffi

n
p

ð1þzÞÞ
tS�1ðm� Xffiffi

n
p

ð1þzÞÞ dz:

Thus, the posterior distribution of S; given ðX ;SÞ; is proportional to

1

jSj
nþpþ1
2

Z
N

0

z
p
2
�1

ð1þ zÞ
pþ2
2

e
�1
2
trðS�1ðSþ z

1þz
XX tÞÞ

dz: ð4:6Þ

We know that the density of a m � m positive definite inverted Wishart
matrix B, having N degrees of freedom and positive definite parameter matrix V ;
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is given by

fN;mðBjVÞ ¼ jV j
N�m�1
2

2
mðN�m�1Þ

2 GmðN�m�1
2

ÞjBj
N
2

e�
1
2
trðB�1VÞ; B40: ð4:7Þ

We write that B is W�1
m ðN;VÞ:

Thus, the normalizing factor in (4.6) is

K1ðX ;SÞ ¼ Gp

n

2

� �
2

np
2

Z
N

0

z
p
2
�1

ð1þ zÞ
pþ2
2

S þ z

1þ z
XX t

����
����
�n
2

dz

2
4

3
5
�1

and therefore the posterior density of S; given ðX ;SÞ; is

qðSjX ;SÞ ¼

R
N

0

z
p
2
�1

ð1þ zÞ
pþ2
2

S þ z

1þ z
XX t

����
����
�n
2

fnþpþ1;pðSjS þ z
1þz

XX tÞ dz

R
N

0
z

p
2
�1

ð1þzÞ
pþ2
2

jS þ z
1þz

XX tj�
n
2 dz

;

where fnþpþ1;pð�j�Þ is as defined in (4.7).
Thus, the generalized Bayes estimator of ln jSj is given by

dGB2ðX ;SÞ ¼ESðln jSjjX ;SÞ

¼

R
N

0

z
p
2
�1

ð1þ zÞ
pþ2
2

ð1þ z
1þz

X tS�1XÞ�
n
2Eðln jBzjÞ dz

R
N

0

z
p
2
�1

ð1þ zÞ
pþ2
2

ð1þ z
1þz

X tS�1XÞ�
n
2 dz

;

where, for given ðX ;SÞ; Bz is W�1
p ðn þ p þ 1;S þ z

1þz
XX tÞ: It follows that

B�1
z BWp n; S þ z

1þ z
XX t

� ��1
 !

) B�1
z

S þ z

1þ z
XX t

� ��1

���������

���������
B
Yp

i¼1
w2n�iþ1;

where the w2n�iþ1; for i ¼ 1;y; p; are independent chi-square random variables. Thus,

Eðln jBzjÞ ¼ ln S þ z

1þ z
XX t

����
�����X

p

i¼1
Eðln w2n�iþ1Þ

¼ ln jSj þ ln 1þ z

1þ z
X tS�1X

� �
� p ln 2�

Xp

i¼1
c

n � i þ 1
2

� �
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and therefore

dGB2ðX ;SÞ ¼ ln jSj

�

R
N

0
z

p
2
�1

ð1þzÞ
pþ2
2

ð1þ z
1þz

X tS�1XÞ�
n
2fp ln 2þ

Pp
i¼1 cðn�iþ1

2
Þ � lnð1þ z

1þz
X tS�1XÞg dz

R
N

0
z

p
2
�1

ð1þzÞ
pþ2
2

ð1þ z
1þz

X tS�1XÞ�
n
2 dz

:

On making the transformation ð1þ z
1þz

X tS�1XÞ�1 ¼ t in the above integrals and on

using the fact that ð1þ X tS�1XÞ�1 ¼ T ; the above expression turns out to be same as
dfBZ

ðX ;SÞ:

Remark 4.1. We could not resolve the question of admissibility/inadmissibility of the
Brewster-Zidek-type estimator. For various combinations of n; p and l; we
compared the performances of estimators dc0 ; dfST

and dfBZ
using Monte Carlo

simulations. We observed that there is not much difference in the values of their
risks. In most cases, the differences in the values of their risks occur in second or
third decimal places. The estimators dfST

and dfBZ
provide less than 6%

improvements over the best affine equivariant estimator dc0 : These simulation

results are consistent and trivial, and therefore are not reported. Since the best affine
equivariant estimator dc0 is simple to evaluate and is also unbiased, we recommend

its use in applications.
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